3-Methyl-1-phenyl-4-thioacetylpyrazol-5-one
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Crystallography
3. Materials and Methods
3.1. General
3.2. Synthesis of 3-methyl-1-phenyl-4-thioacetylpyrazol-5-one
3.3. Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. On the Review of the List of Critical Raw Materials for the EU and the Implementation of the Raw Materials Initiative. 2014. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0297&from=EN (accessed on 26 May 2014).
- Branca, T.A.; Colla, V.; Algermissen, D.; Granbom, H.; Martini, U.; Morillon, A.; Pietruck, R.; Rosendahl, S. Reuse and recycling of by-products in the steel sector: Recent achievements paving the way to circular economy and industrial symbiosis in Europe. Metals 2020, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Iluţiu-Varvara, D.-A.; Aciu, C. Metallurgical wastes as resources for sustainability of the steel industry. Sustainability 2022, 14, 5488. [Google Scholar] [CrossRef]
- Jadhav, U.U.; Hocheng, H. A review of recovery of metals from industrial waste. J. Achiev. Mater. Manuf. 2012, 54, 159–167. [Google Scholar]
- Wilson, A.M.; Bailey, P.J.; Tasker, P.A.; Turkington, J.R.; Grant, R.A.; Love, J.B. Solvent extraction: The coordination chemistry behind extractive metallurgy. Chem. Soc. Rev. 2014, 43, 123–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watling, H.R. Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Minerals 2015, 5, 1–60. [Google Scholar] [CrossRef] [Green Version]
- Hsu, E.; Barmak, K.; West, A.C.; Park, A.-H.A. Advancements in the treatment and processing of electronic waste with sustainability: A review of metal extraction and recovery technologies. Green Chem. 2019, 21, 919–936. [Google Scholar] [CrossRef]
- Sunder, G.S.S.; Adhikari, S.; Rohanifar, A.; Poudel, A.; Kirchhoff, J.R. Evolution of environmentally friendly strategies for metal extraction. Separations 2020, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Rasheed, M.Z.; Nam, S.-W.; Cho, J.-Y.; Park, K.-T.; Kim, B.-S.; Kim, T.-S. Review of the liquid metal extraction process for the recovery of Nd and Dy from permanent magnets. Metall. Mater. Trans. B 2021, 52, 1213–1227. [Google Scholar] [CrossRef]
- Qasem, H.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Whitworth, A.J.; Vaughan, J.; Southam, G.; der Ent, A.; Nkrumah, P.N.; Ma, X.; Parbhakar-Fox, A. Review on metal extraction technologies suitable for critical metal recovery from mining and processing wastes. Miner. Eng. 2022, 182, 107537. [Google Scholar] [CrossRef]
- Bu, X.; Danstan, J.K.; Hassanzadeh, A.; Vakylabad, A.B.; Chelgani, S.C. Metal extraction from ores and waste materials by ultrasound-assisted leaching—An overview. Miner. Process. Extr. Metall. Rev. 2022, in press. [Google Scholar] [CrossRef]
- Kaye, P.T. Designer ligands: The search for metal ion selectivity. S. Afr. J. Sci. 2011, 107, 1–8. [Google Scholar] [CrossRef]
- Leoncini, A.; Huskens, J.; Verboom, W. Ligands for f-element extraction used in the nuclear fuel cycle. Chem. Soc. Rev. 2017, 46, 7229–7273. [Google Scholar] [CrossRef] [PubMed]
