Methyl 5-(2-Fluoro-4-nitrophenyl)furan-2-carboxylate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Crystallization and Structure Determination
2.3. NMR Analysis and Conformational Study
3. Materials and Methods
3.1. Chemistry
3.2. X-ray Diffraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2021; WHO: Geneva, Switzerland, 2021; ISBN 9789240037021. [Google Scholar]
- Chiarelli, L.R.; Mori, G.; Esposito, M.; Orena, B.S.; Pasca, M.R. New and Old Hot Drug Targets in Tuberculosis. Curr. Med. Chem. 2016, 23, 3813–3846. [Google Scholar] [CrossRef]
- Cazzaniga, G.; Mori, M.; Chiarelli, L.R.; Gelain, A.; Meneghetti, F.; Villa, S. Natural products against key Mycobacterium tuberculosis enzymatic targets: Emerging opportunities for drug discovery. Eur. J. Med. Chem. 2021, 224, 113732. [Google Scholar] [CrossRef] [PubMed]
- Ejalonibu, M.A.; Ogundare, S.A.; Elrashedy, A.A.; Ejalonibu, M.A.; Lawal, M.M.; Mhlongo, N.N.; Kumalo, H.M. Drug Discovery for Mycobacterium tuberculosis Using Structure-Based Computer-Aided Drug Design Approach. Int. J. Mol. Sci. 2021, 22, 13259. [Google Scholar] [CrossRef] [PubMed]
- Motamen, S.; Quinn, R.J. Analysis of Approaches to Anti-tuberculosis Compounds. ACS Omega 2020, 5, 28529–28540. [Google Scholar] [CrossRef] [PubMed]
- Buroni, S.; Chiarelli, L.R. Antivirulence compounds: A future direction to overcome antibiotic resistance? Future Microbiol. 2020, 15, 299–301. [Google Scholar] [CrossRef]
- Chiarelli, L.R.; Mori, M.; Barlocco, D.; Beretta, G.; Gelain, A.; Pini, E.; Porcino, M.; Mori, G.; Stelitano, G.; Costantino, L.; et al. Discovery and Development of Novel Salicylate Synthase (MbtI) Furanic Inhibitors as Antitubercular Agents. Eur. J. Med. Chem. 2018, 155, 754–763. [Google Scholar] [CrossRef]
- Chao, A.; Sieminski, P.J.; Owens, C.P.; Goulding, C.W. Iron Acquisition in Mycobacterium tuberculosis. Chem. Rev. 2019, 119, 1193–1220. [Google Scholar] [CrossRef]
- Shyam, M.; Shilkar, D.; Rakshit, G.; Jayaprakash, V. Approaches for targeting the mycobactin biosynthesis pathway for novel anti-tubercular drug discovery: Where we stand. Expert Opin. Drug Discov. 2022, 17, 699–715. [Google Scholar] [CrossRef]
- Chiarelli, L.R.; Mori, M.; Beretta, G.; Gelain, A.; Pini, E.; Sammartino, J.C.; Stelitano, G.; Barlocco, D.; Costantino, L.; Lapillo, M.; et al. New Insight into Structure-Activity of Furan-based Salicylate Synthase (MbtI) Inhibitors as Potential Antitubercular Agents. J. Enzyme Inhib. Med. Chem. 2019, 34, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Mori, M.; Stelitano, G.; Gelain, A.; Pini, E.; Chiarelli, L.R.; Sammartino, J.C.; Poli, G.; Tuccinardi, T.; Beretta, G.; Porta, A.; et al. Shedding X-ray Light on the Role of Magnesium in the Activity of M. tuberculosis Salicylate Synthase (MbtI) for Drug Design. J. Med. Chem. 2020, 63, 7066–7080. [Google Scholar] [CrossRef]
