5,8-Di-tert-butyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione—A New Lipophilic N-oxyl Radical Precursor
Abstract
:1. Introduction
2. Results
2.1. Synthesis of 5,8-Di-tert-butyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione
2.2. Physical and Chemical Properties of 5,8-Di-tert-butyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione
3. Materials and Methods
3.1. General
3.2. Experimental Details for the Scheme 1
3.3. Experimental Method for the Solubility Measuring of NHPI and 4
3.4. Experimental Details for the Scheme 2
3.5. Experimental Details for the Table 1 (Computational Details)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tretyakov, E.V.; Ovcharenko, V.I.; Terent’ev, A.O.; Krylov, I.B.; Magdesieva, T.V.; Mazhukin, D.G.; Gritsan, N.P. Conjugated Nitroxides. Russ. Chem. Rev. 2022, 91, RCR5025. [Google Scholar] [CrossRef]
- Recupero, F.; Punta, C. Free Radical Functionalization of Organic Compounds Catalyzed by N-Hydroxyphthalimide. Chem. Rev. 2007, 107, 3800–3842. [Google Scholar] [CrossRef] [PubMed]
- Krylov, I.B.; Lopat’eva, E.R.; Subbotina, I.R.; Nikishin, G.I.; Yu, B.; Terent’ev, A.O. Mixed Hetero-/Homogeneous TiO2/N-Hydroxyimide Photocatalysis in Visible-Light-Induced Controllable Benzylic Oxidation by Molecular Oxygen. Chin. J. Catal. 2021, 42, 1700–1711. [Google Scholar] [CrossRef]
- Andrade, M.A.; Martins, L.M.D.R.S. Organocatalysis Meets Hydrocarbon Oxyfunctionalization: The Role of N-Hydroxyimides. Eur. J. Org. Chem. 2021, 2021, 4715–4727. [Google Scholar] [CrossRef]
- Gaster, E.; Kozuch, S.; Pappo, D. Selective Aerobic Oxidation of Methylarenes to Benzaldehydes Catalyzed by N -Hydroxyphthalimide and Cobalt(II) Acetate in Hexafluoropropan-2-Ol. Angew. Chem. Int. Ed. 2017, 56, 5912–5915. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Du, R.; Yuan, H.; Wang, Y.; Yao, J.; Li, H. Selective One-Step Aerobic Oxidation of Cyclohexane to Ε-Caprolactone Mediated by N-Hydroxyphthalimide (NHPI). ChemCatChem 2019, 11, 2260–2264. [Google Scholar] [CrossRef]
- Goncharova, I.K.; Tukhvatshin, R.S.; Novikov, R.A.; Volodin, A.D.; Korlyukov, A.A.; Lakhtin, V.G.; Arzumanyan, A.V. Complementary Cooperative Catalytic Systems in the Aerobic Oxidation of a Wide Range of Si−H-Reagents to Si−OH-Products: From Monomers to Oligomers and Polymers. Eur. J. Org. Chem. 2022, 2022, e202200871. [Google Scholar] [CrossRef]
- Krylov, I.B.; Paveliev, S.A.; Budnikov, A.S.; Segida, O.O.; Merkulova, V.M.; Vil’, V.A.; Nikishin, G.I.; Terent’ev, A.O. Hidden Reactivity of Barbituric and Meldrum’s Acids: Atom-Efficient Free-Radical C–O Coupling with N-Hydroxy Compounds. Synthesis 2022, 54, 506–516. [Google Scholar] [CrossRef]
- Krylov, I.B.; Paveliev, S.A.; Shelimov, B.N.; Lokshin, B.V.; Garbuzova, I.A.; Tafeenko, V.A.; Chernyshev, V.V.; Budnikov, A.S.; Nikishin, G.I.; Terent’ev, A.O. Selective Cross-Dehydrogenative C–O Coupling of N-Hydroxy Compounds with Pyrazolones. Introduction of the Diacetyliminoxyl Radical into the Practice of Organic Synthesis. Org. Chem. Front. 2017, 4, 1947–1957. [Google Scholar] [CrossRef] [Green Version]
