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1. Introduction

Azoxybenzenes are widely used as liquid crystals [1,2], natural and synthetic com-
pounds with various biological activities (insecticidal activity, plant growth stimulators) [3–6]
(Figure 1), ligands for preparing coordination polymers [7], and polyvinyl chloride stabiliz-
ers [8]. The reactivity of the azoxy group allows them to be used as building blocks in fine
organic synthesis [9–11].
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Figure 1. Examples of liquid crystalline and bioactive natural and synthetic azoxybenzenes.

The main methods for synthesizing azoxybenzenes are the oxidation of aromatic
amines [12,13] and azo compounds [14], and the reduction of nitroso compounds [15].
The reduction of nitro compounds is the most widely used method. The classic ver-
sion uses sodium arsenite [16], sodium alkoxides [17], alkali metal borohydrides [18–20],
Zn-BiCl3 [21], and Zn/NH4Cl in a mixture with 1-butyl-3-methylimidazolium tetrafluo-
roborate ([bmim][BF4]) and water [22], or selective catalytic hydrogenation [23,24]. This
method cannot be employed for substrates containing other functional groups that are
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sensitive to reduction. For instance, when reducing nitroaromatic aldehydes or ketones,
the carbonyl group is simultaneously reduced [25–28]. In addition, the reaction is often ac-
companied by the formation of significant amounts of azo compounds, which complicates
the isolation of pure azoxy compounds. In this case, azoxybenzenes with carbonyl groups
can be used as starting compounds for the synthesis of analogs of natural and synthetic
azoxymycins and other practically useful compounds, such as cyclic acetal prepared from
1,2-bis(4-formylphenyl)diazenoxide and ethylene glycol, which are able to stimulate the
growth of grain crops [6].

We are interested in synthesizing 1,2-bis(4-(1,3-dioxolan-2-yl)phenyl)diazene oxide
by reducing 2-(4-nitrophenyl)-1,3-dioxolane, using glucose as an eco-friendly reductant
in alkaline medium. The reduction of nitro compounds under the action of glucose has
been previously described [29]; however, despite its simplicity, the method is not widely
used. In addition, in some cases, depending on the conditions of the reduction, the reaction
products can be both aromatic amines [30] and azo compounds [31]. The reduction of
2-(4-nitrophenyl)-1,3-dioxolane under Li[AlH4] is accompanied by the formation of azo
compounds [32].

2. Results and Discussion

To begin, 2-(4-nitrophenyl)-1,3-dioxolane 3 was synthesized from commercial 4-
nitrobenzaldehyde 1 via acetalization with ethylene glycol 2 in a toluene medium
(Scheme 1) [33]. Its physical constants and spectral data are in agreement with the lit-
erature data. [33].

Molbank 2021, 2021, x FOR PEER REVIEW 2 of 6 
 

[21], and Zn/NH4Cl in a mixture with 1-butyl-3-methylimidazolium tetrafluoroborate 
([bmim][BF4]) and water [22], or selective catalytic hydrogenation [23,24]. This method 
cannot be employed for substrates containing other functional groups that are sensitive to 
reduction. For instance, when reducing nitroaromatic aldehydes or ketones, the carbonyl 
group is simultaneously reduced [25–28]. In addition, the reaction is often accompanied 
by the formation of significant amounts of azo compounds, which complicates the isola-
tion of pure azoxy compounds. In this case, azoxybenzenes with carbonyl groups can be 
used as starting compounds for the synthesis of analogs of natural and synthetic 
azoxymycins and other practically useful compounds, such as cyclic acetal prepared from 
1,2-bis(4-formylphenyl)diazenoxide and ethylene glycol, which are able to stimulate the 
growth of grain crops [6]. 

We are interested in synthesizing 1,2-bis(4-(1,3-dioxolan-2-yl)phenyl)diazene oxide 
by reducing 2-(4-nitrophenyl)-1,3-dioxolane, using glucose as an eco-friendly reductant 
in alkaline medium. The reduction of nitro compounds under the action of glucose has 
been previously described [29]; however, despite its simplicity, the method is not widely 
used. In addition, in some cases, depending on the conditions of the reduction, the reac-
tion products can be both aromatic amines [30] and azo compounds [31]. The reduction 
of 2-(4-nitrophenyl)-1,3-dioxolane under Li[AlH4] is accompanied by the formation of azo 
compounds [32]. 

