One-Pot Synthesis of Dioxime Oxalates
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Ketoximes
4.2.1. Acetophenone Oxime (1a)
4.2.2. Cyclopentanone Oxime (1b)
4.2.3. Cyclohexanone Oxime (1c)
4.2.4. 3-Phenylcyclobutan-1-one Oxime (1d)
4.2.5. 2,3-Dihydro-1H-Inden-1-one Oxime (1e)
4.3. Preparation of Dioxime Oxalates
4.3.1. O,O′-Oxalylbis(1-phenylacetophenone oxime) (2a)
4.3.2. O,O′-Oxalyldicyclopentanone Oxime (2b)
4.3.3. O,O′-Oxalyldicyclohexanone Oxime (2c)
4.3.4. O,O′-Oxalylbis(3-phenyl-3-phenylcyclobutan-1-one oxime) (2d)
4.3.5. O,O′-Oxalylbis(2,3-dihydro-1H-2,3-dihydro-1H-inden-1-one oxime) (2e)
4.4. Characterization Techniques
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Chemical Society National Historic Chemical Landmarks. Moses Gomberg and Organic Free Radicals. Available online: http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/freeradicals.html (accessed on 1 September 2022).
- Symons, M.C.R. The importance of imino radicals (R2C=N) as reaction intermediates. Tetrahedron 1973, 29, 615. [Google Scholar] [CrossRef]
- Roberts, B.P.; Winter, J.N. Electron spin resonance studies of radicals derived from organic azides. J. Chem. Soc. Perkin Trans. 1979, 2, 1353. [Google Scholar] [CrossRef]
- Griller, D.; Mendenhall, G.D.; Van Hoof, W.; Ingold, K.U. Kinetic applications of electron paramagnetic resonance spectroscopy. XV. Iminyl radicals. J. Am. Chem. Soc. 1974, 96, 6068. [Google Scholar] [CrossRef]
- Boivin, J.F.E.; Zard, S.Z. A New and Synthetically Useful Source of Iminyl Radicals. Tetrahedron Lett. 1991, 32, 4299–4302. [Google Scholar] [CrossRef]
- Boivin, J.F.E.; Zard, S.Z. Iminyl radicals: Part I. generation and intramolecular capture by an olefin. Tetrahedron 1994, 50, 1745–1756. [Google Scholar] [CrossRef]
- Xiao, T.; Huang, H.; Anandb, D.; Zhou, L. Iminyl-Radical-Triggered C-C Bond Cleavage of Cycloketone Oxime Derivatives: Generation of Distal Cyano-Substituted Alkyl Radicals and Their Functionalization. Synthesis 2020, 52, 1585–1601. [Google Scholar] [CrossRef]
- Kitamura, M.; Narasaka, K. Synthesis of Aza-Heterocycles from Oximes by Amino-Heck Reaction. Chem. Rec. 2002, 2, 268–277. [Google Scholar] [CrossRef]
- Kitamura, M.; Narasaka, K. Amination with Oximes. Eur. J. Org. Chem. 2005, 2005, 4505–4519. [Google Scholar] [CrossRef]
- Zard, S.Z. Recent progress in the generation and use of nitrogen-centred radicals. Chem. Soc. Rev. 2008, 37, 1603–1618. [Google Scholar] [CrossRef] [PubMed]
- Walton, J.C. The Oxime Portmanteau Motif: Released Heteroradicals Undergo Incisive EPR Interrogation and Deliver Diverse Heterocycles. Acc. Chem. Res. 2014, 47, 1406–1416. [Google Scholar] [CrossRef]
- Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Visible light photoredox-controlled reactions of N-radicals and radical ions. Chem. Soc. Rev. 2016, 45, 2044–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackman, M.M.; Cai, Y.; Castle, S.L. Recent Advances in Iminyl Radical Cyclizations. Synthesis 2017, 49, 1785–1795. [Google Scholar] [CrossRef]
- Li, J.; Zhang, P.; Jiang, M.; Yang, H.; Zhao, Y.; Fu, H. Visible light as a sole requirement for intramolecular C(sp3)–H imination. Org. Lett. 2017, 19, 1994–1997. [Google Scholar] [CrossRef] [PubMed]
- Strieth, F.S.; Glorius, F. Triplet Energy Transfer Photocatalysis: Unlocking the Next Level. Chem. 2020, 6, 1888–1903. [Google Scholar] [CrossRef]
- Rykaczewski, K.A.; Wearing, E.R.; Blackmun, D.E.; Schindler, C.S. Reactivity of oximes for diverse methodologies and synthetic applications. Nat. Synth. 2022, 1, 24–36. [Google Scholar] [CrossRef]