- Werner, E.J.; Biros, S.M. Supramolecular ligands for the extraction of lanthanide and actinide ions. Org. Chem. Front. 2019, 6, 2067–2094. [Google Scholar] [CrossRef]
- Yudaev, P.; Chistyakov, E. Chelating extractants for metals. Metals 2022, 12, 1275. [Google Scholar] [CrossRef]
- Rahman, M.L.; Sarjadi, M.S.; Guerin, S.; Sarkar, S.M. Poly(amidoxime) resins for efficient and eco-friendly metal extraction. ACS Appl. Polym. Mater. 2022, 4, 2216–2232. [Google Scholar] [CrossRef]
- Boukayouht, K.; Bazzi, L.; El Hankari, S. Sustainable synthesis of metal-organic frameworks and their derived materials from organic and inorganic wastes. Coord. Chem. Rev. 2023, 478, 214986. [Google Scholar] [CrossRef]
- Pettinari, C.; Marchetti, F.; Drozdov, A. β-Diketones and related ligands. In Comprehensive Coordination Chemistry II; McCleverty, J.A., Meyer, T.J., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2003; Volume 1, Chapter 1.6; pp. 97–115. [Google Scholar] [CrossRef]
- Vigato, P.A.; Peruzzo, V.; Tamburini, S. The evolution of β-diketone or β-diketophenol ligands and related complexes. Coord. Chem. Rev. 2009, 253, 1099–1201. [Google Scholar] [CrossRef]
- Atanassova, M.; Kurteva, V.; Dukov, I. The interaction of extractants during synergistic solvent extraction of metals. Is it an important reaction? RSC Adv. 2016, 6, 81250–81265. [Google Scholar] [CrossRef]
- Atanassova, M. Thenoyltrifluoroacetone: Preferable molecule for solvent extraction of metals—Ancient twists to new approaches. Separations 2022, 9, 154. [Google Scholar] [CrossRef]
- Bazhin, D.N.; Kudyakova, Y.S.; Edilova, Y.O.; Burgart, Y.V.; Saloutin, V.I. Fluorinated 1,2,4-triketone analogs: New prospects for heterocyclic and coordination chemistry. Russ. Chem. Bull. 2022, 71, 1321–1341. [Google Scholar] [CrossRef]
- Saloutin, V.I.; Edilova, Y.O.; Kudyakova, Y.S.; Burgart, Y.V.; Bazhin, D.N. Heterometallic molecular architectures based on fluorinated β-diketone ligands. Molecules 2022, 27, 7894. [Google Scholar] [CrossRef] [PubMed]
- Zolotov, Y.A.; Kuzmin, N.M. Extraction of Metals by Acylpyrazolones; Nauka: Moscow, Russia, 1977. [Google Scholar]
- Marchetti, F.; Pettinari, C.; Pettinari, R. Acylpyrazolone ligands: Synthesis, structures, metal coordination chemistry and applications. Coord. Chem. Rev. 2005, 249, 2909–2945. [Google Scholar] [CrossRef]
- Binnemans, K. Rare-earth beta-diketonates. In Handbook on the Physics and Chemistry of Rare Earths; Gschneider, K.A., Bünzli, J.-C.G., Pecharsky, V.K., Eds.; Elsevier B. V.: Burlington, NJ, USA, 2005; Volume 35, Chapter 225; pp. 107–272. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, F.; Pettinari, R.; Pettinari, C. Recent advances in acylpyrazolone metal complexes and their potential applications. Coord. Chem. Rev. 2015, 303, 1–31. [Google Scholar] [CrossRef]
- Marchetti, F.; Pettinari, C.; Di Nicola, C.; Tombesi, A.; Pettinari, R. Coordination chemistry of pyrazolone-based ligands and applications of their metal complexes. Coord. Chem. Rev. 2019, 401, 213069. [Google Scholar] [CrossRef]
