(µ2-η4-N-(2-Butynyl)phthalimide)(hexacarbonyl)dicobalt
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greenfield, H.; Sternberg, H.W.; Friedel, R.A.; Wotiz, J.H.; Markby, R.; Wender, I. Acetylenic dicobalt hexacarbonyls. organometallic compounds derived from alkynes and dicobalt octacarbonyl. J. Am. Chem. Soc. 1956, 78, 120–124. [Google Scholar] [CrossRef]
- Sly, W.G. The Molecular configuration of dicobalt hexacarbonyl diphenylacetylene. J. Am. Chem. Soc. 1959, 81, 18–20. [Google Scholar] [CrossRef]
- Barnes, C.E. Comprehensive Organometallic Chemistry II; Cobalt, Rhodium and Iridium; Elsevier: New York, NY, USA, 1995; Volume 8. [Google Scholar]
- Georgi, C.; Hildebrandt, A.; Waechtler, T.; Schulz, S.E.; Gessner, T.; Lang, H. A cobalt layer deposition study: Dicobaltatetrahedranes as convenient MOCVD precursor systems. Mat. J. Chem. 2014, 2, 4676–4682. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, R.F.; Nicholas, K.M. Transition metal-stabilized carbenium ions as synthetic intermediates. I. α-[(alkynyl)dicobalt hexacarbonyl] carbenium ions as propargylating agents. Tetrahedron Lett. 1977, 18, 4163–4165. [Google Scholar] [CrossRef]
- Nicholas, K.M. Chemistry and synthetic utility of cobalt-complexed propargyl cations. Acc. Chem. Res. 1987, 20, 207–214. [Google Scholar] [CrossRef]
- Pauson, P.L.; Khand, I.U. Uses of cobalt-carbonyl acetylene complexes in organic synthesis. Ann. N.Y. Acad. Sci. 1977, 295, 2–14. [Google Scholar] [CrossRef]
- Hay, A.M.; Kerr, W.J.; Kirk, G.G.; Middlemiss, D. Highly efficient enantioselective Pauson-Khand reactions. Organometallics 1995, 14, 4986–4988. [Google Scholar] [CrossRef]
- Gibson, S.E.; Stevenazzi, A. The Pauson-Khand reaction: The catalytic age is here! Angew. Chem. Int. Ed. 2003, 4, 1800–1810. [Google Scholar] [CrossRef]
- Blanco-Urgoiti, J.; Añorbe, L.; Pérez-Serrano, L.; Domínguez, G.; Pérez-Castells, J. The Pauson–Khand reaction, a powerful synthetic tool for the synthesis of complex molecules. Chem. Soc. Rev. 2004, 33, 32–42. [Google Scholar] [CrossRef]
- Werner, H. Peter Ludwig Pauson (1925–2013). Angew. Chem. Int. Ed. 2014, 53, 3309. [Google Scholar] [CrossRef]
- Ott, I.; Kircher, B.; Dembinski, R.; Gust, R. Alkyne hexacarbonyl dicobalt complexes in medicinal chemistry and drug development. Expert Opin. Ther. Patents. 2008, 18, 327–337. [Google Scholar] [CrossRef]
- Minteanu, C.R.; Suntharalingam, K. Advances in cobalt complexes as anticancer agents. Dalton Trans. 2015, 44, 13796–13808. [Google Scholar] [CrossRef]
- Jung, M.; Kerr, D.E.; Senter, P.D. Bioorganometallic chemistry: Synthesis and antitumor activity of cobalt carbonyl complexes. Arch. Pharm. 1997, 330, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; Jung, M.; Keilitz, R.; Schnurr, B.; Gust, R. Acetylenehexacarbonyldicobalt complexes, a novel class of antitumor drugs. Inorg. Chim. Acta. 2000, 306, 6–16. [Google Scholar] [CrossRef]
- Ott, I.; Kircher, B.; Gust, R. Investigations on the effects of cobalt-alkyne complexes on leukemia and lymphoma cells: cytotoxicity and cellular uptake. J. Inorg. Biochem. 2004, 98, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Vessieres, A.; Top, S.; Vaillant, C.; Osella, D.; Mornon, J.P.; Jaouen, G. Estradiols modified by metal carbonyl clusters as suicide substrates for the study of receptor proteins: Application to the estradiol receptor. Angew. Chem. Int. Ed. Engl. 1992, 31, 753–755. [Google Scholar] [CrossRef]
- Sergeant, C.D.; Ott, I.; Sniady, A.; Meneni, S.; Gust, R.; Rheingold, A.L.; Dembinski, R. Metallo-nucleosides: Synthesis and biological evaluation of hexacarbonyl dicobalt 5-alkynyl-2′-deoxyuridines. Org. Biomol. Chem. 2008, 6, 73–80. [Google Scholar] [CrossRef]
- Kaczmarek, R.; Korczyński, D.; Królewska-Golińska, K.; Wheeler, K.A.; Chavez, F.A.; Mikus, A.; Dembinski, R. Organometallic Nucleosides: Synthesis and Biological Evaluation of Substituted Dicobalt Hexacarbonyl 2′-Deoxy-5-oxopropynyluridines. ChemistryOpen 2018, 7, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Neukamm, M.A.; Pinto, A.; Metzler-Nolte, N. Synthesis and cytotoxicity of a cobaltcarbonyl-alkyne enkephalin bioconjugate. Chem. Commun. 2008, 2, 232–234. [Google Scholar] [CrossRef]
