N-Methoxycarbonyl-9,12-Dimethoxy-Norchelerythrine: A Novel Antifungal Type-III Benzo[c]phenanthridine from Zanthoxylum simulans Hance Seedlings
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Antifungal Activity
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, T.K. (Ed.) Zanthoxylum Simulans. In Edible Medicinal and Non-Medicinal Plants: Volume 4, Fruits; Springer: Dordrecht, The Netherlands, 2012; pp. 904–911. ISBN 978-94-007-4053-2. [Google Scholar]
- Ivane, N.M.A.; Haruna, S.A.; Zekrumah, M.; Roméo Elysé, F.K.; Hassan, M.O.; Hashim, S.B.H.; Tahir, H.E.; Zhang, D. Composition, Mechanisms of Tingling Paresthesia, and Health Benefits of Sichuan Pepper: A Review of Recent Progress. Trends Food Sci. Technol. 2022, 126, 1–12. [Google Scholar] [CrossRef]
- Nooreen, Z.; Tandon, S.; Yadav, N.P.; Kumar, P.; Xuan, T.D.; Ahmad, A. Zanthoxylum: A Review of Its Traditional Uses, Naturally Occurring Constituents and Pharmacological Properties. Curr. Org. Chem. 2019, 23, 1307–1341. [Google Scholar] [CrossRef]
- Okagu, I.U.; Ndefo, J.C.; Aham, E.C.; Udenigwe, C.C. Zanthoxylum Species: A Review of Traditional Uses, Phytochemistry and Pharmacology in Relation to Cancer, Infectious Diseases and Sickle Cell Anemia. Front. Pharmacol. 2021, 12, 713090. [Google Scholar] [CrossRef]
- Bhambhani, S.; Kondhare, K.R.; Giri, A.P. Diversity in Chemical Structures and Biological Properties of Plant Alkaloids. Molecules 2021, 26, 3374. [Google Scholar] [CrossRef]
- Laines-Hidalgo, J.I.; Muñoz-Sánchez, J.A.; Loza-Müller, L.; Vázquez-Flota, F. An Update of the Sanguinarine and Benzophenanthridine Alkaloids’ Biosynthesis and Their Applications. Molecules 2022, 27, 1378. [Google Scholar] [CrossRef]
- Han, N.; Yang, Z.; Liu, Z.; Liu, H.; Yin, J. Research Progress on Natural Benzophenanthridine Alkaloids and Their Pharmacological Functions: A Review. Nat. Prod. Commun. 2016, 11, 1934578X1601100838. [Google Scholar] [CrossRef]
- Peng, R.; Xu, M.; Xie, B.; Min, Q.; Hui, S.; Du, Z.; Liu, Y.; Yu, W.; Wang, S.; Chen, X.; et al. Insights on Antitumor Activity and Mechanism of Natural Benzophenanthridine Alkaloids. Molecules 2023, 28, 6588. [Google Scholar] [CrossRef]
- Huang, L.-J.; Lan, J.-X.; Wang, J.-H.; Huang, H.; Lu, K.; Zhou, Z.-N.; Xin, S.-Y.; Zhang, Z.-Y.; Wang, J.-Y.; Dai, P.; et al. Bioactivity and Mechanism of Action of Sanguinarine and Its Derivatives in the Past 10 Years. Biomed. Pharmacother. 2024, 173, 116406. [Google Scholar] [CrossRef]
- Kang, K.; Jiang, H.; Zhang, S.; Cheng, B. Antitumor Effects of Chelerythrine: A Literature Review. Nat. Prod. Commun. 2022, 17, 1934578X221103028. [Google Scholar] [CrossRef]
- Wei, Q.; Cui, D.; Liu, X.; Chai, Y.; Zhao, N.; Wang, J.; Zhao, M. In Vitro Antifungal Activity and Possible Mechanisms of Action of Chelerythrine. Pestic. Biochem. Physiol. 2020, 164, 140–148. [Google Scholar] [CrossRef]
- Basu, A.; Kumar, G.S. Interaction of the Putative Anticancer Alkaloid Chelerythrine with Nucleic Acids: Biophysical Perspectives. Biophys. Rev. 2020, 12, 1369–1386. [Google Scholar] [CrossRef]
- Bhar, A.; Jain, A.; Das, S. Soil Pathogen, Fusarium Oxysporum Induced Wilt Disease in Chickpea: A Review on Its Dynamicity and Possible Control Strategies. Proc. Indian Natl. Sci. Acad. 2021, 87, 260–274. [Google Scholar] [CrossRef]
- Rahman, M.Z.; Ahmad, K.; Bashir Kutawa, A.; Siddiqui, Y.; Saad, N.; Geok Hun, T.; Hata, E.M.; Hossain, M.I. Biology, Diversity, Detection and Management of Fusarium Oxysporum f. Sp. Niveum Causing Vascular Wilt Disease of Watermelon (Citrullus Lanatus): A Review. Agronomy 2021, 11, 1310. [Google Scholar] [CrossRef]
- Haruna, S.G.; Yahuza, L.; Tijjani, I. Management of Fusarium Wilt of Tomato (Fusarium Oxysporum f. Sp. Lycopersici) and Related Soil-Borne Diseases Using Eco-Friendly Methods: A Review. Asian J. Res. Crop Sci. 2024, 9, 154–168. [Google Scholar] [CrossRef]
- Deresa, E.M.; Diriba, T.F. Phytochemicals as Alternative Fungicides for Controlling Plant Diseases: A Comprehensive Review of Their Efficacy, Commercial Representatives, Advantages, Challenges for Adoption, and Possible Solutions. Heliyon 2023, 9, e13810. [Google Scholar] [CrossRef]