- Bao, X.; Wang, X.; Tian, J.-M.; Ye, X.; Wang, B.; Wang, H. Recent advances in the applications of pyrazolone derivatives in enantioselective synthesis. Org. Biomol. Chem. 2022, 20, 2370–2386. [Google Scholar] [CrossRef]
- Kennedy, B.P.; Leve, A.B.P. Studies of the metal-sulfur bond. Complexes of the pyridine thiols. Can. J. Chem. 1972, 50, 3488–3507. [Google Scholar] [CrossRef]
- Stiefel, E.I. Transition Metal Sulfur Chemistry: Biological and Industrial Significance and Key Trends; Transition Metal Sulfur Chemistry; Stiefel, E.I., Matsumoto, K., Eds.; ACS Symposium Series: Washington, DC, USA, 1996; Volume 356, pp. 2–38. [Google Scholar] [CrossRef] [Green Version]
- Petz, W. 40 Years of transition-metal thiocarbonyl chemistry and the related CSe and CTe compounds. Coord. Chem. Rev. 2008, 252, 1689–1733. [Google Scholar] [CrossRef]
- Schenk, W.A. The coordination chemistry of small sulfur-containing molecules: A personal perspective. Dalton Trans. 2011, 40, 1209–1219. [Google Scholar] [CrossRef]
- Wachter, J. Synthesis, structure and reactivity of sulfur-rich cyclopentadienyl-transition metal complexes: Sulfur chemistry from an organometallic point of view. Angew. Chem. Int. Ed. 1989, 28, 1613–1626. [Google Scholar] [CrossRef] [Green Version]
- Mensforth, E.J.; Hill, M.R.; Batten, S.R. Coordination polymers of sulphur-donor ligands. Inorg. Chim. Acta 2013, 403, 9–24. [Google Scholar] [CrossRef]
- Paradiso, V.; Capaccio, V.; Lamparelli, D.H.; Capacchione, C. Metal complexes bearing sulfur-containing ligands as catalysts in the reaction of CO2 with epoxides. Catalysts 2020, 10, 825. [Google Scholar] [CrossRef]
- Hou, J.-T.; Kwon, N.; Wang, S.; Wang, B.; He, X.; Yoon, J.; Shen, J. Sulfur-based fluorescent probes for HOCl: Mechanisms, design, and applications. Coord. Chem. Rev. 2022, 450, 214232. [Google Scholar] [CrossRef]
- Bingham, N.M.; Abousalman-Rezvani, Z.; Collins, K.; Roth, P.J. Thiocarbonyl chemistry in polymer science. Polym. Chem. 2022, 13, 2880–2901. [Google Scholar] [CrossRef]
- Wang, J.; Han, W.-Q. A Review of heteroatom doped materials for advanced lithium–sulfur batteries. Adv. Funct. Mater. 2022, 32, 2107166. [Google Scholar] [CrossRef]
- Deng, X.; Zheng, S.-L.; Zhong, Y.-H.; Hu, J.; Chung, L.-H.; He, J. Conductive MOFs based on thiol-functionalized linkers: Challenges, opportunities, and recent advances. Coord. Chem. Rev. 2022, 450, 214235. [Google Scholar] [CrossRef]
- Hao, H.; Hutter, T.; Boyce, B.L.; Watt, J.; Liu, P.; Mitlin, D. Review of multifunctional separators: Stabilizing the cathode and the anode for alkali (Li, Na, and K) metal–sulfur and selenium batteries. Chem. Rev. 2022, 122, 8053–8125. [Google Scholar] [CrossRef]
- Yoshinari, N.; Kuwamura, N.; Kojima, T.; Konno, T. Development of coordination chemistry with thiol-containing amino acids. Coord. Chem. Rev. 2023, 474, 214857. [Google Scholar] [CrossRef]
- Petrova, M.; Kurteva, V. Synergistic efficiency of 2-[(1-aza-15-crown-5)-1-ylmethyl)]-4-(phenyldiazenyl)-naphtalen-1-ol in the Liquid Extraction of Light Lanthanoid(III) ions with 4-benzoyl-3-phenyl-5-isoxazolone. The role of aza-crown and azo-dye fragments on the extraction ability. J. Chem. Eng. Data 2014, 59, 1295–1303. [Google Scholar] [CrossRef]