- Ott, I.; Schmidt, K.; Kircher, B.; Schumacher, P.; Wiglenda, T.; Gust, R. Antitumor-active cobalt-alkyne complexes derived from acetylsalicylic acid: Studies on the mode of drug action. J. Med. Chem. 2005, 48, 622–629. [Google Scholar] [CrossRef]
- Almeida, M.L.; Oliveira, M.C.V.A.; Pitta, I.R.; Pitta, M.G.R. Advances in Synthesis and Medicinal Applications of Compounds Derived from Phthalimide. COS 2020, 17, 252–270. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.; Kumar, P.; Kumar, N.; Singh, B. Recent Advances in the Chemistry of Phthalimide Analogues and their Therapeutic Potential. Min. Rev. Med. Chem. 2010, 10, 678–704. [Google Scholar] [CrossRef] [PubMed]
- Pigeon, P.; Gaschard, M.; Othman, M.; Salmain, M.; Jaouen, G. α-Hydroxylactams as Efficient Entries to Diversely Functionalized Ferrociphenols: Synthesis and Antiproliferative Activity Studies. Molecules 2022, 27, 4549. [Google Scholar] [CrossRef]
- Clément, S.; Guyard, L.; Khatyr, A.; Knorr, M.; Rousselin, Y.; Kubicki, M.M.; Mugnier, Y.; Richeter, S.; Gerbier, P.; Strohmann, C. Synthesis, crystallographic and electrochemical study of ethynyl[2.2]paracyclophane-derived cobalt metallatetrahedranes. J. Organomet. Chem. 2012, 699, 56–66. [Google Scholar] [CrossRef]
- Jourdain, I.; Knorr, M.; Brieger, L.; Strohmann, C. Synthesis of Tris(arylphosphite)-ligated Cobalt(0) Complexes [Co2(CO)6{P(OAr)3}2], and their Reactivity towards Phenylacetylene and Diphenylacetylene. Adv. Chem. Res. 2020, 2. [Google Scholar] [CrossRef]
- Hase, Y. The infrared and Raman spectra of phthalimide, N-d-phthalimide and potassium phthalimide. J. Mol. Struct. 1978, 48, 33–42. [Google Scholar] [CrossRef]
- Chen, H.; Ai, Z.; Guo, L.; Yao, L.; Li, Y.; Gu, B.; Zhang, Y.; Liu, Y.A.; Tian, B.; Liao, X. Nickel-catalyzed enantioselective domino Heck/Sonogashira coupling for construction of C(sp)-C(sp3) bond-substituted quaternary carbon centers. Tetrahedron Chem. 2022, 2, 100021–100031. [Google Scholar] [CrossRef]
- Saha, M.; Muchmore, S.; van der Helm, D.; Nicholas, K.M. Cobalt-Mediated Cyclopentenone Annulation: An Approach to the Synthesis of Cyclocolorenone. J. Org. Chem. 1986, 51, 1960–1966. [Google Scholar] [CrossRef]
- Carniato, F.; Gatti, G.; Gervasio, G.; Marabello, D.; Sappa, E.; Secco, A. Reactions of Co2(CO)8 and of Co2(CO)6L (L = 3-pentyn-1-ol, 1,4-butyn-diol or 2-methyl-3-butyn-2-ol) with 2(diphenylphosphino)ethyl-triethoxysilane and tris(hydroxymethyl)phosphine for applications to new sol–gel materials. J. Organomet. Chem. 2009, 694, 4241–4249. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
2 | A | B | |
---|---|---|---|
Co–Co | 2.4679(14) | 2.4688(9) | 2.4690(9) |
C–Calkyne | 1.330(9) | 1.325(6) | 1.326(6) |
Calkyne–CMe | 1.481(9) | 1.486(6) | 1.492(6) |
Calkyne–CH2 | 1.499(9) | 1.500(7) | 1.493(6) |
Co–Calkyne | 1.972(6) | 1.974(5) | 1.972(4) |
Co–Cpseudo-equatorial | 1.815(7) | 1.823(5) | 1.820(5) |
Co–Cpseudo-axial | 1.797(7) | 1.785(6) | 1.787(5) |
CSD reference | This work | DOTKEC [29] | HUKCIA [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jourdain, I.; Knorr, M.; Charenton, T.; Strohmann, C.; Kirchhoff, J.-L.; Othman, M. (µ2-η4-N-(2-Butynyl)phthalimide)(hexacarbonyl)dicobalt. Molbank 2023, 2023, M1545. https://doi.org/10.3390/M1545
Jourdain I, Knorr M, Charenton T, Strohmann C, Kirchhoff J-L, Othman M. (µ2-η4-N-(2-Butynyl)phthalimide)(hexacarbonyl)dicobalt. Molbank. 2023; 2023(1):M1545. https://doi.org/10.3390/M1545
Chicago/Turabian StyleJourdain, Isabelle, Michael Knorr, Tom Charenton, Carsten Strohmann, Jan-Lukas Kirchhoff, and Mohamed Othman. 2023. "(µ2-η4-N-(2-Butynyl)phthalimide)(hexacarbonyl)dicobalt" Molbank 2023, no. 1: M1545. https://doi.org/10.3390/M1545
APA StyleJourdain, I., Knorr, M., Charenton, T., Strohmann, C., Kirchhoff, J. -L., & Othman, M. (2023). (µ2-η4-N-(2-Butynyl)phthalimide)(hexacarbonyl)dicobalt. Molbank, 2023(1), M1545. https://doi.org/10.3390/M1545