- Terent’ev, A.O.; Krylov, I.B.; Timofeev, V.P.; Starikova, Z.A.; Merkulova, V.M.; Ilovaisky, A.I.; Nikishin, G.I. Oxidative C–O Cross-Coupling of 1,3-Dicarbonyl Compounds and Their Heteroanalogues with N-Substituted Hydroxamic Acids and N-Hydroxyimides. Adv. Synth. Catal. 2013, 355, 2375–2390. [Google Scholar] [CrossRef]
- Terent’ev, A.O.; Krylov, I.B.; Sharipov, M.Y.; Kazanskaya, Z.M.; Nikishin, G.I. Generation and Cross-Coupling of Benzyl and Phthalimide-N-Oxyl Radicals in a Cerium(IV) Ammonium Nitrate/N-Hydroxyphthalimide/ArCH2R System. Tetrahedron 2012, 68, 10263–10271. [Google Scholar] [CrossRef]
- Krylov, I.B.; Lopat’eva, E.R.; Budnikov, A.S.; Nikishin, G.I.; Terent’ev, A.O. Metal-Free Cross-Dehydrogenative C–O Coupling of Carbonyl Compounds with N-Hydroxyimides: Unexpected Selective Behavior of Highly Reactive Free Radicals at an Elevated Temperature. J. Org. Chem. 2020, 85, 1935–1947. [Google Scholar] [CrossRef] [PubMed]
- Dai, P.-F.; Wang, Y.-P.; Qu, J.-P.; Kang, Y.-B. Tert-Butyl Nitrite as a Twofold Hydrogen Abstractor for Dehydrogenative Coupling of Aldehydes with N-Hydroxyimides. Org. Lett. 2021, 23, 9360–9364. [Google Scholar] [CrossRef] [PubMed]
- Feizpour, F.; Jafarpour, M.; Rezaeifard, A. A Photoinduced Cross-Dehydrogenative-Coupling (CDC) Reaction between Aldehydes and N-Hydroxyimides by a TiO2–Co Ascorbic Acid Nanohybrid under Visible Light Irradiation. New J. Chem. 2018, 42, 807–811. [Google Scholar] [CrossRef]
- Zhang, M.-Z.; Luo, N.; Long, R.-Y.; Gou, X.-T.; Shi, W.-B.; He, S.-H.; Jiang, Y.; Chen, J.-Y.; Chen, T. Transition-Metal-Free Oxidative Aminooxyarylation of Alkenes: Annulations toward Aminooxylated Oxindoles. J. Org. Chem. 2018, 83, 2369–2375. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Grover, P.; Rasool, B.; Mukherjee, D. Recent Advances in N-Hyrdoxypthalimide: As a Free Radical Initiator and Its Applications. Asian J. Org. Chem. 2022, 11, 442. [Google Scholar] [CrossRef]
- LaMartina, K.B.; Kuck, H.K.; Oglesbee, L.S.; Al-Odaini, A.; Boaz, N.C. Selective Benzylic C–H Monooxygenation Mediated by Iodine Oxides. Beilstein J. Org. Chem. 2019, 15, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.-F.; Zhu, S.-L.; Zhang, D. Copper-Catalyzed C–O Coupling of Styrenes with N-Hydroxyphthalimide through Dihydroxylamination Reactions. Tetrahedron 2015, 71, 8517–8520. [Google Scholar] [CrossRef]
- Krylov, I.B.; Paveliev, S.A.; Matveeva, O.K.; Terent’ev, A.O. Cerium(IV) Ammonium Nitrate: Reagent for the Versatile Oxidative Functionalization of Styrenes Using N-Hydroxyphthalimide. Tetrahedron 2019, 75, 2529–2537. [Google Scholar] [CrossRef]
- Paveliev, S.A.; Segida, O.O.; Dvoretskiy, A.; Dzyunov, M.M.; Fedorova, U.V.; Terent’ev, A.O. Electrifying Phthalimide-N-Oxyl (PINO) Radical Chemistry: Anodically Induced Dioxygenation of Vinyl Arenes with N-Hydroxyphthalimide. J. Org. Chem. 2021, 86, 18107–18116. [Google Scholar] [CrossRef]
- Petroselli, M.; Melone, L.; Cametti, M.; Punta, C. Lipophilic N-Hydroxyphthalimide Catalysts for the Aerobic Oxidation of Cumene: Towards Solvent-Free Conditions and Back. Chem. Eur. J. 2017, 23, 10616–10625. [Google Scholar] [CrossRef] [PubMed]
