N,N′-1,2-Phenylene-bis(3-tert-butylsalicylideneiminato)nickel (II)
Abstract
:1. Introduction
2. Results
2.1. X-Ray Structural Analysis
2.2. Infrared Spectroscopic and Nuclear Magnetic Resonance Studies
2.3. UV-Vis Spectroscopic Studies
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al Zoubi, W.; Al-Hamdani, A.A.S.; Kaseem, M. Synthesis and Antioxidant Activities of Schiff Bases and Their Complexes: A Review. Appl. Organomet. Chem. 2016, 30, 810–817. [Google Scholar] [CrossRef]
- Segura, J.L.; Mancheño, M.J.; Zamora, F. Covalent Organic Frameworks Based on Schiff-Base Chemistry: Synthesis, Properties and Potential Applications. Chem. Soc. Rev. 2016, 45, 5635–5671. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, P.; Breith, E.; Lübbe, E.; Tsumaki, T. Tricyclische Orthokondensierte Nebenvalenzringe. Justus Liebigs Ann. Chem. 1933, 503, 84–130. [Google Scholar] [CrossRef]
- Gupta, K.C.; Sutar, A.K. Catalytic Activities of Schiff Base Transition Metal Complexes. Coord. Chem. Rev. 2008, 252, 1420–1450. [Google Scholar] [CrossRef]
- Karvembu, R.; Hemalatha, S.; Prabhakaran, R.; Natarajan, K. Synthesis, Characterization and Catalytic Activities of Ruthenium Complexes Containing Triphenylphosphine/Triphenylarsine and Tetradentate Schiff Bases. Inorg. Chem. Commun. 2003, 6, 486–490. [Google Scholar] [CrossRef]
- Dalia, S.A.; Afsan, F.; Hossain, M.S.; Khan, M.N.; Zakaria, C.; Zahan, M.K.E.; Ali, M. A Short Review on Chemistry of Schiff Base Metal Complexes and Their Catalytic Application. Int. Journal. Chem. Stud. 2018, 6, 2859–2866. [Google Scholar]
- Cozzi, P.G. Metal–Salen Schiff Base Complexes in Catalysis: Practical Aspects. Chem. Soc. Rev. 2004, 33, 410–421. [Google Scholar] [CrossRef]
- Das, P.; Linert, W. Schiff Base-Derived Homogeneous and Heterogeneous Palladium Catalysts for the Suzuki–Miyaura Reaction. Coord. Chem. Rev. 2016, 311, 1–23. [Google Scholar] [CrossRef]
- Łępicka, K.; Pieta, P.; Francius, G.; Walcarius, A.; Kutner, W. Structure-Reactivity Requirements with Respect to Nickel-Salen Based Polymers for Enhanced Electrochemical Stability. Electrochim. Acta 2019, 315, 75–83. [Google Scholar] [CrossRef]
- Zhong, X.; Li, Z.; Shi, R.; Yan, L.; Zhu, Y.; Li, H. Schiff Base-Modified Nanomaterials for Ion Detection: A Review. ACS Appl. Nano Mater. 2022, 5, 13998–14020. [Google Scholar] [CrossRef]
- Chaudhary, N.K.; Guragain, B.; Chaudhary, S.K.; Mishra, P. Schiff Base Metal Complex as a Potential Therapeutic Drug in Medical Science: A Critical Review. Bibechana 2021, 18, 214–230. [Google Scholar] [CrossRef]
- Uddin, M.N.; Ahmed, S.S.; Alam, S.M.R. REVIEW: Biomedical Applications of Schiff Base Metal Complexes. J. Coord. Chem. 2020, 73, 3109–3149. [Google Scholar] [CrossRef]
- Avaji, P.G.; Vinod Kumar, C.H.; Patil, S.A.; Shivananda, K.N.; Nagaraju, C. Synthesis, Spectral Characterization, In-Vitro Microbiological Evaluation and Cytotoxic Activities of Novel Macrocyclic Bis Hydrazone. Eur. J. Med. Chem. 2009, 44, 3552–3559. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Rhodes, J. Schiff Base Forming Drugs: Mechanisms of Immune Potentiation and Therapeutic Potential. J. Mol. Med. 1996, 74, 497–504. [Google Scholar] [CrossRef]
- Thomas, F. Ligand-Centred Oxidative Chemistry in Sterically Hindered Salen Complexes: An Interesting Case with Nickel. Dalton Trans. 2016, 45, 10866–10877. [Google Scholar] [CrossRef]
