2-(1H-Imidazol-2-yl)-2,3-dihydro-1H-perimidine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Crystallography
3. Materials and Methods
3.1. General
3.2. Synthesis of 2-(1H-Imidazol-2-yl)-2,3-Dihydro-1H-Perimidine (1:1 MeOH Solvate)
3.3. Crystallography
3.4. Computational Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pozharskii, A.F.; Gulevskaya, A.V.; Claramunt, R.M.; Alkorta, I.; Elguero, J. Perimidines: A unique π-amphoteric heteroaromatic system. Russ. Chem. Rev. 2020, 89, 1204–1260. [Google Scholar] [CrossRef]
- Gümüş, M.; Gümüş, N.; Eroğlu, H.E.; Koca, İ. Design, synthesis and cytotoxic activities of pyrazole-perimidine hybrids. Chem. Sel. 2020, 5, 5916–5921. [Google Scholar] [CrossRef]
- Farghaly, T.A.; Al-Hussain, S.A.; Muhammad, Z.A.; Abdallah, M.A.; Zaki, M.E.A. Synthesis and reactions of perimidines and their fused systems. Curr. Org. Chem. 2020, 24, 1669–1716. [Google Scholar] [CrossRef]
- Harry, N.A.; Ujwaldev, S.M.; Aneeja, T.; Anilkumar, G. A comprehensive overview of perimidines: Synthesis, chemical transformations, and applications. Curr. Org. Chem. 2021, 25, 248–271. [Google Scholar] [CrossRef]
- Kalle, P.; Kiseleva, M.A.; Tatarin, S.V.; Smirnov, D.E.; Zakharov, A.Y.; Emets, V.V.; Churakov, A.V.; Bezzubov, S.I. A panchromatic cyclometalated iridium dye based on 2-thienyl-perimidine. Molecules 2022, 27, 3201. [Google Scholar] [CrossRef]
- Ma, Q.; Cai, J.; Mu, S.; Zhang, H.; Liu, K.; Liu, J.; Hong, J. Novel perimidine derivatives as corrosion inhibitors of HRB400 steel in simulated concrete pore solution. Coatings 2023, 13, 73. [Google Scholar] [CrossRef]
- Sahiba, N.; Agarwal, S. Recent advances in the synthesis of perimidines and their applications. Top. Curr. Chem. 2020, 378, 44. [Google Scholar] [CrossRef]
- Yelmame, G.B.; Jagtap, S.B. Review on perimidines: A synthetic pathways approach. Mater. Sci. Res. India 2021, 18, 14–26. [Google Scholar] [CrossRef]
- Mobinikhaledi, A.; Bodaghi Fard, M.A.; Sasani, F.; Amrollahi, M.A. Molecular iodine catalyzed synthesis of some biologically active dihydroperimidines. Bulg. Chem. Commun. 2013, 45, 353–356. [Google Scholar]
- Nagasundaram, N.; Govindhan, C.; Sumitha, S.; Sedhu, N.; Raguvaran, K.; Santhosh, S.; Lalitha, A. Synthesis, characterization and biological evaluation of novel azo fused 2,3-dihydro-1H-perimidine derivatives: In vitro antibacterial, antibiofilm, anti-quorum sensing, DFT, in silico ADME and Molecular docking studies. J. Mol. Struct. 2022, 1248, 131437. [Google Scholar] [CrossRef]
- Arya, K.; Dandia, A. Regioselective synthesis of biologically important scaffold spiro [indole-perimidines]: An antitumor agents. Lett. Org. Chem. 2007, 4, 378–383. [Google Scholar] [CrossRef]
- Wasulko, W.; Noble, A.C.; Popp, F.D. Synthesis of potential antineoplastic agents. XIV. Some 2-substituted 2, 3-dihydro-1h-perimidines. J. Med. Chem. 1966, 9, 599–601. [Google Scholar] [CrossRef]
- Wang, W.-L.; Yang, D.-L.; Gao, L.-X.; Tang, C.-L.; Ma, W.-P.; Ye, H.-H.; Zhang, S.-Q.; Zhao, Y.-N.; Xu, H.-J.; Hu, Z.; et al. 1H–2,3-dihydroperimidine derivatives: A new class of potent protein tyrosine phosphatase 1B inhibitors. Molecules 2014, 19, 102–121. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, Y.; Yamada, C.; Hirai, T. A coumarin–dihydroperimidine dye as a fluorescent chemosensor for hypochlorite in 99% water. RSC Adv. 2019, 9, 28636–28641. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, N.; Banik, S.; Chakraborty, A.; Bhattacharya, S.K.; Das, S. Synthesis of a novel pyrene derived perimidine and exploration of its aggregation induced emission, aqueous copper ion sensing, effective antioxidant and BSA interaction properties. J. Photochem. Photobiol. A Chem. 2019, 377, 236–246. [Google Scholar] [CrossRef]