- Santra, H.K.; Banerjee, D. Natural Products as Fungicide and Their Role in Crop Protection. In Natural Bioactive Products in Sustainable Agriculture; Singh, J., Yadav, A.N., Eds.; Springer: Singapore, 2020; pp. 131–219. ISBN 978-981-15-3024-1. [Google Scholar]
- Hussain, T.; Singh, S.; Danish, M.; Pervez, R.; Hussain, K.; Husain, R. Natural Metabolites: An Eco-Friendly Approach to Manage Plant Diseases and for Better Agriculture Farming. In Natural Bioactive Products in Sustainable Agriculture; Singh, J., Yadav, A.N., Eds.; Springer: Singapore, 2020; pp. 1–13. ISBN 978-981-15-3024-1. [Google Scholar]
- Thind, T.S. Changing Trends in Discovery of New Fungicides: A Perspective. Indian Phytopathol. 2021, 74, 875–883. [Google Scholar] [CrossRef]
- Marentes-Culma, R.; Orduz-Díaz, L.L.; Coy-Barrera, E. Targeted Metabolite Profiling-Based Identification of Antifungal 5-n-Alkylresorcinols Occurring in Different Cereals against Fusarium Oxysporum. Molecules 2019, 24, 770. [Google Scholar] [CrossRef]
- Sečkářová, P.; Marek, R.; Dostál, J.; Dommisse, R.; Esmans, E.L. Structural Studies of Benzophenanthridine Alkaloid Free Bases by NMR Spectroscopy. Magn. Reson. Chem. 2002, 40, 147–152. [Google Scholar] [CrossRef]
- Marek, R.; Toušek, J.; Dostál, J.; Slavík, J.; Dommisse, R.; Sklenář, V. 1H and 13C NMR Study of Quaternary Benzo[c]Phenanthridine Alkaloids1. Magn. Reson. Chem. 1999, 37, 781–787. [Google Scholar] [CrossRef]
- Yang, X.-J.; Miao, F.; Yao, Y.; Cao, F.-J.; Yang, R.; Ma, Y.-N.; Qin, B.-F.; Zhou, L. In Vitro Antifungal Activity of Sanguinarine and Chelerythrine Derivatives against Phytopathogenic Fungi. Molecules 2012, 17, 13026–13035. [Google Scholar] [CrossRef]
- Gong, Y.; Li, S.; Wang, W.; Li, Y.; Ma, W.; Sun, S. In Vitro and in Vivo Activity of Chelerythrine against Candida Albicans and Underlying Mechanisms. Future Microbiol. 2019, 14, 1545–1557. [Google Scholar] [CrossRef] [PubMed]
- Cely-Veloza, W.; Quiroga, D.; Coy-Barrera, E. Quinolizidine-Based Variations and Antifungal Activity of Eight Lupinus Species Grown under Greenhouse Conditions. Molecules 2022, 27, 305. [Google Scholar] [CrossRef] [PubMed]
Position | Type | δC | δH (Multiplicity, Integral) |
---|---|---|---|
1 | CH | 100.9 | 7.76 (s, 1H) |
2 | C | 147.6 | - |
3 | C | 148.2 | - |
4 | CH | 105.6 | 7.45 (s, 1H) |
4a | C | 124.8 | - |
4b | C | 136.9 | - |
6 | CH | 144.9 | 9.77 (s, 1H) |
6a | C | 118.1 | - |
7 | C | 152.4 | - |
8 | C | 141.8 | - |
9 | C | 157.5 | - |
10 | CH | 108.9 | 6.99 (s, 1H) |
10a | C | 129.8 | - |
10b | C | 127.3 | - |
11 | CH | 114.0 | 7.17 (s, 1H) |
12 | C | 156.6 | - |
12a | C | 125.8 | - |
2,3-O-CH2-O | CH2 | 101.8 | 6.12 (s, 2H) |
7-OCH3 | CH3 | 60.3 | 3.88 (s, 3H) |
8-OCH3 | CH3 | 59.8 | 3.80 (s, 3H) |
9-OCH3 | CH3 | 56.6 | 3.99 (s, 3H) |
12-OCH3 | CH3 | 55.9 | 3.82 (s, 3H) |
COOCH3 | C | 154.8 | |
COOCH3 | CH3 | 53.1 | 3.68 (s, 3H) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cárdenas-Laverde, D.; Quiroga, D.; Coy-Barrera, E. N-Methoxycarbonyl-9,12-Dimethoxy-Norchelerythrine: A Novel Antifungal Type-III Benzo[c]phenanthridine from Zanthoxylum simulans Hance Seedlings. Molbank 2024, 2024, M1839. https://doi.org/10.3390/M1839
Cárdenas-Laverde D, Quiroga D, Coy-Barrera E. N-Methoxycarbonyl-9,12-Dimethoxy-Norchelerythrine: A Novel Antifungal Type-III Benzo[c]phenanthridine from Zanthoxylum simulans Hance Seedlings. Molbank. 2024; 2024(2):M1839. https://doi.org/10.3390/M1839
Chicago/Turabian StyleCárdenas-Laverde, Diego, Diego Quiroga, and Ericsson Coy-Barrera. 2024. "N-Methoxycarbonyl-9,12-Dimethoxy-Norchelerythrine: A Novel Antifungal Type-III Benzo[c]phenanthridine from Zanthoxylum simulans Hance Seedlings" Molbank 2024, no. 2: M1839. https://doi.org/10.3390/M1839
APA StyleCárdenas-Laverde, D., Quiroga, D., & Coy-Barrera, E. (2024). N-Methoxycarbonyl-9,12-Dimethoxy-Norchelerythrine: A Novel Antifungal Type-III Benzo[c]phenanthridine from Zanthoxylum simulans Hance Seedlings. Molbank, 2024(2), M1839. https://doi.org/10.3390/M1839