- Sawatari, N.; Yokota, T.; Sakaguchi, S.; Ishii, Y. Alkane Oxidation with Air Catalyzed by Lipophilic N-Hydroxyphthalimides without Any Solvent. J. Org. Chem. 2001, 66, 7889–7891. [Google Scholar] [CrossRef]
- Petroselli, M.; Franchi, P.; Lucarini, M.; Punta, C.; Melone, L. Aerobic Oxidation of Alkylaromatics Using a Lipophilic N-Hydroxyphthalimide: Overcoming the Industrial Limit of Catalyst Solubility. ChemSusChem 2014, 7, 2695–2703. [Google Scholar] [CrossRef] [PubMed]
- Kushch, O.V.; Hordieieva, I.O.; Kompanets, M.O.; Zosenko, O.O.; Opeida, I.A.; Shendrik, A.N. Hydrogen Atom Transfer from Benzyl Alcohols to N-Oxyl Radicals. Reactivity Parameters. J. Org. Chem. 2021, 86, 3792–3799. [Google Scholar] [CrossRef]
- Yoshii, T.; Tsuzuki, S.; Sakurai, S.; Sakamoto, R.; Jiang, J.; Hatanaka, M.; Matsumoto, A.; Maruoka, K. N-Hydroxybenzimidazole as a Structurally Modifiable Platform for N-Oxyl Radicals for Direct C–H Functionalization Reactions. Chem. Sci. 2020, 11, 5772–5778. [Google Scholar] [CrossRef] [PubMed]
- Toribio, P.P.; Gimeno-Gargallo, A.; Capel-Sanchez, M.C.; de Frutos, M.P.; Campos-Martin, J.M.; Fierro, J.L.G. Ethylbenzene Oxidation to Its Hydroperoxide in the Presence of N-Hydroxyimides and Minute Amounts of Sodium Hydroxide. Appl. Catal. A Gen. 2009, 363, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Shibamoto, A.; Sakaguchi, S.; Ishii, Y. Aerobic Oxidation of Ethane to Acetic Acid Catalyzed by N,N′-Dihydroxypyromellitimide Combined with Co Species. Tetrahedron Lett. 2002, 43, 8859–8861. [Google Scholar] [CrossRef]
- Kishioka, S. Electrocatalytic Kinetics of N-Hydroxynaphthalimide as a Redox Mediator for Benzyl Alcohol Oxidation Using Rotating Disk Electrode Voltammetry. Electrocatalysis 2022, 13, 210–217. [Google Scholar] [CrossRef]
- Altieri, A.; Gatti, F.G.; Kay, E.R.; Leigh, D.A.; Martel, D.; Paolucci, F.; Slawin, A.M.Z.; Wong, J.K.Y. Electrochemically Switchable Hydrogen-Bonded Molecular Shuttles. J. Am. Chem. Soc. 2003, 125, 8644–8654. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, L.; Wang, J.-T.; Huang, H.; Guo, Q.-X. Assessment of Experimental Bond Dissociation Energies Using Composite Ab Initio Methods and Evaluation of the Performances of Density Functional Methods in the Calculation of Bond Dissociation Energies. J. Chem. Inf. Comput. Sci. 2003, 43, 2005–2013. [Google Scholar] [CrossRef]
- Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds; CRC Press: Boca Raton, FL, USA, 2003; ISBN 978-0-8493-1589-3. [Google Scholar]
- Hermans, I.; Jacobs, P.; Peeters, J. Autoxidation Catalysis with N-Hydroxyimides: More-Reactive Radicals or Just More Radicals? Phys. Chem. Chem. Phys. 2007, 9, 686. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Luxami, V.; Paul, K. Synthesis, in Vitro Evaluation and Molecular Modelling of Naphthalimide Analogue as Anticancer Agents. Eur. J. Med. Chem. 2013, 68, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Kushch, O.; Hordieieva, I.; Novikova, K.; Litvinov, Y.; Kompanets, M.; Shendrik, A.; Opeida, I. Kinetics of N-Oxyl Radicals’ Decay. J. Org. Chem. 2020, 85, 7112–7124. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.T. 110. Acenaphthene Series. Part I. Mono- and Di-Tert.-Butyl-Acenaphthene, -Acenaphthenequinone, and -Naphthalic Anhydride, and Their Derivatives. J. Chem. Soc. 1942, 562–565. [Google Scholar] [CrossRef]
