Phosphine–Stibine and Phosphine–Stiborane peri-Substituted Donor–Acceptor Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Spectroscopy
2.2. X-ray Crystallography
3. Materials and Methods
3.1. General Considerations
3.2. Synthetic Procedures
3.2.1. Synthesis of Tris(p-tolyl)Stibine
3.2.2. Synthesis of Dichloro(p-tolyl)Stibine
3.2.3. Synthesis of 1
3.2.4. Synthesis of 2
3.2.5. Crystallographic Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chalmers, B.A.; Bühl, M.; Athukorala Arachchige, K.S.; Slawin, A.M.Z.; Kilian, P. Structural, Spectroscopic and Computational Examination of the Dative Interaction in Constrained Phosphine−Stibines and Phosphine−Stiboranes. Chem. Eur. J. 2015, 21, 7520–7531. [Google Scholar] [CrossRef] [PubMed]
- Hupf, E.; Lork, E.; Mebs, S.; Chęcińska, L.; Beckmann, J. Probing Donor-Acceptor Interactions in peri-Substituted Diphenylphosphinoacenapthyl-Element Dichlorides of Group 13 and 15 Elements. Organometallics 2014, 33, 7247–7259. [Google Scholar] [CrossRef]
- Furan, S.; Hupf, E.; Boidol, J.; Brünig, J.; Lork, E.; Mebs, S.; Beckmann, J. Transition metal complexes of antimony centred ligands based upon acenaphthyl scaffolds. Coordination non-innocent or not? Dalton Trans. 2019, 48, 4504–4513. [Google Scholar] [CrossRef] [PubMed]
- Brünig, J.; Hupf, E.; Lork, E.; Mebs, S.; Beckmann, J. A tetranuclear arylstibonic aicd with an adamantane type structure. Dalton Trans. 2015, 44, 7105–7108. [Google Scholar] [CrossRef] [PubMed]
- Haaland, A. Covalent versus Dative Bonds to Main Group Metals, a Useful Distinction. Angew. Chem. Int. Ed. Engl. 1989, 28, 992–1007. [Google Scholar] [CrossRef]
- Thomas, I.R.; Bruno, I.J.; Cole, J.C.; Macrae, C.F.; Pidcock, E.; Wood, P.A. WedCSD: The online portal of the Cambridge Structural Database. J. Appl. Cryst. 2010, 43, 362–366. [Google Scholar] [CrossRef]
- Batsanov, S.S. Van der Waals Radii of Elements. Inorg. Mater. 2001, 37, 871–885. [Google Scholar] [CrossRef]
- Herrmann, W.A.; Karsch, H.H. Synthetic Methods of Organometallic and Inorganic Chemistry Volume 3: Phosphorus, Arsenic, Antimony and Bismuth; Thieme: New York, NY, USA, 1996; pp. 210–213. [Google Scholar]
- Wawrzyniak, P.; Fuller, A.L.; Slawin, A.M.Z.; Kilian, P. Intramolecular Phosphine-Phosphine Donor-Acceptor Complexes. Inorg. Chem. 2009, 48, 2500–2506. [Google Scholar] [CrossRef]
- Chalmers, B.A.; Athukorala Arachchige, K.S.; Prentis, J.K.D.; Knight, F.R.; Kilian, P.; Slawin, A.M.Z.; Woollins, J.D. Sterically Encumbered Tin and Phosphorus peri-Substituted Acenaphthenes. Inorg. Chem. 2014, 53, 8795–8808. [Google Scholar] [CrossRef] [PubMed]
- CrystalClear-SM Expert v2.1; Rigaku Americas: The Woodlands, TX, USA; Rigaku Corporation: Tokyo, Japan, 2015.
- Beurskens, P.T.; Beurskens, G.; de Gelder, R.; Garcia-Granda, S.; Gould, R.O.; Israel, R.; Smits, J.M.M. DIRDIF-99; Crystallography Laboratory, University of Nijmegen: Nijmegen, The Netherlands, 1999. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- CrystalStructure v4.3.0; Rigaku Americas: The Woodlands, TX, USA; Rigaku Corporation: Tokyo, Japan, 2018.
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
1 | 2 | |
---|---|---|
P9−Sb1 | 2.7422(7) | 2.7086(6) |
Sb1−Cl | 2.6674(7) | 2.4476(5)−2.4836(7) |
P9−C | 1.798(3)−1.854(3) | 1.806(2)−1.846(2) |
Sb1−C | 2.144(2)−2.172(2) | 2.138(2), 2.152(2) |
C9−P9−Sb1 | 97.97(8) | 95.20(6) |
P9−Sb1−Cltrans | 167.83(2) | 171.52(2) |
P9−Sb1−Clcis | − | 83.88(2), 94.69(2) |
Cl−Sb1−Cl | − | 90.01(2), 90.92(2) |
P9−Sb1−CPh | 88.49(6) | 97.50(5) |
P9−C9···C1−Sb1 | 2.7(1) | 3.71(8) |
Splay angle † | 3.9(6) | 3.4(4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergsch, J.U.; Slawin, A.M.Z.; Kilian, P.; Chalmers, B.A. Phosphine–Stibine and Phosphine–Stiborane peri-Substituted Donor–Acceptor Complexes. Molbank 2023, 2023, M1653. https://doi.org/10.3390/M1653
Bergsch JU, Slawin AMZ, Kilian P, Chalmers BA. Phosphine–Stibine and Phosphine–Stiborane peri-Substituted Donor–Acceptor Complexes. Molbank. 2023; 2023(2):M1653. https://doi.org/10.3390/M1653
Chicago/Turabian StyleBergsch, Jan U., Alexandra M. Z. Slawin, Petr Kilian, and Brian A. Chalmers. 2023. "Phosphine–Stibine and Phosphine–Stiborane peri-Substituted Donor–Acceptor Complexes" Molbank 2023, no. 2: M1653. https://doi.org/10.3390/M1653
APA StyleBergsch, J. U., Slawin, A. M. Z., Kilian, P., & Chalmers, B. A. (2023). Phosphine–Stibine and Phosphine–Stiborane peri-Substituted Donor–Acceptor Complexes. Molbank, 2023(2), M1653. https://doi.org/10.3390/M1653