1-(4-Chlorophenyl)-2-methyl-2-phenyl-5-(thiophen-2-yl)-1,2-dihydro-3H-pyrrol-3-one
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, M.; Chen, S.; Li, J.; Liu, L. The Biological and Chemical Diversity of Tetramic Acid Compounds from Marine-Derived Microorganisms. Mar. Drugs 2020, 18, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Kumar, R.; Bhargava, G. Recent development in the synthesis of pyrrolin-4-ones/pyrrolin-3-ones. J. Heterocycl. Chem. 2020, 57, 4115–4135. [Google Scholar] [CrossRef]
- Karadeolian, A.; Kerr, M.A. Total Synthesis of (+)-Isatisine A. J. Org. Chem. 2010, 75, 6830–6841. [Google Scholar] [CrossRef]
- Murugesan, D.; Mital, A.; Kaiser, M.; Shackleford, D.M.; Morizzi, J.; Katneni, K.; Campbell, M.; Hudson, A.; Charman, S.A.; Yeates, C.; et al. Discovery and Structure–Activity Relationships of Pyrrolone Antimalarials. J. Med. Chem. 2013, 56, 2975–2990. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, D.; Kaiser, M.; White, K.L.; Norval, S.; Riley, J.; Wyatt, P.G.; Charman, S.A.; Read, K.D.; Yeates, C.; Gilbert, I.H. Structure–Activity Relationship Studies of Pyrrolone Antimalarial Agents. ChemMedChem 2013, 8, 1537–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.B.; Yu, D.G.; Sun, M.; Zhu, X.X.; Yao, X.J.; Zhou, S.Y.; Chen, J.J.; Gao, K. Ervatamines A–I, Anti-inflammatory Monoterpenoid Indole Alkaloids with Diverse Skeletons from Ervatamia hainanensis. J. Nat. Prod. 2015, 78, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Searcey, M. Duocarmycins–Natures Prodrugs? Curr. Pharm. Des. 2002, 8, 1375–1389. [Google Scholar] [CrossRef] [PubMed]
- Bharate, S.B.; Manda, S.; Mupparapu, N.; Battini, N.; Vishwakarma, R.A. Chemistry and Biology of Fascaplysin, a Potent Marine-Derived CDK-4 Inhibitor. Mini-Rev. Med. Chem. 2012, 12, 650–664. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Manjal, S.K.; Rawal, R.K.; Kumar, K. Recent synthetic and medicinal perspectives of tryptanthrin. Bioorg. Med. Chem. 2017, 25, 4533–4552. [Google Scholar] [CrossRef] [PubMed]
- Younis, A.A.; Faheim, A.A.; Elsawy, M.M.; El-Wahab, H.A. Novel flame retardant paint based on Co (II) and Ni (II) metal complexes as new additives for surface coating applications. Appl. Organomet. Chem. 2021, 35, e6070. [Google Scholar] [CrossRef]
- Sobhani, S.; Moghadam, H.H.; Derakhshan, S.R.; Sansano, J.M. Tandem imine formation via auto-hydrogen transfer from alcohols to nitro compounds catalyzed by a nanomagnetically recyclable copper catalyst under solvent-free conditions. RSC Adv. 2021, 11, 19121–19127. [Google Scholar] [CrossRef] [PubMed]
- Gondi, S.R.; Shaik, A.; Westover, K.D. Acid-Catalyzed Synthesis of Isatoic Anhydride-8-Secondary Amides Enables IASA Transformations for Medicinal Chemistry. J. Org. Chem. 2022, 87, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Hamilakis, S.; Tsolomitis, A. An efficient synthesis of 2-amino-3-cyano-2-pyrrolin-4-ones, via the corresponding open chain tautomers (aminoacetylmalononitriles). Tetrahedron Lett. 2003, 44, 3821–3823. [Google Scholar] [CrossRef]
- Gouault, N.; Le Roch, M.; Cornée, C.; David, M.; Uriac, P. Synthesis of Substituted Pyrrolin-4-ones from Amino Acids in Mild Conditions via a Gold-Catalyzed Approach. J. Org. Chem. 2009, 74, 5614–5617. Available online: https://pubs.acs.org/action/showCitFormats?doi=10.1021%2Fjo900693a&href=/doi/10.1021%2Fjo900693a (accessed on 1 November 2022). [CrossRef] [PubMed]
- Spina, R.; Colacino, E.; Gabriele, B.; Salerno, G.; Martinez, J.; Lamaty, F. Synthesis of Pyrrolin-4-ones by Pt-Catalyzed Cycloisomerization in PEG under Microwaves. J. Org. Chem. 2013, 78, 2698–2702. [Google Scholar] [CrossRef] [PubMed]
- Grošelj, U.; Ciber, L.; Gnidovec, J.; Testen, Ž.; Požgan, F.; Štefane, B.; Tavčar, G.; Svete, J.; Ričko, S. Synthesis of Spiro-Δ2-Pyrrolin-4-One Pseudo Enantiomers via an Organocatalyzed Sulfa-Michael/Aldol Domino Sequence. Adv. Synth. Catal. 2019, 361, 5118–5126. [Google Scholar] [CrossRef]
- Schmidt, E.Y.; Bidusenko, I.A.; Protsuk, N.I.; Demyanov, Y.V.; Ushakov, I.A.; Trofimov, B.A. Superbase-promoted addition of acetylene gas to the C=N bond. Eur. J. Org. Chem. 2019, 2019, 5875–5881. [Google Scholar] [CrossRef]
- Volkov, P.A.; Khrapova, K.O.; Bidusenko, I.A.; Telezhkin, A.A.; Schmidt, E.Y.; Albanov, A.I.; Trofimov, B.A. Chemoselective cross-coupling of terminal propargylamines with (het)aroyl chlorides: Synthesis of β-aminoacetylene ketones bearing aromatic and heteroaromatic substituents. Russ. Chem. Bull. 2022, 71, 1514–1518. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkov, P.A.; Khrapova, K.O.; Telezhkin, A.A.; Bidusenko, I.A.; Albanov, A.I.; Trofimov, B.A. 1-(4-Chlorophenyl)-2-methyl-2-phenyl-5-(thiophen-2-yl)-1,2-dihydro-3H-pyrrol-3-one. Molbank 2022, 2022, M1520. https://doi.org/10.3390/M1520
Volkov PA, Khrapova KO, Telezhkin AA, Bidusenko IA, Albanov AI, Trofimov BA. 1-(4-Chlorophenyl)-2-methyl-2-phenyl-5-(thiophen-2-yl)-1,2-dihydro-3H-pyrrol-3-one. Molbank. 2022; 2022(4):M1520. https://doi.org/10.3390/M1520
Chicago/Turabian StyleVolkov, Pavel A., Kseniya O. Khrapova, Anton A. Telezhkin, Ivan A. Bidusenko, Alexander I. Albanov, and Boris A. Trofimov. 2022. "1-(4-Chlorophenyl)-2-methyl-2-phenyl-5-(thiophen-2-yl)-1,2-dihydro-3H-pyrrol-3-one" Molbank 2022, no. 4: M1520. https://doi.org/10.3390/M1520
APA StyleVolkov, P. A., Khrapova, K. O., Telezhkin, A. A., Bidusenko, I. A., Albanov, A. I., & Trofimov, B. A. (2022). 1-(4-Chlorophenyl)-2-methyl-2-phenyl-5-(thiophen-2-yl)-1,2-dihydro-3H-pyrrol-3-one. Molbank, 2022(4), M1520. https://doi.org/10.3390/M1520