- Mori, M.; Stelitano, G.; Chiarelli, L.R.; Cazzaniga, G.; Gelain, A.; Barlocco, D.; Pini, E.; Meneghetti, F.; Villa, S. Synthesis, Characterization, and Biological Evaluation of New Derivatives Targeting MbtI as Antitubercular Agents. Pharmaceuticals 2021, 14, 155. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Stelitano, G.; Griego, A.; Chiarelli, L.R.; Cazzaniga, G.; Gelain, A.; Pini, E.; Camera, M.; Canzano, P.; Fumagalli, A.; et al. Synthesis and Assessment of the In Vitro and Ex Vivo Activity of Salicylate Synthase (Mbti) Inhibitors as New Candidates for the Treatment of Mycobacterial Infections. Pharmaceuticals 2022, 15, 992. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Singla, L.; Yadav, H.R.; Choudhury, A.R. Evaluation of fluorine-mediated intermolecular interactions in tetrafluorinated tetra-hydro-iso-quinoline derivatives: Synthesis and computational studies. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2020, 76, 604–617. [Google Scholar] [CrossRef] [PubMed]
- Urner, L.M.; Young Lee, G.; Treacy, J.W.; Turlik, A.; Khan, S.I.; Houk, K.N.; Jung, M.E. Intramolecular N−H⋅⋅⋅F Hydrogen Bonding Interaction in a Series of 4-Anilino-5-Fluoroquinazolines: Experimental and Theoretical Characterization of Electronic and Conformational Effects. Chem.—Eur. J. 2022, 28, e202103135. [Google Scholar] [CrossRef]
- Cazzaniga, G.; Mori, M.; Meneghetti, F.; Chiarelli, L.R.; Stelitano, G.; Caligiuri, I.; Rizzolio, F.; Ciceri, S.; Poli, G.; Staver, D.; et al. Virtual screening and crystallographic studies reveal an unexpected γ-lactone derivative active against MptpB as a potential antitubercular agent. Eur. J. Med. Chem. 2022, 234, 114235. [Google Scholar] [CrossRef] [PubMed]
- Jelsch, C.; Ejsmont, K.; Huder, L. The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ 2014, 1, 119–128. [Google Scholar] [CrossRef]
- Jiang, S.; He, M.; Xiang, X.W.; Adnan, M.; Cui, Z.N. Novel S-Thiazol-2-yl-furan-2-carbothioate Derivatives as Potential T3SS Inhibitors against Xanthomonas oryzae on Rice. J. Agric. Food Chem. 2019, 67, 11867–11876. [Google Scholar] [CrossRef]
- Chen, J.; Reibenspies, J.; Derecskei-Kovacs, A.; Burgess, K. Through-space 13 C– 19 F coupling can reveal conformations of modified BODIPY dyes. Chem. Commun. 1999, 2501–2502. [Google Scholar] [CrossRef]
- Stewart, J.J.P. MOPAC2016; Stewart Computational Chemistry: Colorado Springs, CO, USA, 2016. [Google Scholar]
- Burla, M.C.; Caliandro, R.; Carrozzini, B.; Cascarano, G.L.; Cuocci, C.; Giacovazzo, C.; Mallamo, M.; Mazzone, A.; Polidori, G. Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr. 2015, 48, 306–309. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardelli, M. PARST 95—An update to PARST: A system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses. J. Appl. Crystallogr. 1995, 28, 659. [Google Scholar] [CrossRef]