2. Results and Discussion 
To begin, 2-(4-nitrophenyl)-1,3-dioxolane 3 was synthesized from commercial 4-ni-

trobenzaldehyde 1 via acetalization with ethylene glycol 2 in a toluene medium (Scheme 
1) [33]. Its physical constants and spectral data are in agreement with the literature data. 
[33]. 

 
Scheme 1. Synthesis of dioxolane 3. 

The reduction of 2-(4-nitrophenyl)-1,3-dioxolane 3 was carried out by mixing it with 
ethanol in a 30% NaOH solution at 50 °C, along with a solution of 200 mol% glucose. 
Monitoring of the reaction by analytical thin-layer chromatography (TLC) showed that 
complete conversion is achieved after 2 h of stirring the reaction mixture at 50 °C (Scheme 
2). 

 
Scheme 2. Synthesis of azoxybenzene 4 from 2-(4-nitrophenyl)-1,3-dioxolane 3. 

We found that conducting experiments in a water–ethanol medium is optimal for 
carrying out the reduction, since it provides the highest yield of the desired product 4 and 
minimizes undesirable reactions and the resinification of the reaction mixture. Exchange 
of ethanol for iso-propanol or tetrahydrofuran leads to the partial destruction of the start-
ing compound 3; it thus incompletely converts, and the yield of the desired product is 

Scheme 1. Synthesis of dioxolane 3.

The reduction of 2-(4-nitrophenyl)-1,3-dioxolane 3 was carried out by mixing it with
ethanol in a 30% NaOH solution at 50 ◦C, along with a solution of 200 mol% glucose. Moni-
toring of the reaction by analytical thin-layer chromatography (TLC) showed that complete
conversion is achieved after 2 h of stirring the reaction mixture at 50 ◦C (Scheme 2).
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Scheme 2. Synthesis of azoxybenzene 4 from 2-(4-nitrophenyl)-1,3-dioxolane 3.

We found that conducting experiments in a water–ethanol medium is optimal for
carrying out the reduction, since it provides the highest yield of the desired product 4 and
minimizes undesirable reactions and the resinification of the reaction mixture. Exchange of
ethanol for iso-propanol or tetrahydrofuran leads to the partial destruction of the starting
compound 3; it thus incompletely converts, and the yield of the desired product is sharply
reduced. When the reaction is carried out at the boiling point, the target compound
is contaminated with resinous impurities that are difficult to separate. For complete
conversion of the starting compound at room temperature, a time of more than 36 h is
necessary; therefore, the reaction was carried out at 50 ◦C.

The target azoxybenzene 4 was purified by recrystallization from ethanol.
The structure of 1,2-bis(4-(1,3-dioxolan-2-yl)phenyl)diazene oxide 4 was unambigu-

ously confirmed by single-crystal X-ray analysis (Figure 2).
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Deprotection of 1,3-dioxolane 4 was carried out with concentrated hydrochloric acid
on a solution of 4 in tetrahydrofuran (THF) at room temperature (Scheme 3) [34]. The yield
of bis-aldehyde 5 was 80% after recrystallization. Its structure was confirmed by 1H and
13C NMR and mass spectrometry.
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Scheme 3. Deprotection of 1,3-dioxolane 4 resulting in bis-aldehyde 5.

In summary, using glucose as an eco-friendly reagent allows for the selective reduction
of 2-(4-nitrophenyl)-1,3-dioxolane 3 to the azoxy compound 4 with a high yield.