- Petrova, A.A.; Angelova, S.M.; Nikolchina, I.A.; Russev, R.I.; Kurteva, V.B.; Shivachev, B.L.; Petrova, R.N. Novel 13-membered cyclic dioxatetraaza scaffolds–synthesis, solution and solid state characterization. Bulg. Chem. Commun. 2015, 47, 208–220. [Google Scholar]
- Atanassova, M.; Kurteva, V. Synergism as a phenomenon in solvent extraction of 4f-elements with calixarenes. RSC Adv. 2016, 6, 11303–11324. [Google Scholar] [CrossRef]
- Kurteva, V.; Lubenov, L.; Petrova, M. Selective C-acylation of 3-methyl-1-phenyl-pyrazol-5-one. In Comprehensive Organic Chemistry Experiments for the Laboratory Classroom (COCELC); Afonso, C.A.M., Candeias, N.R., Pereira Simão, D., Trindade, A.F., Coelho, J.A.S., Tan, B., Franzén, R., Eds.; RSC Publishing: Cambridge, UK, 2017; Chapter 2.2.1; pp. 107–111. [Google Scholar]
- Petrova, M.A.; Todorova, S.E.; Kurteva, V.B.; Todorova, N.I. Insights into the synergistic selectivity of 4f-ions implementing 4-acyl-5-pyrazolone and two new unsymmetrical NH-urea containing ring molecules in an ionic liquid. Sep. Purif. Technol. 2018, 204, 328–335. [Google Scholar] [CrossRef]
- Kurteva, V.B.; Lubenov, L.A.; Shivachev, B.L.; Nikolova, R.P.; Fromm, K.M. Betti bases from 4-(3-pyridazo)-1-naphthol: Synthesis, coordination behaviour and unusual substitution reactions. ChemistrySelect 2018, 3, 12017–12021. [Google Scholar] [CrossRef] [Green Version]
- Todorova, S.E.; Rusew, R.I.; Petkova, Z.S.; Shivachev, B.L.; Nikolova, R.P.; Kurteva, V.B. Acylpyrazolones possessing heterocyclic moiety in the acyl fragment: Intramolecular vs. intermolecular zwitterionic structure. New J. Chem. 2022, 46, 1080–1086. [Google Scholar] [CrossRef]
- Cooper, N.J. Thioaldehydes and thioketones. In Comprehensive Organic Functional Group Transformations II; Katritzky, A.R., Taylor, R.J.K., Eds.; Elsevier: Oxford, UK, 2005; Volume 3, Chapter 3.08; pp. 355–396. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, X. Transfer of sulfur: From simple to diverse. Chem. Asian J. 2013, 8, 2546–2563. [Google Scholar] [CrossRef]
- Murai, T. The construction and application of C=S bonds. Top. Curr. Chem. 2018, 376, 31. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, V.; Mondal, B.; Saha, J. Recent developments on the synthesis of various sulfur-containing heterocycles via [3+2]-and [4+2]-cycloaddition reactions with thiocarbonyls. Asian J. Org. Chem. 2020, 9, 1466–1477. [Google Scholar] [CrossRef]
- Jesberger, M.; Davis, T.P.; Barner, L. Applications of Lawesson’s reagent in organic and organometallic syntheses. Synthesis 2003, 1929–1958. [Google Scholar] [CrossRef]
- Kayukova, L.A.; Praliyev, K.D.; Gut′Yar, V.G.; Baitursynova, G.P. Modification of organic compounds with Lawesson’s reagent. Russ. J. Org. Chem. 2015, 51, 148–160. [Google Scholar] [CrossRef]
- Larik, F.A.; Saeed, A.; Muqadar, U.; Channar, P.A. Application of Lawesson’s reagent in the synthesis of sulfur-containing medicinally significant natural alkaloids. J. Sulfur Chem. 2017, 38, 206–227. [Google Scholar] [CrossRef]
