Diiodido-bis{N-[2-(diphenylphosphino)benzylidene]benzylamine-κ2N,P}dicopper(I)
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Methodology
3.1. General
3.2. Synthesis of Diiodido-bis{N-[2-(diphenylphosphino)benzylidene]benzylamine-κ2N,P}dicopper(I), 1
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, G.; Zhou, D.; Monkowius, U.; Yersin, H. Fabrication of a Solution-Processed White Light Emitting Diode Containing a Single Dimeric Copper(I) Emitter Featuring Combined TADF and Phosphorescence. Micromachines 2021, 12, 1500. [Google Scholar] [CrossRef] [PubMed]
- Hofbeck, T.; Niehaus, T.A.; Fleck, M.; Monkowius, U.; Yersin, H. P∩N Bridged Cu(I) Dimers Featuring Both TADF and Phosphorescence. From Overview towards Detailed Case Study of the Excited Singlet and Triplet States. Molecules 2021, 26, 3415. [Google Scholar] [CrossRef]
- Aucott, S.M.; Slawin, A.M.Z.; Woollins, J.D. The co-ordination chemistry of 2-(diphenylphosphinoamino)pyridine. J. Chem. Soc. Dalton Trans. 2000, 2559–2575. [Google Scholar] [CrossRef]
- Carroll, M.P.; Guiry, P.J. P,N ligands in asymmetric catalysis. Chem. Soc. Rev. 2014, 43, 819–833. [Google Scholar] [CrossRef] [PubMed]
- Munzeiwa, W.A.; Omondi, B.; Nyamori, V.O. Architecture and synthesis of P,N-heterocyclic phosphine ligands. Beilstein J. Org. Chem. 2020, 16, 362–383. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.B. The Backbone of Success of P,N-Hybrid Ligands: Some Recent Developments. Molecules 2022, 27, 6293. [Google Scholar] [CrossRef]
- Margalef, J.; Biosca, M.; de la Cruz Sánchez, P.; Faiges, J.; Pàmies, O.; Diéguez, M. Evolution in heterodonor P-N, P-S and P-O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. Coord. Chem. Rev. 2021, 446, 214120. [Google Scholar] [CrossRef]
- Yersin, H.; Czerwieniec, R.; Monkowius, U.; Ramazanov, R.; Valiev, R.; Shafikov, M.Z.; Kwok, W.-M.; Ma, C. Intersystem crossing, phosphorescence, and spin-orbit coupling. Two contrasting Cu(I)-TADF dimers investigated by milli- to micro-second phosphorescence, femto-second fluorescence, and theoretical calculations. Coord. Chem. Rev. 2023, 478, 214975. [Google Scholar] [CrossRef]
- Chiririwa, H.; Moss, J.R.; Hendricks, D.; Smith, G.S.; Meijboom, R. Synthesis, characterisation and in vitro evaluation of platinum(II) and gold(I) iminophosphine complexes for anticancer activity. Polyhedron 2013, 49, 29–35. [Google Scholar] [CrossRef]
- Kindervater, M.B.; Binder, J.F.; Baird, S.R.; Vogels, C.M.; Geier, S.J.; Macdonald, C.L.B.; Westcott, S.A. The phosphinoboration of 2-diphenylphosphino benzaldehyde and related aldimines. J. Organomet. Chem. 2019, 880, 378–385. [Google Scholar] [CrossRef]
- Shirakawa, E.; Nakao, Y.; Murota, Y.; Hiyama, T. Palladium-iminophosphine-catalyzed homocoupling of alkynylstannanes and other organostannanes using allyl acetate or air as an oxidant. J. Organomet. Chem. 2003, 670, 132–136. [Google Scholar] [CrossRef]