- Walton, J.C. Synthetic Strategies for 5- and 6-Membered Ring Azaheterocycles Facilitated by Iminyl Radicals. Molecules 2016, 21, 660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forrester, A.R.; Napier, R.J.; Thomson, R.H. Iminyls. Part 7. Intramolecular hydrogen abstraction; synthesis of heterocyclic analogues of α-tetralone. J. Chem. Soc. Perkin Trans. 1981, 1, 984–987. [Google Scholar] [CrossRef]
- Portela-Cubillo, F.; Scanlan, E.M.; Scott, J.S.; Walton, J.C. From dioxime oxalates to dihydropyrroles and phenanthridines viaiminyl radicals. Chem. Commun. 2008, 4189, 4189–4191. [Google Scholar] [CrossRef] [PubMed]
- Jochims, J.C.; Hehl, S.; Herzberger, S. Preparation and Beckmann Rearrangement of O-(Chlorooxalyl)oximes. Synthesis 1990, 1990, 1128–1133. [Google Scholar] [CrossRef]
- Chernykh, A.V.; Radchenko, D.S.; Chernykh, A.V.; Kondratov, I.S.; Tolmachova, N.A.; Datsenko, O.P.; Kurkunov, M.A.; Zozulya, S.X.; Kheylik, Y.P.; Bartels, K.; et al. Synthesis and Physicochemical Properties of 3-Fluorocyclobutylamines. Eur. J. Org. Chem. 2015, 2015, 6466–6471. [Google Scholar] [CrossRef]
- Ma, G.; Xu, Z.; Zhang, P.; Liu, J.; Hao, X.; Ouyang, J.; Liang, P.; You, S.; Jia, X. A Novel Synthesis of Rasagiline via a Chemoenzymatic Dynamic Kinetic Resolution. Org. Process Res. Dev. 2014, 18, 1169–1174. [Google Scholar] [CrossRef]
- Damljanović, I.; Vukićević, M.; Vukićević, D.R. A Simple Synthesis of Oximes. Monatsh. Chem. 2006, 137, 301–305. [Google Scholar] [CrossRef]
- Horáková, E.; Drabina, P.; Brůčková, L.; Štěpánková, Š.; Vorčáková, K.; Sedlák, M. Synthesis and in vitro evaluation of novel N-cycloalkylcarbamates as potential cholinesterase inhibitors. Monatsh. Chem. 2017, 148, 2143–2153. [Google Scholar] [CrossRef]
- Palatinus, L.; Chapuis, G. SUPERFLIP—A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. [Google Scholar] [CrossRef]
Entry | Oxime (1) | Dioxime Oxalate (2), Yield (%) 1 |
---|---|---|
1 | (2b), 60 | |
2 | (2c), 60 2 | |
3 | (2d), 89 | |
4 | (2e), 94 |
Crystal Data | |
---|---|
Chemical Formula | C12H16N2O4 |
Mr | 252.27 |
Crystalline system, space group | Monoclinic, I2/c |
a, b, c (Å) | 8.9695 (11), 11.2015 (11), 13.3635 (15) |
α, β, γ (°) | 90, 109.087 (13), 90 |
Volume, (Å3) | 1268.8 (3) |
ρ, kg m−3 | 1.321 |
Z | 4 |
Temperature, (K) | 298 (2) |
Radiation type | Cu Kα |
μ (mm−1) | 0.84 |
Theta range for data collection | 5.278° < 2θ < 76.337° |
Index range | −11 ≤ h ≤ 11, |
−13 ≤ k ≤ 14, | |
−15 ≤ l ≤ 16 | |
Data collection | |
Diffractometer | SuperNova, Dual, Cu at zero, Atlas |
Absorption correction | Multi-scan method CrysAlis PRO 1.171.41.119a (Rigaku Oxford Diffraction, 2021) |
Tmin, Tmax | 0.908, 1.000 |
No. of measured, independent, and observed reflections [I > 2σ(I)] | 5200, 1314, 1156 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.630 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.142, 1.09 |
No. of reflections | 1314 |
Refined parameters | 83 |
H-atoms treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adarve-Cardona, L.; Ezenarro-Salcedo, D.; Macías, M.A.; Gamba-Sánchez, D. One-Pot Synthesis of Dioxime Oxalates. Molbank 2022, 2022, M1473. https://doi.org/10.3390/M1473
Adarve-Cardona L, Ezenarro-Salcedo D, Macías MA, Gamba-Sánchez D. One-Pot Synthesis of Dioxime Oxalates. Molbank. 2022; 2022(4):M1473. https://doi.org/10.3390/M1473
Chicago/Turabian StyleAdarve-Cardona, Laura, David Ezenarro-Salcedo, Mario A. Macías, and Diego Gamba-Sánchez. 2022. "One-Pot Synthesis of Dioxime Oxalates" Molbank 2022, no. 4: M1473. https://doi.org/10.3390/M1473
APA StyleAdarve-Cardona, L., Ezenarro-Salcedo, D., Macías, M. A., & Gamba-Sánchez, D. (2022). One-Pot Synthesis of Dioxime Oxalates. Molbank, 2022(4), M1473. https://doi.org/10.3390/M1473