4-Methoxyphenethyl (E)-3-(o-tolyl)acrylate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. α-Glucosidase Inhibition Activity
2.3. Molecular Docking Study
3. Materials and Methods
3.1. Synthesis of 4-Methoxyphenethyl (E)-3-(o-tolyl)acrylate (1)
3.2. α-Glucosidase Inhibitory Activity Assay
3.3. Molecular Docking Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burger, P.; Casale, A.; Kerdudo, A.; Michel, T.; Laville, R.; Chagnaud, F.; Fernandez, X. New insights in the chemical composition of benzoin balsams. Food Chem. 2016, 210, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.C.; Ferreira, A.R.; Silva, D.F.; Lima, E.O.; de Sousa, D.P. Antifungal activity of cinnamic acid and benzoic acid esters against Candida albicans strains. Nat. Prod. Res. 2018, 32, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Anthony, P.C.; Eseyin, O.A.; Attih, E.; Johnson, E.; Ebong, A.; Effiong, A.E. Synthesis of some esters of cinnamic acid and evaluation of their in vitro antidiabetic and antioxidant properties. Trop. J. Pharm. Res. 2022, 21, 131–136. [Google Scholar]
- Bhalodiya, P.C.; Patel, H.N.; Parmar, T.H.; Sangani, C.B.; Rajani, D.P. Novel ester derivative of cinnamates with different long alkoxy chain: Synthesis, mesomorphic properties, biological evaluation. Mol. Cryst. Liq. Cryst. 2021, 724, 1–25. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Torregiani, E.; Bonacucina, G.; Cespi, M.; Palmieri, G.F.; Gabbianelli, R. Antioxidant properties of ester derivatives of cinnamic and hydroxycinnamic acids in Nigella sativa and extra-virgin olive oils-based emulsions. Antioxidants 2022, 11, 194. [Google Scholar] [CrossRef]
- Bernal, F.A.; Kaiser, M.; Wünsch, B.; Schmidt, T.J. Structure−activity relationships of cinnamate ester analogues as potent antiprotozoal agents. ChemMedChem 2020, 15, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Godoy, M.; Rotelli, A.; Pelzer, L.; Tonn, C. Antiinflammatory activity of cinnamic acid esters. Molecules 2000, 5, 547–548. [Google Scholar] [CrossRef] [Green Version]
- Vale, J.; Rodrigues, M.; Lima, M.; Santiago, S.; Domingues, G.; Lima, G.; Andrade Almeida, A.; Oliveira, L.; Bressan, G.; Róbson, R.; et al. Synthesis of cinnamic acid ester derivatives with antiproliferative and antimetastatic activities on murine melanoma cells. Biomed. Pharmacother. 2022, 148, 112689. [Google Scholar] [CrossRef]
- Otero, E.; Robledo, S.; Díaz-Oltra, S.; Carda, M.; Muñoz, D.; Paños, J.; Ve´lez, I.; Cardona Galeano, W. Synthesis and leishmanicidal activity of cinnamic acid esters: Structure-activity relationship. Med. Chem. Res. 2013, 23, 1378–1386. [Google Scholar] [CrossRef] [Green Version]
- Kuitunen, M.-L.; Cecilia Altamirano, J.; Siegenthaler, P.; Hannele Taure, T.; Antero Häkkinen, V.; Sinikka Vanninen, P. Derivatization and rapid GC-MS screening of chlorides relevant to the chemical weapons convention in organic liquid samples. Anal. Methods 2020, 12, 2527–2535. [Google Scholar] [CrossRef]
- Voisin-Chiret, A.S.; Bazin, M.-A.; Lancelot, J.-C.; Rault, S. Synthesis of new L-ascorbic ferulic acid hybrids. Molecules 2007, 12, 2533–2545. [Google Scholar] [CrossRef] [PubMed]
