6,6′-((Ethane-1,2-diylbis(azanediyl))bis(methylene))bis(2,4-bis(2-phenylpropan-2-yl)phenolate)zirconium(IV) Dichlorido
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Considerations
3.2. Synthesis and Characterization
3.3. General Procedure for Single-Crystal X-ray Crystallography
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiong, H.; Li, L.; Liu, E.; Cheng, J.; Zhang, G. A chiral multidentate salan-supported heterobimetallic catalyst for asymmetric Friedel-Crafts reaction. Inorg. Chem. Commun. 2017, 84, 24–27. [Google Scholar] [CrossRef]
- Wang, Z.; He, J.; Mu, Y. Synthesis of chiral salan ligands with bulky substituents and their application in Cu-catalyzed asymmetric Henry reaction. J. Organomet. Chem. 2020, 928, 121546. [Google Scholar] [CrossRef]
- Chen, J.; Gu, H.; Zhu, X.; Nam, W.; Wang, B. Zirconium-Salan Catalyzed Enantioselective α-Hydroxylation of β-Keto Esters. Adv. Synth. Catal. 2020, 362, 2976–2983. [Google Scholar] [CrossRef]
- Bunda, S.; Udvardy, A.; Voronova, K.; Joó, F. Organic Solvent-Free, Pd(II)-Salan Complex-Catalyzed Synthesis of Biaryls via Suzuki-Miyaura Cross-Coupling in Water and Air. J. Org. Chem. 2018, 83, 15486–15492. [Google Scholar] [CrossRef]
- Sun, J.; Dai, Z.; Li, C.; Zhu, C. Enantioselective pinacol coupling reaction of aromatic aldehydes catalyzed by chiral vanadium complexes. J. Organomet. Chem. 2009, 694, 3219–3221. [Google Scholar] [CrossRef]
- Hipólito, J.; Martins, A.M.; Alves, L.G. Synthesis and Application of New Salan Titanium Complexes in the Catalytic Reduction of Aldehydes. Molecules 2022, 27, 6831. [Google Scholar] [CrossRef]
- Cohen, A.; Kopilov, J.; Lamberti, M.; Venditto, V.; Kol, M. Same Ligand, Different Metals: Diiodo-Salan Complexes of the Group 4 Triad in Isospecific Polymerization of 1-Hexene and Propylene. Macromolecules 2010, 43, 1689–1691. [Google Scholar] [CrossRef]
- Białek, M.; Pochwała, M.; Spaleniak, G. Olefin polymerization and copolymerization by complexes bearing [ONNO]-Type salan ligands: Effect of ligand structure and metal type (titanium, zirconium, and vanadium). J. Polym. Sci. A Polym. Chem. 2014, 52, 2111–2123. [Google Scholar] [CrossRef]
- Meppelder, G.-J.M.; Fan, H.-T.; Spaniol, T.P.; Okuda, J. Group 4 Metal Complexes Supported by [ONNO]-Type Bis(o-aminophenolato) Ligands: Synthesis, Structure, and α-Olefin Polymerization Activity. Organometallics 2009, 28, 5159–5165. [Google Scholar] [CrossRef]
- Ouyang, H.; Yuan, D.; Nie, K.; Zhang, Y.; Yao, Y.; Cui, D. Synthesis and Characterization of Dinuclear Salan Rare-Earth Metal Complexes and Their Application in the Homo- and Copolymerization of Cyclic Esters. Inorg. Chem. 2018, 57, 9028–9038. [Google Scholar] [CrossRef]
- Chmura, A.J.; Davidson, M.G.; Jones, M.D.; Lunn, M.D.; Mahon, M.F.; Johnson, A.F.; Khunkamchoo, P.; Roberts, S.L.; Wong, S.S.F. Group 4 Complexes with Aminebisphenolate Ligands and Their Application for the Ring Opening Polymerization of Cyclic Esters. Macromolecules 2006, 39, 7250–7257. [Google Scholar] [CrossRef]