- Fanna, D.J.; Lima, L.M.P.; Craze, A.R.; Trinchi, A.; Wei, G.; Reynolds, J.K.; Li, F. Determination of Cu2+ in drinking water using a hydroxyjulolidine-dihydroperimidine colorimetric sensor. J. Incl. Phenom. Macrocycl. Chem. 2019, 94, 141–154. [Google Scholar] [CrossRef]
- Ge, Y.; Zhang, D.; Zhang, X.; Liu, Y.; Du, L.; Wang, Y. A new perimidine-based fluorescent turn-on chemosensor for selective detection of Cu2+ ions. J. Chem. Res. 2021, 45, 125–129. [Google Scholar] [CrossRef]
- Hill, A.F.; McQueen, C.M.A. Dihydroperimidine-derived N-heterocyclic pincer carbene complexes via double C–H activation. Organometallics 2012, 31, 8051–8054. [Google Scholar] [CrossRef]
- Hill, A.F.; McQueen, C.M.A. Dihydroperimidine-derived PNP pincer complexes as intermediates en route to N-heterocyclic carbene pincer complexes. Organometallics 2014, 33, 1909–1912. [Google Scholar] [CrossRef]
- McQueen, C.M.A.; Hill, A.F.; Ma, C.; Ward, J.S. Ruthenium and osmium complexes of dihydroperimidine-based N-heterocyclic carbene pincer ligands. Dalton Trans. 2015, 44, 20376–20385. [Google Scholar] [CrossRef]
- Hill, A.F.; Ma, C.; McQueen, C.M.A.; Ward, J.S. Iridium complexes of perimidine-based N-heterocyclic carbene pincer ligands via aminal C-H activation. Dalton Trans. 2018, 47, 1577–1587. [Google Scholar] [CrossRef]
- Malherbe, R.F. 2,3-Dihydroperimidines as Antioxidants for Lubricants. European Patent EP0083311A2, 6 July 1983. [Google Scholar]
- Mobinikhaledi, A.; Steel, P.J. Synthesis of perimidines using copper nitrate as an efficient catalyst. Synth. React. Inorg. Met. Org. Nano Met. Chem. 2009, 39, 133–135. [Google Scholar] [CrossRef]
- Varsha, G.; Arun, V.; Robinson, P.P.; Sebastian, M.; Varghese, D.; Leeju, P.; Jayachandran, V.P.; Yusuff, K.K.M. Two new fluorescent heterocyclic perimidines: First syntheses, crystal structure, and spectral characterization. Tetrahedron Lett. 2010, 51, 2174–2177. [Google Scholar] [CrossRef]
- Kalhor, M.; Khodaparast, N. Use of nano-CuY zeolite as an efficient and eco-friendly nano catalyst for facile synthesis of perimidine derivatives. Res. Chem. Intermed. 2015, 41, 3235–3242. [Google Scholar] [CrossRef]
- Bamoniri, A.; Mazoochi, A.; Pourmousavi, S.A. Synthesis of 2,3-dihydroperimidines in the presence of nano-γ-Al2O3/BFn and nano-γ-Al2O3/BFn/Fe3O4 as catalysts under different conditions. J. Nanostruct. 2021, 11, 554–567. [Google Scholar] [CrossRef]
- Khopkar, S.; Shankarling, G. Squaric acid: An impressive organocatalyst for the synthesis of biologically relevant 2,3-dihydro-1H-perimidines in water. J. Chem. Sci. 2020, 132, 31. [Google Scholar] [CrossRef]
