(N,N′-Di-tert-butyl-S-phenylsulfinimidamidato-κN,κN′)-chlorogermanium-κGe-chloro(η2,η2-cycloocta-1,5-diene)rhodium
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Considerations
3.2. Synthesis of [{PhS(tBuN)2}(Cl)Ge:→RhCl(cod)] 2
3.3. Reaction of 2 with CO
3.4. SCXRD Analysis of 2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kühl, O. N-heterocyclic germylenes and related compounds. Coord. Chem. Rev. 2004, 248, 411–427. [Google Scholar] [CrossRef]
- Waterman, R.; Hayes, P.G.; Tilley, T.D. Synthetic Development and Chemical Reactivity of Transition-Metal Silylene Complexes. Acc. Chem. Res. 2007, 40, 712–719. [Google Scholar] [CrossRef]
- Nagendran, S.; Roesky, H.W. The chemistry of aluminum(I), silicon(II), and germanium(II). Organometallics 2008, 27, 457–492. [Google Scholar] [CrossRef]
- Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Stable heavier carbene analogues. Chem. Rev. 2009, 109, 3479–3511. [Google Scholar] [CrossRef]
- Blom, B.; Stoelzel, M.; Driess, M. New vistas in N-heterocyclic silylene (NHSi) transition-metal coordination chemistry: Syntheses, structures and reactivity towards activation of small molecules. Chem. Eur. J. 2013, 19, 40–62. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Rodríguez, L.; Cabeza, J.A.; García-Álvarez, P.; Polo, D. The transition-metal chemistry of amidinatosilylenes, -germylenes and -stannylenes. Coord. Chem. Rev. 2015, 300, 1–28. [Google Scholar] [CrossRef]
- Cabeza, J.A.; García-Álvarez, P.; Polo, D. Intramolecularly Stabilized Heavier Tetrylenes: From Monodentate to Bidentate Ligands. Eur. J. Inorg. Chem. 2016, 2016, 10–22. [Google Scholar] [CrossRef]
- Krahfuss, M.J.; Radius, U. N-Heterocyclic silylenes as ambiphilic activators and ligands. Dalton Trans. 2021, 50, 6752–6765. [Google Scholar] [CrossRef]
- Cabeza, J.A.; García-Álvarez, P. Cyclometallation of Heavier Tetrylenes: Reported Complexes and Applications in Catalysis. Eur. J. Inorg. Chem. 2021, 2021, 3315–3326. [Google Scholar] [CrossRef]
- Komuro, T.; Nakajima, Y.; Takaya, J.; Hashimoto, H. Recent progress in transition metal complexes supported by multidentate ligands featuring group 13 and 14 elements as coordinating atoms. Coord. Chem. Rev. 2022, 473, 214837. [Google Scholar] [CrossRef]
- Cabeza, J.A.; García-Álvarez, P.; Pérez-Carreño, E.; Polo, D. Ring Opening and Bidentate Coordination of Amidinate Germylenes and Silylenes on Carbonyl Dicobalt Complexes: The Importance of a Slight Difference in Ligand Volume. Chem.—Eur. J. 2014, 20, 8654–8663. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Rodriguez, L.; Cabeza, J.A.; García-Álvarez, P.; Pérez-Carreño, E.; Polo, D. Amidinatogermylene Derivatives of Ruthenium Carbonyl: New Insights into the Reactivity of [Ru3(CO)12] with Two-Electron-Donor Reagents of High Basicity. Inorg. Chem. 2015, 54, 2983–2994. [Google Scholar] [CrossRef] [PubMed]
- Benedek, Z.; Szilvási, T. Can low-valent silicon compounds be better transition metal ligands than phosphines and NHCs? RSC Adv. 2015, 5, 5077–5086. [Google Scholar] [CrossRef]
- Calimano, E.; Tilley, T.D. Alkene Hydrosilation by a Cationic Hydrogen-Substituted Iridium Silylene Complex. J. Am. Chem. Soc. 2008, 130, 9226–9227. [Google Scholar] [CrossRef] [PubMed]
- Calimano, E.; Tilley, T.D. Synthesis and Structure of PNP-Supported Iridium Silyl and Silylene Complexes: Catalytic Hydrosilation of Alkenes. J. Am. Chem. Soc. 2009, 131, 11161–11173. [Google Scholar] [CrossRef] [PubMed]
- Fasulo, M.E.; Lipke, M.C.; Tilley, T.D. Structural and mechanistic investigation of a cationic hydrogen-substituted ruthenium silylene catalyst for alkene hydrosilation. Chem. Sci. 2013, 4, 3882–3887. [Google Scholar] [CrossRef]
