Synthesis and Inhibition of Influenza H1N1 Virus by Indolo-Glycyrrhetic Acid Cyanoesters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Assay
3. Materials and Methods
3.1. General Method for Synthesis of Compounds 2 and 3
3.1.1. Cyanomethyl Ester 2,3-Indolo-olean-11-oxo-12(13)-en-30-oat (2)
3.1.2. 3-Cyanopropyl Ester Ester 2,3-Indolo-olean-11-oxo-12(13)-en-30-oat (3)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lackenby, A.; Hungnes, O.; Dudman, S.G.; Meijer, A.; Paget, W.J.; Hay, A.J.; Zambon, M.C. Emergence of resistance to oseltamivir among influenza A(H1N1) viruses in Europe. Euro Surveill. 2008, 13, 8026. [Google Scholar] [CrossRef] [PubMed]
- Felicetti, T.; Massari, S. Protein-protein interactions by influenza polymerase subunits as drug targets. Future Med. Chem. 2022, 14, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Pismataro, M.C.; Felicetti, T.; Bertagnin, C.; Nizi, M.G.; Bonomini, A.; Barreca, M.L.; Cecchetti, V.; Jochmans, D.; De Jonghe, S.; Neyts, J.; et al. 1,2,4-Triazolo[1,5-a]pyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors. Eur. J. Med. Chem. 2021, 221, 113494. [Google Scholar] [CrossRef] [PubMed]
- Massari, S.; Nannetti, G.; Goracci, L.; Sancineto, L.; Muratore, G.; Sabatini, S.; Manfroni, G.; Mercorelli, B.; Cecchetti, V.; Facchini, M.; et al. Structural investigation of cycloheptathiophene-3-carboxamide derivatives targeting influenza virus polymerase assembly. J. Med. Chem. 2013, 56, 10118–10131. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Green, I.R.; Shamraiz, U.; Saleem, M.; Badshah, A.; Abbas, G.; Rehman, N.U.; Irshad, M. Therapeutic potential of glycyrrhetinic acids: A patent review (2010–2017). Expert Opin. Ther. Pat. 2018, 28, 383–398. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, E.A.H.; Peng, Y.; Wang, Z.; Qiang, X.; Zhao, Q. Synthesis, antiviral, and antibacterial activity of the glycyrrhizic acid and glycyrrhetinic acid derivatives. Russ. J. Bioorg. Chem. 2022, 48, 906–918. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sheng, R.; Fan, J.; Guo, R. A Mini-review on structure-activity relationships of glycyrrhetinic acid derivatives with diverse bioactivities. Mini Rev. Med. Chem. 2022, 22, 2024–2066. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.X.; Wang, P.R.; Chen, F.; Qian, X.J.; Jia, L.; Liu, X.J.; Li, L.; Jin, Y.S. Synthesis and anti-HCV activities of 18β-glycyrrhetinic acid derivatives and their in-silico ADMET analysis. Curr. Comput. Aided Drug Des. 2021, 17, 831–837. [Google Scholar] [CrossRef] [PubMed]
- De-la-Cruz-Martínez, L.; Duran-Becerra, C.; González-Andrade, M.; Páez-Franco, J.C.; Germán-Acacio, J.M.; Espinosa-Chávez, J.; Torres-Valencia, J.M.; Pérez-Villanueva, J.; Palacios-Espinosa, J.F.; Soria-Arteche, O.; et al. Indole- and pyrazole-glycyrrhetinic acid derivatives as PTP1B inhibitors: Synthesis, in vitro and in silico studies. Molecules 2021, 26, 4375. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, Z.; Yuan, H.; Chen, H.; Xie, N.; Wang, Z.; Sun, Q.; Zhang, W. Structure-based design of glycyrrhetinic acid derivatives as potent anti-sepsis agents targeting high-mobility group box-1. Bioorg. Chem. 2021, 106, 104461. [Google Scholar] [CrossRef] [PubMed]
- Zígolo, M.A.; Salinas, M.; Alché, L.; Baldessari, A.; Liñares, G.G. Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study. Bioorg. Chem. 2018, 78, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Baltina, L.A.; Lai, H.C.; Liu, Y.C.; Huang, S.H.; Hour, M.J.; Baltina, L.A.; Nugumanov, T.R.; Borisevich, S.S.; Khalilov, L.M.; Petrova, S.F.; et al. Glycyrrhetinic acid derivatives as Zika virus inhibitors: Synthesis and antiviral activity in vitro. Bioorg. Med. Chem. 2021, 41, 116204. [Google Scholar] [CrossRef] [PubMed]
- Markov, A.V.; Sen’kova, A.V.; Warszycki, D.; Salomatina, O.V.; Salakhutdinov, N.F.; Zenkova, M.A.; Logashenko, E.B. Soloxolone methyl inhibits influenza virus replication and reduces virus-induced lung inflammation. Sci. Rep. 2017, 7, 13968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaelis, M.; Geiler, J.; Naczk, P.; Sithisarn, P.; Leutz, A.; Doerr, H.W. Glycyrrhizin Exerts Antioxidative Effects in H5N1 Influenza A Virus-Infected Cells and Inhibits Virus Replication and Pro-Inflammatory Gene Expression. PLoS ONE 2011, 6, e19705. [Google Scholar] [CrossRef] [PubMed]
Compound | CC50, μM a | IC50, μM b | SI c |
---|---|---|---|
2 | >517 | 29 ± 3 | >18 |
3 | >493 | 23 ± 2 | >21 |
Rimantadine | 344 ± 19 | 61 ± 8 | >6 |
Oseltamivir | >200 | 0.3 ± 0.01 | >667 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrova, A.V.; Belyaevskaya, S.V.; Zarubaev, V.V. Synthesis and Inhibition of Influenza H1N1 Virus by Indolo-Glycyrrhetic Acid Cyanoesters. Molbank 2022, 2022, M1475. https://doi.org/10.3390/M1475
Petrova AV, Belyaevskaya SV, Zarubaev VV. Synthesis and Inhibition of Influenza H1N1 Virus by Indolo-Glycyrrhetic Acid Cyanoesters. Molbank. 2022; 2022(4):M1475. https://doi.org/10.3390/M1475
Chicago/Turabian StylePetrova, Anastasiya V., Svetlana V. Belyaevskaya, and Vladimir V. Zarubaev. 2022. "Synthesis and Inhibition of Influenza H1N1 Virus by Indolo-Glycyrrhetic Acid Cyanoesters" Molbank 2022, no. 4: M1475. https://doi.org/10.3390/M1475
APA StylePetrova, A. V., Belyaevskaya, S. V., & Zarubaev, V. V. (2022). Synthesis and Inhibition of Influenza H1N1 Virus by Indolo-Glycyrrhetic Acid Cyanoesters. Molbank, 2022(4), M1475. https://doi.org/10.3390/M1475