- Mendes, R.A.; Germino, J.C.; Fazolo, B.R.; Thaines, E.H.N.S.; Ferraro, F.; Santana, A.M.; Ramos, R.J.; de Souza, G.L.C.; Freitas, R.G.; Vazquez, P.A.M.; et al. Electronic and Magnetic Properties of the [Ni(Salophen)]: An Experimental and DFT Study. J. Adv. Res. 2018, 9, 27–33. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Tang, L.-Z.; Deng, Y.-F.; Zhan, S.-Z. Synthesis and Electrocatalytic Function for Hydrogen Generation of Cobalt and Nickel Complexes Supported by Phenylenediamine Ligand. Inorg. Chem. Commun. 2016, 72, 100–104. [Google Scholar] [CrossRef]
- Rotthaus, O.; Jarjayes, O.; Thomas, F.; Philouze, C.; Perez Del Valle, C.; Saint-Aman, E.; Pierre, J.-L. Fine Tuning of the Oxidation Locus, and Electron Transfer, in Nickel Complexes of Pro-Radical Ligands. Chem.—A Eur. J. 2006, 12, 2293–2302. [Google Scholar] [CrossRef]
- Lecarme, L.; Chiang, L.; Philouze, C.; Jarjayes, O.; Storr, T.; Thomas, F. Detailed Geometric and Electronic Structures of a One-Electron-Oxidized Ni Salophen Complex and Its Amido Derivatives. Eur. J. Inorg. Chem. 2014, 2014, 3479–3487. [Google Scholar] [CrossRef]
- Ren, Y.; Shi, Y.; Chen, J.; Yang, S.; Qi, C.; Jiang, H. Ni(Salphen)-Based Metal–Organic Framework for the Synthesis of Cyclic Carbonates by Cycloaddition of CO2 to Epoxides. RSC Adv. 2013, 3, 2167. [Google Scholar] [CrossRef]
- De Bellefeuille, D.; Askari, M.S.; Lassalle-Kaiser, B.; Journaux, Y.; Aukauloo, A.; Orio, M.; Thomas, F.; Ottenwaelder, X. Reversible Double Oxidation and Protonation of the Non-Innocent Bridge in a Nickel(II) Salophen Complex. Inorg. Chem. 2012, 51, 12796–12804. [Google Scholar] [CrossRef] [PubMed]
- Schley, M.; Lönnecke, P.; Hey-Hawkins, E. Monometallic and Heterobimetallic Complexes Derived from Salen-Type Ligands. J. Organomet. Chem. 2009, 694, 2480–2487. [Google Scholar] [CrossRef]
- Rotthaus, O.; Jarjayes, O.; Perez Del Valle, C.; Philouze, C.; Thomas, F. A Versatile Electronic Hole in One-Electron Oxidized NiIIbis-Salicylidene Phenylenediamine Complexes. Chem. Commun. 2007, 43, 4462. [Google Scholar] [CrossRef]
- Benisvy, L.; Kannappan, R.; Song, Y.; Milikisyants, S.; Huber, M.; Mutikainen, I.; Turpeinen, U.; Gamez, P.; Bernasconi, L.; Baerends, E.J.; et al. A Square-Planar Nickel(II) Monoradical Complex with a Bis(Salicylidene) Diamine Ligand (Eur. J. Inorg. Chem. 5/2007). Eur. J. Inorg. Chem. 2007, 2007, 631. [Google Scholar] [CrossRef]
- Pike, J.D.; Rosa, D.T.; Coucouvanis, D. Lipophilic Metal−Salicylideneimine−Crown Ether Hybrids—Ditopic Carriers in the Facilitated Transport of Amphiphilic Molecules Across Bulk Liquid Membranes. Eur. J. Inorg. Chem. 2001, 2001, 761–777. [Google Scholar] [CrossRef]
- Rosaand, D.T.; Coucouvanis, D. Crown-Ether-Functionalized Nickel Salicylaldimine Complexes. Structural Characterization of Their Potassium, Cesium, and Hexylammonium Derivatives and Their Use in the Transport of Amino Acids. Inorg. Chem. 1998, 37, 2328–2329. [Google Scholar] [CrossRef]
- Doistau, B.; Benda, L.; Cantin, J.-L.; Chamoreau, L.-M.; Ruiz, E.; Marvaud, V.; Hasenknopf, B.; Vives, G. Six States Switching of Redox-Active Molecular Tweezers by Three Orthogonal Stimuli. J. Am. Chem. Soc. 2017, 139, 9213–9220. [Google Scholar] [CrossRef] [Green Version]
- Uhrmacher, F.; Elbert, S.M.; Rominger, F.; Mastalerz, M. Synthesis of Large [2+3] Salicylimine Cages with Embedded Metal-Salphen Units. Eur. J. Inorg. Chem. 2022, 2022, e202100864. [Google Scholar] [CrossRef]