- Kireenko, M.M.; Zaitsev, K.V.; Oprunenko, Y.F.; Churakov, A.V.; Tafeenko, V.A.; Karlov, S.S.; Zaitseva, G.S. Palladium complexes with stabilized germylene and stannylene ligands. Dalton Trans. 2013, 42, 7901–7912. [Google Scholar] [CrossRef]
- Blom, B.; Gallego, D.; Driess, M. N-heterocyclic silylene complexes in catalysis: New frontiers in an emerging field. Inorg. Chem. Front. 2014, 1, 134–148. [Google Scholar] [CrossRef]
- Smart, K.A.; Mothes-Martin, E.; Vendier, L.; Perutz, R.N.; Grellier, M.; Sabo-Etienne, S. A Ruthenium Dihydrogen Germylene Complex and the Catalytic Synthesis of Digermoxane. Organometallics 2015, 34, 4158–4163. [Google Scholar] [CrossRef]
- Zhou, Y.-P.; Raoufmoghaddam, S.; Szilvási, T.; Driess, M. A Bis(silylene)-Substituted ortho-Carborane as a Superior Ligand in the Nickel-Catalyzed Amination of Arenes. Angew. Chem. Int. Ed. 2016, 55, 12868–12872. [Google Scholar] [CrossRef]
- Iimura, T.; Akasaka, N.; Iwamoto, T. A Dialkylsilylene-Pt(0) Complex with a DVTMS Ligand for the Catalytic Hydrosilylation of Functional Olefins. Organometallics 2016, 35, 4071–4076. [Google Scholar] [CrossRef]
- Iimura, T.; Akasaka, N.; Kosai, T.; Iwamoto, T. A Pt(0) complex with cyclic (alkyl)(amino)silylene and 1,3-divinyl-1,1,3,3-tetramethyldisiloxane ligands: Synthesis, molecular structure, and catalytic hydrosilylation activity. Dalton Trans. 2017, 46, 8868–8874. [Google Scholar] [CrossRef]
- Schmidt, M.; Blom, B.; Szilvási, T.; Schomacker, R.; Driess, M. Improving the Catalytic Activity in the Rhodium-Mediated Hydroformylation of Styrene by a Bis(N-heterocyclic silylene) Ligand. Eur. J. Inorg. Chem. 2017, 2017, 1284–1291. [Google Scholar] [CrossRef]
- Zhou, Y.-P.; Driess, M. Isolable Silylene Ligands Can Boost Efficiencies and Selectivities in Metal-Mediated Catalysis. Angew. Chem. Int. Ed. 2019, 58, 3715–3728. [Google Scholar] [CrossRef]
- Benedek, Z.; Szilvási, T. Theoretical Assessment of Low-Valent Germanium Compounds as Transition Metal Ligands: Can They Be Better than Phosphines or NHCs? Organometallics 2017, 36, 1591–1600. [Google Scholar] [CrossRef]
- Takahashi, S.; Sekiguchi, J.; Ishii, A.; Nakata, N. An iminophosphonamido-chlorosilylene as a strong σ-donating NHSi ligand: Synthesis and coordination chemistry. Angew. Chem. Int. Ed. 2021, 133, 4101–4105. [Google Scholar] [CrossRef]
- Takahashi, S.; Ishii, A.; Nakata, N. Interconversion between a silaimine and an aminosilylene supported by an iminophosphonamide ligand. Chem. Commun. 2021, 57, 3203–3206. [Google Scholar] [CrossRef]
- Takahashi, S.; Ishii, A.; Nakata, N. Formation of silaimines from a sterically demanding iminophosphonamido chlorosilylene via intramolecular N–P bond cleavage. Chem. Commun. 2021, 57, 6728–6731. [Google Scholar] [CrossRef]
- Nakaya, K.; Takahashi, S.; Ishii, A.; Boonpalit, K.; Surawatanawong, P.; Nakata, N. Hydroboration of carbonyls and imines by an iminophosphonamido Tin(II) precatalyst. Dalton Trans. 2021, 50, 14810–14819. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Sekiguchi, J.; Nakaya, K.; Ishii, A.; Nakata, N. Halogen-exchange reactions of iminophosphonamido-chlorosilylenes with alkali halides: Convenient synthesis of heavier halosilylenes. Inorg. Chem. 2022, 61, 7266–7273. [Google Scholar] [CrossRef]
- Takahashi, S.; Nakaya, K.; Ishii, A.; Nakata, N. [N,N′-Di-tert-butyl-P,P-diphenylphosphinimidic Amidato-κN,κN′]chlorosilicon-κSi-tetracarbonyliron. Molbank 2022, 2022, M1433. [Google Scholar] [CrossRef]