- Bergman, J. Comparison of two reagents for thionations. Synthesis 2018, 50, 2323–2328. [Google Scholar] [CrossRef]
- Gayen, K.S.; Chatterjee, N. Diversity of Lawesson’s reagent: Advances and scope. Asian J. Org. Chem. 2020, 9, 508–528. [Google Scholar] [CrossRef]
- Khatoon, H.; Abdulmalek, E. A focused review of synthetic applications of Lawesson’s reagent in organic synthesis. Molecules 2021, 26, 6937. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Wang, X.; Xiong, Y.; Yin, G.; Liu, L.; Wang, Z. Lawesson’s reagent-mediated deoxygenation reactions. ChemistrySelect 2022, 7, e202201748. [Google Scholar] [CrossRef]
- Kittikool, T.; Yotphan, S. Metal-free direct C–H thiolation and thiocyanation of pyrazolones. Eur. J. Org. Chem. 2020, 2020, 961–970. [Google Scholar] [CrossRef]
- Langler, R.F. Synthesis and structure of 3-methyl-1-phenyl-4-sulfhydrylbenzylidene-5-thiopyrazolone. Can. J. Chem. 1971, 49, 481–484. [Google Scholar] [CrossRef]
- Sayed, G.H.; Shiba, S.A.; Radwan, A.; Mohamed, S.M.; Khalil, M. Synthesis and reactions of some 6-aryl and 2,6-diaryl-4-(4′-antipyrinyl)-2,3,4,5-tetrahydropyridazin-3-ones and screening for their antibacterial activities. Chin. J. Chem. 1992, 10, 475–480. [Google Scholar] [CrossRef]
- Tagawa, Y.; Minami, S.; Yoshida, T.; Tanaka, K.; Sato, S.; Goto, Y.; Yamagata, K. Preparation and antibacterial activity of 3-methyl-1-p-substituted phenylpyrazole-5-thiol. Arch. Pharm. Pharm. Med. Chem. 2002, 2, 99–103. [Google Scholar] [CrossRef]
- Müller, C.; Ma, B.N.; Gust, R.; Bernkop-Schnürch, A. Thiopyrazole preactivated chitosan: Combining mucoadhesion and drug delivery. Acta Biomater. 2013, 9, 6585–6593. [Google Scholar] [CrossRef]
- Callaghan, P.D.; Elliott, A.J.; Gandhi, S.S.; Gibson, M.S.; Mastalerr, H.; Vukov, D.J. Acylation of N′-arylbenzothiohydrazides and of their N′-acyl-derivatives; 2-acylalkylidene-3-aryl-5-phenyl-2H-1,3,4-thiadiazolenes and related compounds. J. Chem. Soc. Perkin Trans. 1981, 1, 2948–2951. [Google Scholar] [CrossRef]
- Bruker. APEX 3. In Bruker Advanced X-ray Solutions; Bruker AXS Inc.: Madison, WI, USA, 2016. [Google Scholar]
- Bruker, A. Saint and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2009. [Google Scholar]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Section C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petkova, Z.; Rusew, R.; Shivachev, B.; Kurteva, V. 3-Methyl-1-phenyl-4-thioacetylpyrazol-5-one. Molbank 2023, 2023, M1588. https://doi.org/10.3390/M1588
Petkova Z, Rusew R, Shivachev B, Kurteva V. 3-Methyl-1-phenyl-4-thioacetylpyrazol-5-one. Molbank. 2023; 2023(1):M1588. https://doi.org/10.3390/M1588
Chicago/Turabian StylePetkova, Zhanina, Rusi Rusew, Boris Shivachev, and Vanya Kurteva. 2023. "3-Methyl-1-phenyl-4-thioacetylpyrazol-5-one" Molbank 2023, no. 1: M1588. https://doi.org/10.3390/M1588
APA StylePetkova, Z., Rusew, R., Shivachev, B., & Kurteva, V. (2023). 3-Methyl-1-phenyl-4-thioacetylpyrazol-5-one. Molbank, 2023(1), M1588. https://doi.org/10.3390/M1588