- Sánchez, G.; García, J.; Serrano, J.L.; García, L.; Pérez, J.; López, G. Homoleptic palladium complexes with phosphine-amide or iminophosphine ligands. Inorg. Chim. Acta 2010, 363, 1084–1091. [Google Scholar] [CrossRef]
- Xue, Z.; Linh, N.T.B.; Noh, S.K.; Lyoo, W.S. Phosphorus-Containing Ligands for Iron(III)-Catalyzed Atom Transfer Radical Polymerization. Angew. Chem. Int. Ed. 2008, 47, 6426–6429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xing, J.; Dong, Y.; Xie, S.; Ren, S.; Qi, X.; Sun, H.; Li, X.; Fuhr, O.; Fenske, D. Phosphine-assisted C–H bond activation in Schiff bases and formation of novel organo cobalt complexes bearing Schiff base ligands. New J. Chem. 2018, 42, 4646–4652. [Google Scholar] [CrossRef]
- Zheng, Q.; Zheng, D.; Han, B.; Liu, S.; Li, Z. Chromium complexes supported by the bidentate PN ligands: Synthesis, characterization and application for ethylene polymerization. Dalton Trans. 2018, 47, 13459–13465. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.; Camadanli, S.; Klein, H.-F. Spontaneous Bicyclometalation of a Single Cobalt(I) Complex Stabilized by a δ-C–H Agostic Interaction. Eur. J. Inorg. Chem. 2018, 608–611. [Google Scholar] [CrossRef]
- Nakao, Y.; Hirata, Y.; Ishihara, S.; Oda, S.; Yukawa, T.; Shirakawa, E.; Hiyama, T. Stannylative Cycloaddition of Enynes Catalyzed by Palladium-Iminophosphine. J. Am. Chem. Soc. 2004, 126, 15650–15651. [Google Scholar] [CrossRef] [PubMed]
- Inami, T.; Sako, S.; Kurahashi, T.; Matsubara, S. Methylenecyclopropanes in [4 + 1] Cycloaddition with Enones. Org. Lett. 2011, 13, 3837–3839. [Google Scholar] [CrossRef]
- Best, J.; Wilson, J.M.; Adams, H.; Gonsalvi, L.; Peruzzini, M.; Haynes, A. Reactivity of Rhodium(I) Iminophosphine Carbonyl Complexes with Methyl Iodide. Organometallics 2007, 26, 1960–1965. [Google Scholar] [CrossRef]
- Li, Y.; Liang, F.; Wu, R.; Li, Q.; Wang, Q.-R.; Xu, Y.-C.; Jiang, L. ‘Evans Auxiliary’ Based P–N Ligands for Pd-Catalyzed Asymmetric Allylic Alkylation Reactions. Synlett 2012, 23, 1805–1808. [Google Scholar] [CrossRef]
- St-Coeur, P.-D.; Kinley, S.; Vogels, C.M.; Decken, A.; Morin, P., Jr.; Westcott, S.A. Synthesis, characterization, and anticancer properties of iminophosphineplatinum(II) complexes containing boronate esters. Can. J. Chem. 2017, 95, 207–213. [Google Scholar] [CrossRef]
- Yang, H.; Du, J.; Wang, C.-L.; Zhan, S.-Z. Synthesis, structures, characterizations and catalytic behaviors for hydrogen evolution of copper(II) and copper(I) complexes supported by diiminodiphosphines. Inorg. Chem. Commun. 2021, 130, 108719. [Google Scholar] [CrossRef]
- Gao, P.-S.; Li, N.; Zhang, J.-L.; Zhu, Z.-L.; Gao, Z.-W.; Sun, H.-M.; Zhang, W.-Q.; Xu, L.-W. Highly Efficient Palladium-Catalyzed Allylic Alkylation of Cyanoacetamides with Controllable and Chemoselective Mono- and Double Substitutions. ChemCatChem 2016, 8, 3466–3474. [Google Scholar] [CrossRef]
