Bis(2-hydroxyethyl) 2-phenylsuccinate
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Nghiem, N.P.; Kleff, S.; Schwegmann, S. Succinic Acid: Technology Development and Commercialization. Fermentation 2017, 3, 26. [Google Scholar] [CrossRef]
- Saxena, R.K.; Saran, S.; Isar, J.; Kaushik, R. Production and Applications of Succinic Acid. In Current Developments in Biotechnology and Bioengineering. Production, Isolation and Purification of Industrial Products; Pandey, A., Negi, S., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 601–630. [Google Scholar]
- Heng, K.Y.; Kei, T.Y.; Kochhar, J.S.; Li, H.; Poh, A.-L.; Kang, L. Handbook of Cosmeceutical Excipients and Their Safeties; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Erythropel, H.C.; Dodd, P.; Leask, R.; Maric, M.; Cooper, D.G. Designing green plasticizers: Influence of alkyl chain length on biodegradation and plasticization properties of succinate based plasticizers. Chemosphere 2013, 91, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Jamarani, R.; Erythropel, H.C.; Burkat, D.; Nicell, J.A.; Leask, R.L.; Maric, M. Rheology of Green Plasticizer/Poly(vinyl chloride) Blends via Time–Temperature Superposition. Processes 2017, 5, 43. [Google Scholar] [CrossRef]
- Stuart, A.; LeCaptain, D.J.; Lee, C.Y.; Mohanty, D.K. Poly(vinyl chloride) plasticized with mixtures of succinate di-esters—synthesis and characterization. Eur. Polym. J. 2013, 49, 2785–2791. [Google Scholar] [CrossRef]
- Hevus, I.; Pikh, Z. Novel Surface-Active Succinate Monomers and Initiators for Obtaining Reactive Polymers. Macromol. Symp. 2007, 254, 103–108. [Google Scholar] [CrossRef]
- Jiang, Y.; Woortman, A.J.J.; van Ekenstein, G.O.R.A.; Loos, K. Enzyme-Catalyzed Synthesis of Unsaturated Aliphatic Polyesters Based on Green Monomers from Renewable Resources. Biomolecules 2013, 3, 461–480. [Google Scholar] [CrossRef]
- Carnahan, M.A.; Grinstaff, M.W. Synthesis and Characterization of Poly(glycerol-succinic acid) Dendrimers. Macromolecules 2001, 34, 7648–7655. [Google Scholar] [CrossRef]
- Cukalovic, A.; Stevens, C.V. Feasibility of production methods for succinic acid derivatives: A marriage of renewable resources and chemical technology. Biofuels Bioprod. Bioref. 2008, 2, 505–529. [Google Scholar] [CrossRef]
- Godard, C.; Muñoz, B.K.; Ruiz, A.; Claver, C. Pd-catalysed asymmetric mono- and bis-alkoxycarbonylation of vinylarenes. Dalton Trans. 2008, 853–860. [Google Scholar] [CrossRef]
- Wu, X.-F.; Neumann, H.; Beller, M. Palladium-Catalyzed Oxidative Carbonylation Reactions. ChemSusChem 2013, 6, 229–241. [Google Scholar] [CrossRef]
- Fini, F.; Beltrani, M.; Mancuso, R.; Gabriele, B.; Carfagna, C. Selective Aryl a-Diimine/Palladium-Catalyzed Bis-Alkoxycarbonylation of Olefins for the Synthesis of Substituted Succinic Diesters. Adv. Synth. Catal. 2015, 357, 177–184. [Google Scholar] [CrossRef]
- Olivieri, D.; Fini, F.; Mazzoni, R.; Zacchini, S.; Della Ca’, N.; Spadoni, G.; Gabriele, B.; Mancuso, R.; Zanotti, V.; Carfagna, C. Diastereospecific Bis-Alkoxycarbonylation of 1,2-disubstituted Olefins Catalyzed by Aryl α-Diimine Palladium(II) Catalysts. Adv. Synth. Catal. 2018, 360, 3507–3517. [Google Scholar] [CrossRef]
- Olivieri, D.; Tarroni, R.; Della Ca’, N.; Mancuso, R.; Gabriele, B.; Spadoni, G.; Carfagna, C. Bis-Alkoxycarbonylation of Acrylic Esters and Amides for the Synthesis of 2-Alkoxycarbonyl or 2-Carbamoyl Succinates. Adv. Synth. Catal. 2020, 362, 533–544. [Google Scholar] [CrossRef]
- Olivieri, D.; Tarroni, R.; Della Ca’, N.; Mancuso, R.; Gabriele, B.; Spadoni, G.; Carfagna, C. Combined Effect of Palladium Catalyst and the Alcohol to Promote the Uncommon Bis-Alkoxycarbonylation of Allylic Substrates. ChemCatChem 2022, 14, e202101923. [Google Scholar] [CrossRef]
- Carfagna, C.; Gatti, G.; Paoli, P.; Binotti, B.; Fini, F.; Passeri, A.; Rossi, P.; Gabriele, B. New Aryl α-Diimine Palladium(II) Catalysts in Stereocontrolled CO/Vinyl Arene Copolymerization. Organometallics 2014, 33, 129–144. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. WIREs. Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Accounts 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivieri, D.; Tarroni, R.; Carfagna, C. Bis(2-hydroxyethyl) 2-phenylsuccinate. Molbank 2022, 2022, M1456. https://doi.org/10.3390/M1456
Olivieri D, Tarroni R, Carfagna C. Bis(2-hydroxyethyl) 2-phenylsuccinate. Molbank. 2022; 2022(4):M1456. https://doi.org/10.3390/M1456
Chicago/Turabian StyleOlivieri, Diego, Riccardo Tarroni, and Carla Carfagna. 2022. "Bis(2-hydroxyethyl) 2-phenylsuccinate" Molbank 2022, no. 4: M1456. https://doi.org/10.3390/M1456
APA StyleOlivieri, D., Tarroni, R., & Carfagna, C. (2022). Bis(2-hydroxyethyl) 2-phenylsuccinate. Molbank, 2022(4), M1456. https://doi.org/10.3390/M1456