3. Materials and Methods

The reactions were monitored by thin-layer chromatography (Sorbfil, Imid Ltd.,
Krasnodar, Russia). The 1H-NMR and 13C-NMR spectra were acquired on ECA400 (JEOL)
(400 and 100 MHz, respectively) spectrometers in CDCl3 or (CD3)2SO at room temper-
ature (Figures S1–S6). The chemical shifts δ were measured in ppm with reference to
the residual solvent resonances (1H: CDCl3, δ = 7.25 ppm; 13C: CDCl3, δ = 77.2 ppm;
1H: (CD3)2SO, δ = 2.49 ppm; 13C: (CD3)2SO, δ = 39.5 ppm). The splitting patterns are
referred to as s, singlet; d, doublet; t, triplet; m, multiplet. Coupling constants (J) are
given in hertz. IR spectra were recorded on an IR Prestige (Shimadzu, Kyoto, Japan),
using tablets of samples with KBr. High-resolution and accurate mass measurements
were carried out using a Bruker MaXis Impact (electrospray ionization/time of flight).
Mass spectra were recorded on a GCMS−QP2010 Plus (Shimadzu) via electron ionization
(70 eV, ionization chamber temperature 250 ◦C). The melting points were determined on a
Stuart SMP30 apparatus and left uncorrected. The commercial reagents employed in the
synthesis were 4-Nitrobenzaldehyde (for synthesis, ≥98.0%, Aldrich, St. Louis, MO, USA),
Ethylene glycol (99%, ABCR), and D-(+)-Glucose monohydrate (≥99.0%, Aldrich). CCDC
2,080,783 contains the supplementary crystallographic data for this paper. These data can
be obtained free of charge at http://www.ccdc.cam.ac.uk/or (accessed date 28 April 2021)
from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223-336033; E-mail:
deposit@ccdc.cam.ac.uk.

3.1. 1,2-Bis(4-(1,3-dioxolan-2-yl)phenyl)diazene Oxide (4)

To 6 mL of ethanol, 7.5 mL of a 30% aqueous solution of sodium hydroxide and 0.5 g
(2.56 mmol) of 2-(4-nitrophenyl)-1,3-dioxolane 3 were added. The reaction mixture was
maintained at 50 ◦C, and a solution of 1 g (5.12 mmol) of glucose monohydrate in 1 mL
of water was added, which was then stirred for 2 h at the specified temperature. Then,
the reaction mixture was cooled and diluted with 50 mL of 2M hydrochloric acid, and the
formed precipitate was filtered and washed on the filter with distilled water. The resulting
residue was purified via recrystallization from EtOH, yielding azoxybenzene 4. Yield
0.34 g (78%); yellowish solid; mp 117–118 ◦C. IR (KBr): ν = 3130, 3107, 3068 (Csp2-H), 2958,
2893, 2736 (Csp3-H), 1600, 1494 (Csp2-Csp2), 1467 (as N=N(O)), 1384 (sy N=N(O)) cm−1.

http://www.ccdc.cam.ac.uk/or
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1H NMR (CDCl3, 399.78 MHz): δ = 4.02–4.17 (m, 8H, CH2), 5.86 (s, 1H, CH), 5.89 (s, 1H,
CH), 7.57–7.63 (m, 4H, CH), 8.16–8.20 (m, 2H, CH), 8.29–8.33 (m, 2H, CH). 13C NMR
(CDCl3, 100.5 MHz): δ = 65.35 (CH2), 65.40 (CH2), 102.7 (CH), 103.2 (CH), 122.4 (CH,
Ar), 125.6 (CH, Ar), 126.8 (CH, Ar), 127.0 (CH, Ar), 139.3 (C, Ar), 141.8 (C, Ar), 144.5
(C, Ar), 148.7 (C, Ar). HRMS ESI TOF: m/z = 343, 1293 [M+H]+ (343, 1289 calcd for
C18H18N2O5). Crystal data for C18H18N2O5 (M = 342.34 g/mol): monoclinic, space group
P21/c, a = 4.5333(7) Å, b = 21.946(4) Å, c = 15.968(3) Å, α = 90◦, β = 95.627(4)◦, γ = 90◦,
V = 1581.0(4) Å3, Z = 4, T = 120 K, µ = 1.06 cm−1, Dcalc = 1.438 g/cm3. In total, 17,093
reflections were measured, 4876 of which were unique and used in all calculations. The
final R1 was 0.0636, and the wR2 was 0.1635 (all data).

3.2. 1,2-Bis(4-formylphenyl)diazenoxide (5)