- Bruno, I.J.; Cole, J.C.; Kessler, M.; Luo, J.; Motherwell, W.D.S.; Purkis, L.H.; Smith, B.R.; Taylor, R.; Cooper, R.I.; Harris, S.E.; et al. Retrieval of Crystallographically-Derived Molecular Geometry Information. J. Chem. Inf. Comput. Sci. 2004, 44, 2133–2144. [Google Scholar] [CrossRef] [PubMed]
- MacRae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
H-Bond | D-H/Å | H∙∙∙A/Å | D∙∙∙A/Å | D-H∙∙∙A/° |
---|---|---|---|---|
C2-H2···O2 I | 0.930(2) | 2.622(1) | 3.280(2) | 128.27(9) |
C9-H9···O5 II | 0.930(1) | 2.559(1) | 3.394(2) | 149.57(10) |
C3-H3···O3 III | 0.930(2) | 2.570(1) | 3.496(2) | 173.53(10) |
1 | V (Å3) | A (Å2) | G | Ω |
---|---|---|---|---|
HS | 279.75 | 275.54 | 0.751 | 0.372 |
Atoms | H | C | N | O | F |
---|---|---|---|---|---|
Surface (%) | 47.0 | 18.2 | 1.5 | 27.0 | 6.4 |
Contacts (%) | |||||
H | 20.3 | ||||
C | 9.1 | 8.9 | |||
N | 0 | 1.6 | 0 | ||
O | 38.9 | 7.4 | 0.1 | 0.9 | |
F | 5.3 | 0.4 | 1.3 | 5.8 | 0 |
Enrichments | |||||
H | 0.9 | ||||
C | 0.5 | 2.7 | |||
N | 0 | − | − | ||
O | 1.5 | 0.8 | − | 0.1 | |
F | 0.9 | 0.2 | − | 1.7 | − |
Parameter | Data | |
---|---|---|
Identification code | 1 | |
Empirical formula | C12H8FNO5 | |
Formula weight | 265.19 | |
Temperature | 293(2) K | |
Wavelength | 0.71073 Å | |
Crystal system | Monoclinic | |
Space group | P21/c | |
Unit cell dimensions | a = 9.6920(10) Å | α = 90° |
b = 10.324(2) Å | β = 97.521(12)° | |
c = 11.5182(18) Å | γ = 90° | |
Volume | 1142.6(3) Å3 | |
Z | 4 | |
Density (calculated) | 1.542 Mg/m3 | |
Absorption coefficient | 0.132 mm−1 | |
F(000) | 544 | |
Crystal size | 0.65 × 0.50 × 0.43 mm3 | |
θ range for data collection | 2.120 to 30.008° | |
Index ranges | −13 ≤ h ≤ 13, 0 ≤ k ≤ 14, 0 ≤ l ≤ 16 | |
Reflections collected | 3555 | |
Independent reflections | 3333 [R(int) = 0.0064] | |
Completeness to θ = 25.242° | 100.0% | |
Refinement method | Full-matrix least-squares on F2 | |
Data/restraints/parameters | 3333/0/172 | |
Goodness-of-fit on F2 | 1.077 | |
Final R indices [I > 2σ(I)] | R1 = 0.0488, wR2 = 0.1221 | |
R indices (all data) | R1 = 0.0568, wR2 = 0.1327 | |
Largest diff. peak and hole | 0.196 and −0.192 eÅ−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, M.; Tresoldi, A.; Cazzaniga, G.; Meneghetti, F.; Villa, S. Methyl 5-(2-Fluoro-4-nitrophenyl)furan-2-carboxylate. Molbank 2022, 2022, M1492. https://doi.org/10.3390/M1492
Mori M, Tresoldi A, Cazzaniga G, Meneghetti F, Villa S. Methyl 5-(2-Fluoro-4-nitrophenyl)furan-2-carboxylate. Molbank. 2022; 2022(4):M1492. https://doi.org/10.3390/M1492
Chicago/Turabian StyleMori, Matteo, Andrea Tresoldi, Giulia Cazzaniga, Fiorella Meneghetti, and Stefania Villa. 2022. "Methyl 5-(2-Fluoro-4-nitrophenyl)furan-2-carboxylate" Molbank 2022, no. 4: M1492. https://doi.org/10.3390/M1492
APA StyleMori, M., Tresoldi, A., Cazzaniga, G., Meneghetti, F., & Villa, S. (2022). Methyl 5-(2-Fluoro-4-nitrophenyl)furan-2-carboxylate. Molbank, 2022(4), M1492. https://doi.org/10.3390/M1492