- Aijijiyah, N.P.; Fahmi, M.R.G.; Fatmawati, S.; Santoso, M. Synthesis and molecular docking study of 6-chloropyrazine-2-carboxylic acid derivatives. IOP Conf. Ser. Mater. Sci. Eng. 2020, 833, 012002. [Google Scholar] [CrossRef]
- Brizzi, A.; Trezza, A.; Spiga, O.; Maramai, S.; Scorzelli, F.; Saponara, S.; Fusi, F. 2-Hydroxy-5-(3,5,7-trihydroxy-4-oxo-4H-chromen-2-yl)phenyl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate: Synthesis, in silico analysis and in vitro pharmacological evaluation. Molbank 2021, 2021, M1258. [Google Scholar] [CrossRef]
- Boyle, M.; Livingstone, K.; Henry, M.C.; Elwood, J.M.L.; Lopez-Fernandez, J.D.; Jamieson, C. Amide bond formation via the rearrangement of nitrile imines derived from N-2-nitrophenyl hydrazonyl bromides. Org. Lett. 2022, 24, 334–338. [Google Scholar] [CrossRef]
- Shiina, I.; Nakata, K. The first asymmetric esterification of free carboxylic acids with racemic alcohols using benzoic anhydrides and tetramisole derivatives: An application to the kinetic resolution of secondary benzylic alcohols. Tetrahedron Lett. 2007, 48, 8314–8317. [Google Scholar] [CrossRef]
- Tagami, T.; Yamashita, K.; Okuyama, M.; Mori, H.; Yao, M.; Kimura, A. Molecular basis for the recognition of long-chain substrates by plant α-glucosidases. J. Biol. Chem. 2013, 288, 19296–19303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasril, J.; Frimayanti, N.; Nurulita, Y.; Zamri, A.; Ikhtiarudin, I.; Guntur, G. 5-(4-Fluorophenyl)-3-(naphthalen-1-yl)-1-phenyl-1H-pyrazole. Molbank 2021, 2021, M1197. [Google Scholar] [CrossRef]
- Harwood, L.M. “Dry-Column” flash chromatography. Aldrichim. Acta 1985, 18, 25. [Google Scholar]
- Bhatia, A.; Singh, B.; Arora, R.; Arora, S. In vitro evaluation of the α-glucosidase inhibitory potential of methanolic extracts of traditionally used antidiabetic plants. BMC Complem. Altern. Med. 2019, 1, 74. [Google Scholar] [CrossRef] [Green Version]
- Purwanto, B.T.; Siswandono; Kesuma, D.; Widiandani, T.; Siswanto, I. Molecular modeling, admet prediction, synthesis and the cytotoxic activity from the novel N-(4-tert-butylphenylcarbamoyl)benzamide against HeLa. RJC 2021, 14, 1341–1350. [Google Scholar] [CrossRef]
- Santoso, M.; Ong, L.L.; Aijijiyah, N.P.; Wati, F.A.; Azminah, A.; Annuur, R.M.; Fadlan, A.; Judeh, Z.M.A. Synthesis, α-glucosidase inhibition, α-amylase inhibition, and molecular docking studies of 3,3-di(indolyl)indolin-2-ones. Heliyon 2022, 8, e09045. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoso, M.; Pamela, E.; Ramadhani, E.Y.; Ilfahmi, Y.A.; Aijijiyah, N.P.; Purnomo, A.S.; Putra, S.R. 4-Methoxyphenethyl (E)-3-(o-tolyl)acrylate. Molbank 2022, 2022, M1519. https://doi.org/10.3390/M1519
Santoso M, Pamela E, Ramadhani EY, Ilfahmi YA, Aijijiyah NP, Purnomo AS, Putra SR. 4-Methoxyphenethyl (E)-3-(o-tolyl)acrylate. Molbank. 2022; 2022(4):M1519. https://doi.org/10.3390/M1519
Chicago/Turabian StyleSantoso, Mardi, Egar Pamela, Ersya Yanu Ramadhani, Yan Alamanda Ilfahmi, Nur Pasca Aijijiyah, Adi Setyo Purnomo, and Surya Rosa Putra. 2022. "4-Methoxyphenethyl (E)-3-(o-tolyl)acrylate" Molbank 2022, no. 4: M1519. https://doi.org/10.3390/M1519
APA StyleSantoso, M., Pamela, E., Ramadhani, E. Y., Ilfahmi, Y. A., Aijijiyah, N. P., Purnomo, A. S., & Putra, S. R. (2022). 4-Methoxyphenethyl (E)-3-(o-tolyl)acrylate. Molbank, 2022(4), M1519. https://doi.org/10.3390/M1519