- Takahashi, S.; Kamiyama, S.; Ishii, A.; Nakata, N. Syntheses of Iminophosphomamido Chlorogermylenes and Their Complexation with a Rhodium(I) Complex. Chem. Asian J. 2023, 2023, e202300968. [Google Scholar] [CrossRef]
- Nakata, N.; Hosoda, N.; Takahashi, S.; Ishii, A. Chlorogermylenes and -stannylenes stabilized by diimidosulfinate ligands: Synthesis, structures, and reactivity. Dalton Trans. 2018, 47, 481–490. [Google Scholar] [CrossRef]
- Veith, M.; Müller, A.; Stahl, L.; Nötzel, M.; Jarczyk, M.; Huch, V. Formation of Metal Clusters or Nitrogen-Bridged Adducts by Reaction of a Bis(amino)stannylene with Halides of Two-Valent Transition Metals. Inorg. Chem. 1996, 35, 3848–3855. [Google Scholar] [CrossRef]
- García, J.M.; Ocando-Mavárez, E.; Kato, T.; Coll, D.S.; Briceño, A.; Saffon-Merceron, N.; Baceiredo, A. Synthesis and Characterization of Rhodium Complexes with Phosphine-Stabilized Germylenes. Inorg. Chem. 2012, 51, 8187–8193. [Google Scholar] [CrossRef]
- Matioszek, D.; Saffon, N.; Sotiropoulos, J.-M.; Miqueu, K.; Castel, A.; Escudié, J. Bis(amidinato)germylenerhodium Complexes: Synthesis, Structure, and Density Functional Theory Calculations. Inorg. Chem. 2012, 51, 11716–11721. [Google Scholar] [CrossRef]
- Álvarez-Rodríguez, L.; Cabeza, J.A.; Fernández-Colinas, J.M.; García-Álvarez, P.; Polo, D. Amidinatogermylene Metal Complexes as Homogeneous Catalysts in Alcoholic Media. Organometallics 2016, 35, 2516–2523. [Google Scholar] [CrossRef]
- Su, B.; Ota, K.; Kinjo, R. Germylone-bridged bimetallic Ir and Rh complexes. Dalton Trans. 2019, 48, 3555–3559. [Google Scholar] [CrossRef]
- Poitiers, N.E.; Giarrana, L.; Huch, V.; Zimmer, M.; Scheschkewitz, D. Exohedral Functionalization vs. Core Expansion of Siliconoids with Group 9 Metals: Catalytic Activity in Alkene Isomerization. Chem. Sci. 2020, 11, 7782–7788. [Google Scholar] [CrossRef]
- Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Stable Cyclic Carbenes and Related Species beyond Diaminocarbenes. Angew. Chem. Int. Ed. 2010, 49, 8810–8849. [Google Scholar] [CrossRef]
- Martin, D.; Melaimi, M.; Soleilhavoup, M.; Bertrand, G. A Brief Survey of Our Contribution to Stable Carbene Chemistry. Organometallics 2011, 30, 5304–5313. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, C71, 3–8. [Google Scholar] [CrossRef]
Bond Lengths | [Å] | Bond Angles | [°] |
---|---|---|---|
Ge1–Rh1 | 2.3924(4) | Ge1–Rh1–Cl2 | 88.829(18) |
Ge1–Cl1 | 2.2620(6) | Rh1–Ge1–Cl1 | 114.36(2) |
Ge1–N1 | 1.9290(19) | Rh1–Ge1–N1 | 132.77(6) |
Ge1–N2 | 1.925(2) | Rh1–Ge1–N2 | 125.71(6) |
Rh1–Cl2 | 2.3631(6) | Cl1–Ge1–N1 | 99.59(6) |
Rh1–C15 | 2.134(2) | Cl1–Ge1–N2 | 101.15(6) |
Rh1–C16 | 2.118(2) | ||
Rh1–C19 | 2.213(2) | ||
Rh1–C20 | 2.194(2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosoda, N.; Ishii, A.; Nakata, N. (N,N′-Di-tert-butyl-S-phenylsulfinimidamidato-κN,κN′)-chlorogermanium-κGe-chloro(η2,η2-cycloocta-1,5-diene)rhodium. Molbank 2024, 2024, M1781. https://doi.org/10.3390/M1781
Hosoda N, Ishii A, Nakata N. (N,N′-Di-tert-butyl-S-phenylsulfinimidamidato-κN,κN′)-chlorogermanium-κGe-chloro(η2,η2-cycloocta-1,5-diene)rhodium. Molbank. 2024; 2024(1):M1781. https://doi.org/10.3390/M1781
Chicago/Turabian StyleHosoda, Narimi, Akihiko Ishii, and Norio Nakata. 2024. "(N,N′-Di-tert-butyl-S-phenylsulfinimidamidato-κN,κN′)-chlorogermanium-κGe-chloro(η2,η2-cycloocta-1,5-diene)rhodium" Molbank 2024, no. 1: M1781. https://doi.org/10.3390/M1781
APA StyleHosoda, N., Ishii, A., & Nakata, N. (2024). (N,N′-Di-tert-butyl-S-phenylsulfinimidamidato-κN,κN′)-chlorogermanium-κGe-chloro(η2,η2-cycloocta-1,5-diene)rhodium. Molbank, 2024(1), M1781. https://doi.org/10.3390/M1781