- Anselmo, D.; Salassa, G.; Escudero-Adán, E.C.; Martin, E.; Kleij, A.W. Merging Catalysis and Supramolecular Aggregation Features of Triptycene Based Zn(Salphen)s. Dalton Trans. 2013, 42, 7962. [Google Scholar] [CrossRef]
- Rotthaus, O.; Jarjayes, O.; Philouze, C.; Del Valle, C.P.; Thomas, F. One-Electron Oxidized Nickel(II) Complexes of Bis and Tetra(Salicylidene) Phenylenediamine Schiff Bases: From Monoradical to Interacting Ni(III) Ions. Dalton Trans. 2009, 10, 1792. [Google Scholar] [CrossRef]
- Schley, M.; Fritzsche, S.; Lönnecke, P.; Hey-Hawkins, E. Soluble Monometallic Salen Complexes Derived from O-Functionalised Diamines as Metalloligands for the Synthesis of Heterobimetallic Complexes. Dalton Trans. 2010, 39, 4090. [Google Scholar] [CrossRef] [PubMed]
- Chichak, K.; Jacquemard, U.; Branda, N.R. The Construction of (Salophen)Ruthenium(II) Assemblies Using Axial Coordination. Eur. J. Inorg. Chem. 2002, 2002, 357–368. [Google Scholar] [CrossRef]
- Asraf, M.A.; Rahman, M.M.; Kabiraz, D.C.; Ansary, R.H.; Hossen, M.F.; Haque, M.F.; Zakaria, C.M. Structural Elucidation, 3D Molecular Modeling and Antibacterial Activity of Ni (II), Co (II), Cu (II) and Mn (II) Complexes Containing Salophen Ligand. Asian J. Appl. Chem. Res. 2019, 3, 1–15. [Google Scholar] [CrossRef]
- Cheng, J.; Wei, K.; Ma, X.; Zhou, X.; Xiang, H. Synthesis and Photophysical Properties of Colorful Salen-Type Schiff Bases. J. Phys. Chem. C 2013, 117, 16552–16563. [Google Scholar] [CrossRef]
- Holm, R.H.; Everett, G.W.; Chakravorty, A. Metal Complexes of Schiff Bases and β-Ketoamines. In Progress in Inorganic Chemistry; John Wiley & Sons, Inc.: New York, NY, USA, 1966; Volume 7, pp. 83–214. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Empirical formula | C30H33N3NiO2 |
Molecular weight | 526.30 |
Temperature/K | 100(2) |
Crystal system | orthorhombic |
Space group | Pbca |
a/Å | 24.9825(6) |
b/Å | 6.9558(2) |
c/Å | 29.1851(7) |
Volume/Å3 | 5071.6(2) |
Z | 8 |
ρcalc/g/cm3 | 1.379 |
μ/mm−1 | 1.357 |
F(000) | 2224.0 |
Crystal size/mm | 0.16 × 0.02 × 0.02 |
Radiation/λ/Å | CuKα (1.54184) |
2Θ range for data collection/° | 6.056–139.978 |
Index ranges | −30 ≤ h ≤ 29, −8 ≤ k ≤ 4, −35 ≤ l ≤ 3 |
Reflections collected | 18181 |
Independent reflections | 4709 [Rint = 0.0344, Rsigma = 0.0323] |
GOOF on F2 | 1.057 |
R factors [I >= 2σ (I)] | R1 = 0.0334, wR2 = 0.0897 |
R factors [all reflections] | R1 = 0.04124, wR2 = 0.0944 |
Largest diff. peak/hole, e Å−3 | 0.31/−0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novozhilova, M.; Polozhentseva, J.; Baichurin, R.; Spiridonova, D.; Karushev, M. N,N′-1,2-Phenylene-bis(3-tert-butylsalicylideneiminato)nickel (II). Molbank 2023, 2023, M1674. https://doi.org/10.3390/M1674
Novozhilova M, Polozhentseva J, Baichurin R, Spiridonova D, Karushev M. N,N′-1,2-Phenylene-bis(3-tert-butylsalicylideneiminato)nickel (II). Molbank. 2023; 2023(3):M1674. https://doi.org/10.3390/M1674
Chicago/Turabian StyleNovozhilova, Maria, Julia Polozhentseva, Ruslan Baichurin, Dar’ya Spiridonova, and Mikhail Karushev. 2023. "N,N′-1,2-Phenylene-bis(3-tert-butylsalicylideneiminato)nickel (II)" Molbank 2023, no. 3: M1674. https://doi.org/10.3390/M1674
APA StyleNovozhilova, M., Polozhentseva, J., Baichurin, R., Spiridonova, D., & Karushev, M. (2023). N,N′-1,2-Phenylene-bis(3-tert-butylsalicylideneiminato)nickel (II). Molbank, 2023(3), M1674. https://doi.org/10.3390/M1674