- Ortega-Gaxiola, J.I.; Valdés, H.; Rufino-Felipe, E.; Toscano, R.A.; Morales-Morales, D. Synthesis of Pd(II) complexes with P-N-OH ligands derived from 2-(diphenylphosphine)-benzaldehyde and various aminoalcohols and their catalytic evaluation on Suzuki-Miyaura couplings in aqueous media. Inorg. Chim. Acta 2020, 504, 119460. [Google Scholar] [CrossRef]
- Zink, D.M.; Bächle, M.; Baumann, T.; Nieger, M.; Kühn, M.; Wang, C.; Klopper, W.; Monkowius, U.; Hofbeck, T.; Yersin, H.; et al. Synthesis, Structure, and Characterization of Dinuclear Copper(I) Halide Complexes with P^N Ligands Featuring Exciting Photoluminescence Properties. Inorg. Chem. 2013, 52, 2292–2305. [Google Scholar] [CrossRef] [PubMed]
- Olmos, M.E.; Schier, A.; Schmidbaur, H. 2-(Diphenylphosphino)-pyridine as an Ambidentate Ligand in Homo- and Hetero-binuclear Complexes of Copper, Silver, and Gold. Z. Naturforsch. 1997, 52, 203–208. [Google Scholar] [CrossRef]
- Neshat, A.; Aghakhanpour, R.B.; Mastrorilli, P.; Todisco, S.; Molani, F.; Wojtczak, A. Dinuclear and tetranuclear copper(I) iodide complexes with P and P^N donor ligands: Structural and photoluminescence studies. Polyhedron 2018, 154, 217–228. [Google Scholar] [CrossRef]
- Ravaro, L.P.; Zanoni, K.P.S.; de Camargo, A.S.S. Luminescent Copper(I) complexes as promising materials for the next generation of energy-saving OLED devices. Energy Reports 2020, 6, 37–45. [Google Scholar] [CrossRef]
- Bizzarri, C.; Spuling, E.; Knoll, D.M.; Volz, D.; Bräse, S. Sustainable metal complexes for organic light-emitting diodes (OLEDs). Coord. Chem. Rev. 2018, 373, 49–82. [Google Scholar] [CrossRef]
- Zink, D.M.; Bergmann, L.; Ambrosek, D.; Wallesch, M.; Volz, D.; Mydlak, M. Singlet harvesting copper-based emitters: A modular approach towards next-generation OLED technology. Transl. Mater. Res. 2014, 1, 015003. [Google Scholar] [CrossRef]
- Zink, D.M.; Volz, D.; Baumann, T.; Mydlak, M.; Flügge, H.; Friedrichs, J.; Nieger, M.; Bräse, S. Heteroleptic, Dinuclear Copper(I) Complexes for Application in Organic Light-Emitting Diodes. Chem. Mater. 2013, 25, 4471–4486. [Google Scholar] [CrossRef]
- Volz, D.; Chen, Y.; Wallesch, M.; Liu, R.; Fléchon, C.; Zink, D.M.; Friedrichs, J.; Flügge, H.; Steininger, R.; Göttlicher, J.; et al. Bridging the Efficiency Gap: Fully Bridged Dinuclear Cu(I)-Complexes for Singlet Harvesting in High-Efficiency OLEDs. Adv. Mater. 2015, 27, 2538–2543. [Google Scholar] [CrossRef]
- Monkowius, U.; Zabel, M. Tricarbonylchlorido{N-[2-(diphenyl-phosphino)benzylidene]benzylamine-κ2N,P}rhenium(I) dichloromethane solvate. Acta Cryst. 2008, 64, m313. [Google Scholar]
- Xing, J.; Sun, H.; Zheng, T.; Qi, X.; Li, X.; Fuhr, O.; Fenske, D. Syntheses and properties of 2-azaallyl Iron(I) complexes via Csp3-H bond activation. J. Organomet. Chem. 2018, 868, 61–65. [Google Scholar] [CrossRef]
- Xing, J.; Sun, H.; Xue, B.; Li, X.; Fuhr, O.; Fenske, D. Formation of 2-Azaallyl Cobalt(I) Complexes by Csp3−H BondActivation. Organometallics 2017, 36, 975–980. [Google Scholar] [CrossRef]