- Sumrit, P.; Hormnirun, P. Aluminum Initiators Supported by Asymmetric [ONNO’]-Type Salan Ligands for the Ring-Opening Polymerization of rac-Lactide. Macromol. Chem. Phys. 2013, 214, 1845–1851. [Google Scholar] [CrossRef]
- Matsumoto, K.; Sawada, Y.; Katsuki, T. Asymmetric epoxidation of olefins catalyzed by Ti(salan) complexes using aqueous hydrogen peroxide as the oxidant. Pure Appl. Chem. 2008, 80, 1071–1077. [Google Scholar] [CrossRef]
- Jat, J.L.; De, S.R.; Kumar, G.; Adebesin, A.M.; Gandham, S.K.; Falck, J.R. Regio- and Enantioselective Catalytic Monoepoxidation of Conjugated Dienes: Synthesis of Chiral Allylic cis-Epoxides. Org. Lett. 2015, 17, 1058–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talsi, E.P.; Samsonenko, D.G.; Bryliakov, K.P. Titanium Salan Catalysts for the Asymmetric Epoxidation of Alkenes: Steric and Electronic Factors Governing the Activity and Enantioselectivity. Chem.-Eur. J. 2014, 20, 14329–14335. [Google Scholar] [CrossRef]
- Adão, P.; Avecilla, F.; Bonchio, M.; Carraro, M.; Pessoa, J.C.; Correia, I. Titanium(IV)-Salan Catalysts for Asymmetric Sulfoxidation with Hydrogen Peroxide. Eur. J. Inorg. Chem. 2010, 2010, 5568–5578. [Google Scholar] [CrossRef]
- Talsi, E.P.; Bryliakov, K.P. Titanium-salan-catalyzed asymmetric sulfoxidations with H2O2: Design of more versatile catalysts. Appl. Organomet. Chem. 2013, 27, 239–244. [Google Scholar] [CrossRef]
- Talsi, E.P.; Bryliakov, K.P. Ti-Salan catalyzed asymmetric sulfoxidation of pyridylmethylthiobenzimidazoles to optically pure proton pump inhibitors. Cat. Today 2017, 279, 84–89. [Google Scholar] [CrossRef]
- Maru, M.S.; Barroso, S.; Adão, P.; Alves, L.G.; Martins, A.M. New salan and salen vanadium complexes: Synthesis and application in sulfoxidation catalysis. J. Organomet. Chem. 2018, 870, 136–144. [Google Scholar] [CrossRef]
- Glasner, H.; Tshuva, E.Y. C1-Symmetrical Titanium(IV) Complexes of Salan Ligands with Differently Substituted Aromatic Rings: Enhanced Cytotoxic Activity. Inorg. Chem. 2014, 53, 3170–3176. [Google Scholar] [CrossRef] [PubMed]
- Immel, T.A.; Groth, U.; Huhn, T. Cytotoxic Titanium Salan Complexes: Surprising Interaction of Salan and Alkoxy Ligands. Chem. Eur. J. 2010, 16, 2775–2789. [Google Scholar] [CrossRef] [PubMed]
- Manna, C.M.; Braitbard, O.; Weiss, E.; Hochman, J. Cytotoxic Salan-Titanium(IV) Complexes: High Activity Toward a Range of Sensitive and Drug-Resistant Cell Lines, and Mechanistic Insights. ChemMedChem 2012, 7, 703–705. [Google Scholar] [CrossRef] [PubMed]
- Reytman, L.; Braitbard, O.; Tshuva, E.Y. Highly Cytotoxic vanadium(V) complexes of salan ligands; insights on the role of hydrolysis. Dalton Trans. 2012, 41, 5241–5247. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Grützke, M.; Götz, K.H.; Druzhenko, T.; Huhn, T. Synthesis and X-ray structure analysis of cytotoxic heptacoordinate sulfonamide salan titanium(IV)-bis-chelates. Dalton Trans. 