(10E,15Z)-12-(Dimethylsulfonio)-9,13-dihydroxyoctadeca-10,15-dienoate
Abstract
:1. Introduction
2. Results and Discussion
3. Material and Methods
3.1. Collection of Cyanobacteria
3.2. Isolation and Structural Characterization of 1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wasternack, C.; Feussner, I. The oxylipin pathways: Biochemistry and function. Annu. Rev. Plant Biol. 2018, 69, 363–386. [Google Scholar] [CrossRef] [PubMed]
- Howe, G.A.; Schilmiller, A.L. Oxylipin metabolism in response to stress. Curr. Opin. Plant Biol. 2002, 5, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Nunnery, J.K.; Mevers, E.; Gerwick, W.H. Biologically active secondary metabolites from marine cyanobacteria. Curr. Opin. Biotechnol. 2010, 21, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A.A.; Akhter, N.; Auckloo, B.N.; Khan, I.; Lu, Y.; Wang, K.; Wu, B.; Guo, Y.W. Structural diversity, biological properties and applications of natural products from cyanobacteria. A review. Mar. Drugs 2017, 15, 354. [Google Scholar] [CrossRef] [PubMed]
- Cardellina, J.H.; Moore, R.E. Malyngic acid, a new fatty acid from Lyngbya majuscula. Tetrahedron 1980, 36, 993–996. [Google Scholar] [CrossRef]
- Herz, W.; Kulanthaivel, P. Trihydroxy-C18-acids and a labdane from Rudbeckia fulgida. Phytochemistry 1985, 24, 89–91. [Google Scholar] [CrossRef]
- Lang, I.; Feussner, I. Oxylipin formation in Nostoc punctiforme (PCC73102). Phytochemistry 2007, 68, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Oku, N.; Matsumoto, M.; Yonejima, K.; Tansei, K.; Igarashi, Y. Sacrolide A, a new antimicrobial and cytotoxic oxylipin macrolide from the edible cyanobacterium Aphanothece sacrum. Beilstein J. Org. Chem. 2014, 10, 1808–1816. [Google Scholar] [CrossRef] [PubMed]
- Oku, N.; Hana, S.; Matsumoto, M.; Yonejima, K.; Tansei, K.; Isogai, Y.; Igarashi, Y. Two new sacrolide-class oxylipins from the edible cyanobacterium Aphanothece sacrum. J. Antibiot. 2017, 70, 708–709. [Google Scholar] [CrossRef] [PubMed]
- Nishino, H.; Kanda, N.; Zhang, B.T.; Kamio, M.; Uchida, H.; Sugahara, K.; Nagai, H.; Satake, M. Okeanic acid–A, a trihydroxy fatty acid from the Okinawan cyanobacterium Okeania hirsuta. Nat. Prod. Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Sciuto, S.; Piattelli, M.; Chillemi, R. (–)-(S)-Dimethylsulfonio-2-methoxybutylate from the red algae Rytiphloea tinctoria. Phytochemistry 1982, 21, 227–228. [Google Scholar] [CrossRef]
- Nakamura, H.; Fujimaki, K.; Sampei, O.; Murai, A. Gonyol: Methionine-induced sulfonium accumulation in a dinoflagellate Gonyaulax polyedra. Tetrahedron Lett. 1993, 34, 8481–8484. [Google Scholar] [CrossRef]
- Kanda, N.; Zhang, B.T.; Shinjo, A.; Kamiya, M.; Nagai, H.; Uchida, H.; Araki, Y.; Nishikawa, T.; Satake, M. 7-Epi-30-Methyloscillatoxin D from an Okinawan cyanobacterium Okeania hirsuta. Nat. Prod. Commun. 2023, 18, 1–5. [Google Scholar] [CrossRef]
Position | δC (ppm) | δH (ppm), Multiplicity (J in Hz) |
---|---|---|
1 | 180.1 | – |
2 | 39.0 | 2.14 t (7.4, 2H) |
3 | 27.6 | 1.57–1.62 m (2H) |
4 | 30.5 | 1.32–1.37 m (2H) |
5 | 30.4 | 1.32–1.37 m (2H) |
6 | 30.6 | 1.32–1.37 m (2H) |
7 | 26.3 | 1.32–1.37 m (2H) |
8 | 38.1 | 1.57–1.62 m (2H) |
9 | 72.4 | 4.23 ddd (6.3, 6.1, 5.7, 1H) |
10 | 149.9 | 6.13 dd (15.5, 5.5, 1H) |
11 | 115.7 | 5.87 dd (15.5, 10.4, 1H) |
12 | 64.7 | 4.12 dd (10.5, 2.6, 1H) |
13 | 72.0 | 4.16 ddd (14.2, 7.0, 2.6, 1H) |
14 | 34.3 | 2.34 dt (4.3, 6.6, 1H), 2.25 dt (14.7, 7.4, 1H) |
15 | 123.7 | 5.31 dd (8.4, 7.5, 1H) |
16 | 136.3 | 5.55 dd (8.6, 7.6, 1H) |
17 | 21.9 | 2.04–2.08 m (2H) |
18 | 14.5 | 0.97 t (7.5, 3H) |
19 | 23.9 | 2.79 s (3H) |
20 | 23.1 | 2.80 s (3H) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishino, H.; Zhang, B.-T.; Uchida, H.; Kamio, M.; Nagai, H.; Satake, M. (10E,15Z)-12-(Dimethylsulfonio)-9,13-dihydroxyoctadeca-10,15-dienoate. Molbank 2024, 2024, M1784. https://doi.org/10.3390/M1784
Nishino H, Zhang B-T, Uchida H, Kamio M, Nagai H, Satake M. (10E,15Z)-12-(Dimethylsulfonio)-9,13-dihydroxyoctadeca-10,15-dienoate. Molbank. 2024; 2024(1):M1784. https://doi.org/10.3390/M1784
Chicago/Turabian StyleNishino, Haruka, Bo-Tao Zhang, Hajime Uchida, Michiya Kamio, Hiroshi Nagai, and Masayuki Satake. 2024. "(10E,15Z)-12-(Dimethylsulfonio)-9,13-dihydroxyoctadeca-10,15-dienoate" Molbank 2024, no. 1: M1784. https://doi.org/10.3390/M1784
APA StyleNishino, H., Zhang, B. -T., Uchida, H., Kamio, M., Nagai, H., & Satake, M. (2024). (10E,15Z)-12-(Dimethylsulfonio)-9,13-dihydroxyoctadeca-10,15-dienoate. Molbank, 2024(1), M1784. https://doi.org/10.3390/M1784