- Mogorosi, M.M.; Mahamo, T.; Moss, J.R.; Mapolie, S.F.; Slootweg, J.C.; Lammertsma, K.; Smith, G.S. Neutral palladium(II) complexes with P,N Schiff-base ligands: Synthesis, characterization and catalytic oligomerisation of ethylene. J. Organomet. Chem. 2011, 696, 3585–3592. [Google Scholar] [CrossRef]
- Williams, D.B.G.; Pretorius, M. Synthesis and evaluation of phosphine–N ligands in transition metal-catalysed C–C bond forming reactions. J. Mol. Cataly. A 2008, 284, 77–84. [Google Scholar] [CrossRef]
- Chiririwa, H.; Meijboom, R. (SP-4-2)-Chlorido{N-[2-(diphenylphosphanyl)benzylidene]benzylamine-κ2P,N}(methyl)palladium(II). Acta Cryst. E 2011, 67, m1498. [Google Scholar] [CrossRef] [PubMed]
- Chiririwa, H.; Moss, J.R.; Hendricks, D.; Meijboom, R.; Muller, A. Synthesis, characterisation and in vitro evaluation of palladium(II) iminophosphine complexes for anticancer activity. Transition Met. Chem. 2013, 38, 165–172. [Google Scholar]
- Nobre, S.M.; Monteiro, A.L. Pd complexes of iminophosphine ligands: A homogeneous molecular catalyst for Suzuki-Miyaura cross-coupling reactions under mild conditions. J. Mol. Cataly. A 2009, 313, 65–73. [Google Scholar] [CrossRef]
- Wajda-Hermanowicz, K.; Kochel, A.; Wróbel, R. Coordination studies of nitrogen-containing aryl phosphine ligands PˆN and PˆNˆN with rhodium. J. Organomet. Chem. 2018, 860, 30–48. [Google Scholar] [CrossRef]
- Essoun, E.; Wang, R.; Aquino, M.A.S. Disassembly of diruthenium(II,III) tetraacetate with P–N donor ligands. Inorg. Chim. Acta 2017, 454, 97–106. [Google Scholar] [CrossRef]
- Traut-Johnstone, T.; Kanyanda, S.; Kriel, F.H.; Viljoen, T.; Kotze, P.D.R.; van Zyl, W.E.; Coates, J.; Rees, D.J.G.; Meyer, M.; Hewer, R.; et al. Heteroditopic P,N ligands in gold(I) complexes: Synthesis, structure and cytotoxicity. J. Inorg. Biochem. 2015, 145, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Mahamo, T.; Moss, J.R.; Mapolie, S.F.; Smith, G.S.; Slootweg, J.C.; Lammertsma, K. Platinacycloalkane complexes containing [P,N] bidentate ligands: Synthesis and decomposition studies. Dalton Trans. 2014, 43, 5546–5557. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, L.; Tian, Z.; Ge, X.; Gong, Y.; Zheng, H.; Shi, S.; Liu, Z. Lysosome-Targeted Phosphine-Imine Half-Sandwich Iridium(III) Anticancer Complexes: Synthesis, Characterization, and Biological Activity. Organometallics 2019, 38, 1761–1769. [Google Scholar] [CrossRef]
- See Supporting Information of: Kern, T.; Monkowius, U.; Zabel, M.; Knör, G. Mononuclear Copper(I) Complexes Containing Redox-Active 1,2-Bis(aryl-imino)acenaphthene Acceptor Ligands: Synthesis, Crystal Structures and Tuneable Electronic Properties. Eur. J. Inorg. Chem. 2010, 4148–4156. [Google Scholar]