2015, 44, 16475–16485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, S.L.; Mahon, M.F.; Jones, M.D. Monomeric Ti(IV) homopiperazine complexes and their exploitation for the ring opening polymerization of rac-lactide. Chem. Cent. J. 2013, 7, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, A.; Yeori, A.; Kopilov, J.; Goldberg, I.; Kol, M. Construction of C1-symmetric zirconium complexes by the design of new Salan ligands. Coordination chemistry and preliminary polymerization catalysis studies. Chem. Commun. 2008, 2149–2151. [Google Scholar] [CrossRef]
- Cohen, A.; Kopilov, J.; Goldberg, I.; Kol, M. C1-Symmetric Zirconium Complexes of [ONNO’]-Type Salan Ligands: Accurate Control of Catalyst Activity, Isospecificity, and Molecular Weight in 1-Hexene Polymerization. Organometallics 2009, 28, 1391–1405. [Google Scholar] [CrossRef]
- Ou, H.-W.; Chiang, M.Y.; Vandavasi, J.K.; Lu, W.-Y.; Chen, Y.-J.; Tseng, H.-C.; Lai, Y.-C.; Chen, H.-Y. Comparative study of ring-opening polymerization of L-lactide and ε-caprolactone using zirconium hexadentate bis(aminophenolate) complexes as catalysts. RSC Adv. 2015, 5, 477–484. [Google Scholar] [CrossRef]
- Yeori, A.; Goldberg, I.; Shuster, M.; Kol, M. Diastereomerically-Specific Zirconium Complexes of Chiral Salan Ligands: Isospecific Polymerization of 1-Hexene and 4-Methyl-1-pentene and Cyclopolymerization of 1,5-Hexadiene. J. Am. Chem. Soc. 2006, 128, 13062–13063. [Google Scholar] [CrossRef]
- SAINT; Version 7.03A; Bruker AXS Inc.: Madison, WI, USA, 1997–2003.
- Sheldrick, G.M. SADABS, Software for Empirical Absorption Corrections; University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- Altomare, A.; Burla, M.C.; Camalli, M.; Cascarano, G.L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A.G.G.; Polidori, G.; Spagna, R. SIR97: A new tool for crystal structure determination and refinement. J. Appl. Cryst. 1999, 32, 115–119. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure and refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Farrugia, L.J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst. 1999, 32, 837–838. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hipólito, J.; Martins, A.M.; Alves, L.G. 6,6′-((Ethane-1,2-diylbis(azanediyl))bis(methylene))bis(2,4-bis(2-phenylpropan-2-yl)phenolate)zirconium(IV) Dichlorido. Molbank 2022, 2022, M1511. https://doi.org/10.3390/M1511
Hipólito J, Martins AM, Alves LG. 6,6′-((Ethane-1,2-diylbis(azanediyl))bis(methylene))bis(2,4-bis(2-phenylpropan-2-yl)phenolate)zirconium(IV) Dichlorido. Molbank. 2022; 2022(4):M1511. https://doi.org/10.3390/M1511
Chicago/Turabian StyleHipólito, Joana, Ana M. Martins, and Luis G. Alves. 2022. "6,6′-((Ethane-1,2-diylbis(azanediyl))bis(methylene))bis(2,4-bis(2-phenylpropan-2-yl)phenolate)zirconium(IV) Dichlorido" Molbank 2022, no. 4: M1511. https://doi.org/10.3390/M1511
APA StyleHipólito, J., Martins, A. M., & Alves, L. G. (2022). 6,6′-((Ethane-1,2-diylbis(azanediyl))bis(methylene))bis(2,4-bis(2-phenylpropan-2-yl)phenolate)zirconium(IV) Dichlorido. Molbank, 2022(4), M1511. https://doi.org/10.3390/M1511