1,2-Bis(4-(1,3-dioxolan-2-yl)phenyl)diazene Oxide
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. 1,2-Bis(4-(1,3-dioxolan-2-yl)phenyl)diazene Oxide (4)
3.2. 1,2-Bis(4-formylphenyl)diazenoxide (5)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, P.; Narayan Biswas, A.; Choudhury, A.; Bandyopadhyay, P.; Haldar, S.; Mandal, P.K.; Upreti, S. Novel synthetic route to liquid crystalline 4,4′-bis(n-alkoxy) azoxybenzenes: Spectral characterisation, mesogenicbehaviour and crystal structure of two new members. Liq. Cryst. 2008, 35, 541–548. [Google Scholar] [CrossRef]
- Folcia, C.L.; Alonso, I.; Ortega, J.; Etxebarria, J.; Pintre, I.; Ros, M.B. Achiral bent-core liquid crystals with azo and azoxy linkages: Structural and nonlinear optical properties and photoisomerization. Chem. Mater. 2006, 18, 4617–4626. [Google Scholar] [CrossRef]
- Wibowo, M.; Ding, L. Chemistry and biology of natural azoxy compounds. J. Nat. Prod. 2020, 83, 3482–3491. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-Y.; Li, H.; Zhou, Z.-X.; Mao, X.-M.; Tang, Y.; Chen, X.; Jiang, X.-H.; Liu, Y.; Jiang, H.; Li, Y.-Q. Identification and biosynthetic characterization of natural aromatic azoxy products from Streptomyces Chattanoogensis L10. Org. Lett. 2015, 17, 6114–6117. [Google Scholar] [CrossRef] [PubMed]
- Claydon, N.; Grove, J.F. Metabolic products of Entomophthora Virulenta. J. Chem. Soc. Perkin Trans. 1 1978, 171–173. [Google Scholar] [CrossRef]
- Kotova, V.A.; Rubanova, E.V.; Jatsynin, V.G. Winter Wheat and Barley Roots Stimulant Fertilizer. RU Patent 2,368,140, 7 April 2008. [Google Scholar]
- Wang, J.; Daiguebonne, C.; Suffren, Y.; Roisnel, T.; Freslon, S.; Calvez, G.; Bernot, K.; Guillou, O. A new family of lanthanide-based coordination polymers with azoxybenzene-3,3′,5,5′-tetracarboxylic acid as ligand. Inorg. Chim. Acta. 2019, 488, 208–213. [Google Scholar] [CrossRef]
- Gavrilova, A.O.; Potemkina, O.V.; Kuvshinova, S.A.; Kuznetsov, V.B.; Koifman, O.I. Anisotropic organic azo-and azoxybenzenes exhibiting the properties of light and heat stabilisers of polyvinyl chloride. Int. Polym. Sci. Technol. 2014, 41, 41–42. [Google Scholar] [CrossRef]
- Ichiro, S.; Shigeru, O. The Wallach rearrangement of some 4,4′-disubstituted azoxybenzenes. Bull. Chem. Soc. Jpn. 1983, 56, 643–644. [Google Scholar] [CrossRef]
- Szarmach, M.; Wagner-Wysiecka, E.; Luboch, E. Rearrangement of azoxybenzocrowns into chromophoric hydroxyazobenzocrowns and the use of hydroxyazobenzocrowns for the synthesis of ionophoric biscrown compounds. Tetrahedron 2013, 69, 10893–10905. [Google Scholar] [CrossRef]
- Long, Z.; Wang, Z.; Zhou, D.; Wan, D.; You, J. Rh(III)-catalyzed regio- and chemoselective [4 + 1]-annulation of azoxy compounds with diazoesters for the synthesis of 2H-indazoles: Roles of the azoxy oxygen atom. Org. Lett. 2017, 19, 2777–2780. [Google Scholar] [CrossRef]
- Han, S.; Cheng, Y.; Liu, S.; Tao, C.; Wang, A.; Wei, W.; Yu, H.; Wei, Y. Selective oxidation of anilines to azobenzenes and azoxybenzenes by a molecular Mo oxide catalyst. Angew. Chem. Int. Ed. 2021, 60, 6382–6385. [Google Scholar] [CrossRef]
- Singh, B.; Mandelli, D.; Pescarmona, P.P. Efficient and selective oxidation of aromatic amines to azoxy derivatives over aluminium and gallium oxide catalysts with nanorod morphology. Chem. Cat. Chem. 2020, 12, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Badger, G.M.; Buttery, R.G.; Lewis, G.E. Aromatic azo-compounds. Part I. Oxidation of cis- and trans-azobenzene. J. Chem. Soc. (Resumed) 1953, 2143–2147. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Chen, J.; Lin, L.-J.; Chuang, G.J. Synthesis of azoxybenzenes by reductive dimerization of nitrosobenzene. J. Org. Chem. 2017, 82, 11626–11630. [Google Scholar] [CrossRef] [PubMed]
- Bigelow, H.E.; Palmer, A. Azoxybenzene. Org. Synth. 1943, 2, 57. [Google Scholar] [CrossRef]
- Suter, C.M.; Dains, F.B. The redaction of aromatic nitro compounds with sodium alcoholates. J. Am. Chem. Soc. 1928, 50, 2733–2739. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, B.; Guo, A.; Dong, Z.; Jin, S.; Lu, Y. Reduction of nitroarenes to azoxybenzenes by potassium borohydride in water. Molecules 2011, 16, 3563–3568. [Google Scholar] [CrossRef]