- Beck, J.F.; Schmidt, J.A.R. Isolation and characterization of main group and late transition metal complexes using orthometallated imine ligands. Dalton Trans. 2012, 41, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Egly, J.; Bissessar, D.; Achard, T.; Heinrich, B.; Steffanut, P.; Mauro, M.; Bellemin-Laponnaz, S. Copper(I) complexes with remotely functionalized phosphine ligands: Synthesis, structural variety, photophysics and effect onto the optical properties. Inorg. Chim. Acta 2021, 514, 119971. [Google Scholar] [CrossRef]
- Hirtenlehner, C.; Monkowius, U. Syntheses, crystal structures and blue luminescence of Cu2X2(Ph3P)2[(−)-nicotine]2 (X=Br, I). Inorg. Chem. Commun. 2012, 15, 109–112. [Google Scholar] [CrossRef]
- Kern, T.; Monkowius, U.; Zabel, M.; Knör, G. Synthesis, crystal structure and charge transfer spectra of dinuclear copper(I) complexes bearing 1,2-bis(arylimino)acenaphthene acceptor ligands. Inorg. Chim. Acta 2011, 374, 632–636. [Google Scholar] [CrossRef]
- Jensen, K.A.; Nielsen, P.H. Infrared Spectra of Some Organic Compounds of Group V B Elements. Acta Chem. Scand. 1963, 17, 1875–1885. [Google Scholar] [CrossRef]
- Shi, L.; Li, B.; Lu, S.; Zhu, D.; Li, W. Synthesis, characterization and oxygen-sensing properties of a novel luminescent Cu(I) complex. Appl. Organometal. Chem. 2009, 23, 379–384. [Google Scholar] [CrossRef]
- Kouvatsis, P.; Glykos, D.; Plakatouras, J.C.; Malandrinos, G. [6-(Thiophen-2-yl)-2,2’-bipyridine]bis(triphenylphosphine) Copper(I) Tetrafluoroborate. Molbank 2023, 2023, M1605. [Google Scholar] [CrossRef]
- Hesse, M.; Meier, H.; Zeeh, B. Spektroskopische Methoden in der Organischen Chemie, 7th ed.; Georg Thieme Verlag: Stuttgart, Germany, 2005; pp. 33–73. [Google Scholar]
- Beaudelot, J.; Oger, S.; Peruško, S.; Phan, T.-A.; Teunens, T.; Moucheron, C.; Evano, G. Photoactive Copper Complexes: Properties and Applications. Chem. Rev. 2022, 122, 16365–16609. [Google Scholar] [CrossRef] [PubMed]
- Altomare, A.; Burla, M.C.; Camalli, M.; Cascarano, G.L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A.G.G.; Polidori, G.; Spagna, R. SIR97: A new tool for crystal structure determination and refinement. J. Appl. Cryst. 1999, 32, 115–119. [Google Scholar] [CrossRef]
- Bourhis, L.J.; Dolomanov, O.V.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment—olex2 dissected. Acta Cryst. A 2015, 71, 59–75. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Süß, J.; Monkowius, U.; Zabel, M. Diiodido-bis{N-[2-(diphenylphosphino)benzylidene]benzylamine-κ2N,P}dicopper(I). Molbank 2024, 2024, M1808. https://doi.org/10.3390/M1808
Süß J, Monkowius U, Zabel M. Diiodido-bis{N-[2-(diphenylphosphino)benzylidene]benzylamine-κ2N,P}dicopper(I). Molbank. 2024; 2024(2):M1808. https://doi.org/10.3390/M1808
Chicago/Turabian StyleSüß, Julian, Uwe Monkowius, and Manfred Zabel. 2024. "Diiodido-bis{N-[2-(diphenylphosphino)benzylidene]benzylamine-κ2N,P}dicopper(I)" Molbank 2024, no. 2: M1808. https://doi.org/10.3390/M1808
APA StyleSüß, J., Monkowius, U., & Zabel, M. (2024). Diiodido-bis{N-[2-(diphenylphosphino)benzylidene]benzylamine-κ2N,P}dicopper(I). Molbank, 2024(2), M1808. https://doi.org/10.3390/M1808