- Mannarsamy, M.; Nandeshwar, M.; Muduli, G.; Prabusankar, G. Highly active cyclic zinc(II) thione catalyst for C−C and C−N bond formation reactions. Chem. Asian J. 2022, 17, e202200594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liao, S.; Liu, A.; Liu, X.; Kuang, Q.; Wang, Y.; Xu, P.; Huang, X.; Wu, H.; Yuan, J. Imidazolium chloride as an additive for synthesis of perimidines using 1,8-diaminonaphthalene and DMF derivatives. Tetrahedron Lett. 2022, 94, 153701. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Zhu, H.; Xia, X.-F.; Wang, D. Novel recyclable catalysts for selective synthesis of substituted perimidines and aminopyrimidines. Catal. Lett. 2022, in press. [Google Scholar] [CrossRef]
- Sadri, Z.; Behbahani, F.K.; Keshmirizadeh, E. Synthesis and characterization of a novel and reusable adenine based acidic nanomagnetic catalyst and its application in the preparation of 2-substituted-2,3-dihydro -1H-perimidines under ultrasonic irradiation and solvent-free condition. Polycycl. Aromat. Compd. 2022, in press. [Google Scholar] [CrossRef]
- Kaneti, J.; Kurteva, V.; Georgieva, M.; Krasteva, N.; Miloshev, G.; Tabakova, N.; Petkova, Z.; Bakalova, S.M. Small heterocyclic ligands as anticancer agents: QSAR with a model G-quadruplex. Molecules 2022, 27, 7577. [Google Scholar] [CrossRef]
- Harry, N.A.; Cherian, R.M.; Radhika, S.; Anilkumar, G. A novel catalyst-free, eco-friendly, on water protocol for the synthesis of 2,3-dihydro-1H-perimidines. Tetrahedron Lett. 2019, 60, 150946. [Google Scholar] [CrossRef]
- Bruker, A. Bruker Advanced X-ray Solutions; AXS Inc.: Madison, WI, USA, 2016. [Google Scholar]
- Bruker, A. Saint and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2009. [Google Scholar]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Cryst. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and qu antitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Jayatilaka, D.; Grimwood, D.J. Tonto: A Fortran Based Object-Oriented System for Quantum Chemistry and Crystallography. In International Conference on Computational Science; Springer: Berlin/Heidelberg, Germany, 2003; pp. 142–151. [Google Scholar] [CrossRef]
D | H | A | d(D-H)/Å | d(H-A)/Å | d(D-A)/Å | D-H-A/° |
---|---|---|---|---|---|---|
O19 | H19 | N4 | 0.89(3) | 1.84(3) | 2.731(2) | 175(3) |
N1 | H1 | N71 | 0.94(3) | 2.13(3) | 3.035(3) | 162(2) |
N7 | H7 | O192 | 0.81(2) | 2.19(2) | 3.005(2) | 177(2) |
N17 | H17 | O193 | 0.87(3) | 2.19(3) | 3.047(3) | 170(2) |
11-x,2-y,1-z; 21-x,1/2+y,3/2-z;31-x,1-y,1-z |
R | Electron Density | Eele | Epol | Edis | Erep | Etot | |
---|---|---|---|---|---|---|---|
O19H19…N4 | 4.99 | B3LYP/6-31G(d,p) | −62.3 | −14.6 | −11.6 | 84.5 | −34.6 |
N17H17…O19 | 4.63 | B3LYP/6-31G(d,p) | −21.4 | −5.3 | −15.1 | 26.5 | −23.3 |
N7H7…O19 | 4.60 | B3LYP/6-31G(d,p) | −28.0 | −6.5 | −16.5 | 32.5 | −28.7 |
N1H1…N7 | 5.23 | B3LYP/6-31G(d,p) | −70.1 | −16.8 | −60.6 | 90.7 | −83.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petkova, Z.; Rusew, R.; Bakalova, S.; Shivachev, B.; Kurteva, V. 2-(1H-Imidazol-2-yl)-2,3-dihydro-1H-perimidine. Molbank 2023, 2023, M1587. https://doi.org/10.3390/M1587
Petkova Z, Rusew R, Bakalova S, Shivachev B, Kurteva V. 2-(1H-Imidazol-2-yl)-2,3-dihydro-1H-perimidine. Molbank. 2023; 2023(1):M1587. https://doi.org/10.3390/M1587
Chicago/Turabian StylePetkova, Zhanina, Rusi Rusew, Snezhana Bakalova, Boris Shivachev, and Vanya Kurteva. 2023. "2-(1H-Imidazol-2-yl)-2,3-dihydro-1H-perimidine" Molbank 2023, no. 1: M1587. https://doi.org/10.3390/M1587
APA StylePetkova, Z., Rusew, R., Bakalova, S., Shivachev, B., & Kurteva, V. (2023). 2-(1H-Imidazol-2-yl)-2,3-dihydro-1H-perimidine. Molbank, 2023(1), M1587. https://doi.org/10.3390/M1587