- Ren, P.D.; Pan, S.F.; Dong, T.W.; Wu, S.H. Catalytic reduction of nitroarenes to azoxybenzenes with sodium borohydride in the presence of bismuth. Synth. Commun. 1996, 26, 3903–3908. [Google Scholar] [CrossRef]
- Weill, C.E.; Panson, G.S. The reduction of nitrobenzene to azoxybenzene by sodium borohydride. J. Org. Chem. 1956, 21, 803. [Google Scholar] [CrossRef]
- Borah, H.N.; Dipak Prajapati, D.; Sandhu, J.S.; Ghosh, A.C. Bismuth(III) chloride-zinc promoted selective reduction of aromatic nitro compounds to azoxy compounds. Tetrahedron Lett. 1994, 35, 3167–3170. [Google Scholar] [CrossRef]
- Khan, F.A.; Sudheer, C.H. Oxygen as moderator in the zinc-mediated reduction of aromatic nitro to azoxy compounds. Tetrahedron Lett. 2009, 50, 3394–3396. [Google Scholar] [CrossRef]
- Naveenkumar, A.; Kuruva, P.; Shivakumara, C.; Srilakshmi, C. Mixture of Fuels Approach for the Synthesis of SrFeO3−δ Nanocatalyst and Its Impact on the Catalytic Reduction of Nitrobenzene. Inorg. Chem. 2014, 53, 12178–12185. [Google Scholar] [CrossRef]
- Shukla, A.; Singha, R.K.; Sasaki, T.; Adak, S.; Bhandari, S.; Prasad, V.V.D.N.; Bordoloi, A.; Bal, R. Room temperature selective reduction of nitroarenes to azoxy compounds over Ni-TiO2 catalyst. Mol. Catal. 2020, 490, 110943. [Google Scholar] [CrossRef]
- Shine, H.J.; Mallory, H.E. The reduction of aromatic nitro compounds by potassium borohydride. J. Org. Chem. 1962, 27, 2390–2391. [Google Scholar] [CrossRef]
- Ohe, K.; Takahashi, H.; Uemura, S.; Sugita, N. Sodium benzenetellurolate-catalysed selective reduction of aromatic nitro compounds to azoxy compounds. J. Chem. Soc., Chem. Commun. 1988, 9, 591–592. [Google Scholar] [CrossRef]
- Lakshminarayana, B.; Manna, A.K.; Satyanarayana, G.; Subrahmanyam, C. Palladium nanoparticles on silica nanospheres for switchable reductive coupling of nitroarenes. Catal. Lett. 2020, 150, 2309–2321. [Google Scholar] [CrossRef]
- Bhosale, S.M.; Momin, A.A.; Kunjir, S.; Rajamohanan, P.R.; Kusurkar, R.S. Unexpected observations during the total synthesis of calothrixin B-sodium methoxide as a source of hydride. Tetrahedron Lett. 2014, 55, 155–162. [Google Scholar] [CrossRef]
- Galbraith, H.W.; Degering, E.F.; Hitch, E.F. The alkaline reduction of aromatic nitro compounds with glucose. J. Am. Chem. Soc. 1951, 73, 1323–1324. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, U.; Sharma, S.; Kumar, V.; Singh, B.; Kumar, N. Catalyst-free water mediated reduction of nitroarenes using glucose as a hydrogen source. RSC Adv. 2013, 3, 4894–4898. [Google Scholar] [CrossRef]
- Gardner, H.C.; Kennedy, A.R.; McCarney, K.M.; Staunton, E.; Stewart, H.; Teat, S.J. Structures of five salt forms of disulfonated monoazo dyes. Acta Cryst. C Struct. Chem. 2020, 76, 972–981. [Google Scholar] [CrossRef]
- Masciello, L.; Potvin, P.G. One-pot synthesis of terpyridines and macrocyclization to C3-symmetric cyclosexipyridines. Can. J. Chem. 2003, 81, 209–218. [Google Scholar] [CrossRef]
- Frlan, R.; Kovač, A.; Blanot, D.; Gobec, S.; Pečar, S.; Obreza, A. Design and synthesis of novel N-benzylidenesulfonohydrazide inhibitors of MurC and MurD as potential antibacterial agents. Molecules 2008, 13, 11–30. [Google Scholar] [CrossRef]
- Wuts, P.G.M. Greene’s Protective Groups in Organic Synthesis, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 1–1360. [Google Scholar] [CrossRef]
- Boduszek, B.; Halama, A. Nitrobenzyl (α-amino)phosphonates. part 2[1]. Cleavage of 4-nitrobenzyl(α-amino)phosphonic acids in aqueous sodium hydroxide solution. Phosphorus Sulfur Silicon Relat. Elem. 1998, 141, 239–250. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spesivaya, E.S.; Lupanova, I.A.; Konshina, D.N.; Konshin, V.V. 1,2-Bis(4-(1,3-dioxolan-2-yl)phenyl)diazene Oxide. Molbank 2021, 2021, M1224. https://doi.org/10.3390/M1224
Spesivaya ES, Lupanova IA, Konshina DN, Konshin VV. 1,2-Bis(4-(1,3-dioxolan-2-yl)phenyl)diazene Oxide. Molbank. 2021; 2021(2):M1224. https://doi.org/10.3390/M1224
Chicago/Turabian StyleSpesivaya, Ekaterina S., Ida A. Lupanova, Dzhamilya N. Konshina, and Valery V. Konshin. 2021. "1,2-Bis(4-(1,3-dioxolan-2-yl)phenyl)diazene Oxide" Molbank 2021, no. 2: M1224. https://doi.org/10.3390/M1224
APA StyleSpesivaya, E. S., Lupanova, I. A., Konshina, D. N., & Konshin, V. V. (2021). 1,2-Bis(4-(1,3-dioxolan-2-yl)phenyl)diazene Oxide. Molbank, 2021(2), M1224. https://doi.org/10.3390/M1224