- Ragazzon, G.; Credi, A.; Colasson, B. Thermodynamic Insights on a Bistable Acid-Base Switchable Molecular Shuttle with Strongly Shifted Co-Conformational Equilibria. Chem. Eur. J. 2017, 23, 2149–2156. [Google Scholar] [CrossRef]
- Neese, F. Software Update: The ORCA Program System—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, 1606. [Google Scholar] [CrossRef]
- Neese, F. Software Update: The ORCA Program System, Version 4.0. WIREs Comput. Mol. Sci. 2018, 8, 1327. [Google Scholar] [CrossRef]
- Lehtola, S.; Steigemann, C.; Oliveira, M.J.T.; Marques, M.A.L. Recent Developments in Libxc—A Comprehensive Library of Functionals for Density Functional Theory. SoftwareX 2018, 7, 1–5. [Google Scholar] [CrossRef]
- Mardirossian, N.; Head-Gordon, M. ω B97M-V: A Combinatorially Optimized, Range-Separated Hybrid, Meta-GGA Density Functional with VV10 Nonlocal Correlation. J. Chem. Phys. 2016, 144, 214110. [Google Scholar] [CrossRef] [Green Version]
- Mardirossian, N.; Head-Gordon, M. Mapping the Genome of Meta-Generalized Gradient Approximation Density Functionals: The Search for B97M-V. J. Chem. Phys. 2015, 142, 074111. [Google Scholar] [CrossRef]
- Najibi, A.; Goerigk, L. The Nonlocal Kernel in van Der Waals Density Functionals as an Additive Correction: An Extensive Analysis with Special Emphasis on the B97M-V and ΩB97M-V Approaches. J. Chem. Theory Comput. 2018, 14, 5725–5738. [Google Scholar] [CrossRef] [PubMed]
- Najibi, A.; Goerigk, L. DFT-D4 Counterparts of Leading META-Generalized-gradient Approximation and Hybrid Density Functionals for Energetics and Geometries. J. Comput. Chem. 2020, 41, 2562–2572. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef] [PubMed]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
Structure | O–H BDE, kcal/mol 1 | Lit. O–H BDE Values |
---|---|---|
92.5 | - | |
92.8 | 87.6 [26,32] 2 | |
86.5 | 88.1 [32] 3 81.2 [26,32] 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopat’eva, E.R.; Kutykov, A.D.; Krylov, I.B.; Terent’ev, A.O. 5,8-Di-tert-butyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione—A New Lipophilic N-oxyl Radical Precursor. Molbank 2023, 2023, M1543. https://doi.org/10.3390/M1543
Lopat’eva ER, Kutykov AD, Krylov IB, Terent’ev AO. 5,8-Di-tert-butyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione—A New Lipophilic N-oxyl Radical Precursor. Molbank. 2023; 2023(1):M1543. https://doi.org/10.3390/M1543
Chicago/Turabian StyleLopat’eva, Elena R., Artem D. Kutykov, Igor B. Krylov, and Alexander O. Terent’ev. 2023. "5,8-Di-tert-butyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione—A New Lipophilic N-oxyl Radical Precursor" Molbank 2023, no. 1: M1543. https://doi.org/10.3390/M1543
APA StyleLopat’eva, E. R., Kutykov, A. D., Krylov, I. B., & Terent’ev, A. O. (2023). 5,8-Di-tert-butyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione—A New Lipophilic N-oxyl Radical Precursor. Molbank, 2023(1), M1543. https://doi.org/10.3390/M1543