A solution was made of 0.5 g (1.46 mmol) of 1,2-bis(4-(1,3-dioxolan-2-yl)phenyl)diazen
oxide 4 in 10 mL of tetrahydrofuran with 0.5 mL concentrated hydrochloric acid (37% in
water). The reaction mixture was stirred for 1 h at room temperature. During this time,
according to TLC (hexane/EtOAc, 8:4), complete conversion occurred 4. The reaction
mixture was diluted with 50 mL of water, and the formed precipitate was then filtered
off and washed on a filter with water. The solid precipitate was recrystallized from the
EtOH/EtOAc mixture. Yield 0.29 g (80%); yellowish solid; mp 188–190 ◦C (dec.) lit. [35]
mp 178–180 ◦C (dec.). IR (KBr): ν = 3107 (Csp2-H), 2850, 2789, 2742 (Csp3-H), 1703, 1687
(C=O), 1597 (Csp2-Csp2), 1463 (as N=N(O)), 1390 (sy N=N(O)) cm−1.1H NMR ((CD3)2SO,
399.78 MHz): δ = 8.05–8.08 (m, 2H, CH), 8.13–8.18 (m, 4H, CH), 8.43–8.47 (m, 2H, CH),
10.06 (s, 1H), 10.16 (s, 1H). 13C NMR ((CD3)2SO, 100.5 MHz): δ = 123.2 (CH, Ar), 125.4 (CH,
Ar), 130.2 (CH, Ar), 130.5 (CH, Ar), 136.1 (C, Ar), 138.5 (C, Ar), 147.5 (C, Ar), 150.8 (C, Ar),
192.2 (C=O), 192.4 (C=O). MS (EI, 70 eV, Irel, %): m/z = 254 (17) [M+], 226 (10), 169 (8), 133
(31), 105 (100).

Supplementary Materials: Figure S1: 1H-NMR spectrum of 4; Figure S2: 13C-NMR spectrum of 4;
Figure S3: HRMS of 4; Figure S4: IR spectrum of 4; Figure S5.1H-NMR spectrum of 5; Figure S6:
13C-NMR spectrum of 5.
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3.1. 1,2-Bis(4-(1,3-dioxolan-2-yl)phenyl)diazene Oxide (4) 
To 6 mL of ethanol, 7.5 mL of a 30% aqueous solution of sodium hydroxide and 0.5 

g (2.56 mmol) of 2-(4-nitrophenyl)-1,3-dioxolane 3 were added. The reaction mixture was 
maintained at 50 °C, and a solution of 1 g (5.12 mmol) of glucose monohydrate in 1 mL of 
water was added, which was then stirred for 2 h at the specified temperature. Then, the 
reaction mixture was cooled and diluted with 50 mL of 2M hydrochloric acid, and the 
formed precipitate was filtered and washed on the filter with distilled water. The resulting 
residue was purified via recrystallization from EtOH, yielding azoxybenzene 4. Yield 0.34 
g (78%); yellowish solid; mp 117–118 °C. IR (KBr): ν = 3130, 3107, 3068 (Csp2-H), 2958, 
2893, 2736 (Csp3-H), 1600, 1494 (Csp2-Csp2), 1467 (as N=N(O)), 1384 (sy N=N(O)) cm−1. 1H 
NMR (CDCl3, 399.78 MHz): δ = 4.02–4.17 (m, 8H, CH2), 5.86 (s, 1H, CH), 5.89 (s, 1H, CH), 
7.57–7.63 (m, 4H, CH), 8.16–8.20 (m, 2H, CH), 8.29–8.33 (m, 2H, CH). 13C NMR (CDCl3, 
100.5 MHz): δ = 65.35 (CH2), 65.40 (CH2), 102.7 (CH), 103.2 (CH), 122.4 (CH, Ar), 125.6 (CH, 
Ar), 126.8 (CH, Ar), 127.0 (CH, Ar), 139.3 (C, Ar), 141.8 (C, Ar), 144.5 (C, Ar), 148.7 (C, Ar). 
HRMS ESI TOF: m/z = 343, 1293 [M+H]+ (343, 1289 calcd for C18H18N2O5). Crystal data for 
C18H18N2O5 (M = 342.34 g/mol): monoclinic, space group P21/c, a = 4.5333(7) Å, b = 
21.946(4) Å, c = 15.968(3) Å, α = 90°, β = 95.627(4)°, γ = 90°, V = 1581.0(4) Å3, Z = 4, T = 120 
K, μ = 1.06 cm−1, Dcalc = 1.438 g/cm3. In total, 17,093 reflections were measured, 4876 of 
which were unique and used in all calculations. The final R1 was 0.0636, and the wR2 was 
0.1635 (all data). 

3.2. 1,2-Bis(4-formylphenyl)diazenoxide (5) 
A solution was made of 0.5 g (1.46 mmol) of 1,2-bis(4-(1,3-dioxolan-2-yl)phenyl)di-

azen oxide 4 in 10 mL of tetrahydrofuran with 0.5 mL concentrated hydrochloric acid (37% 
in water). The reaction mixture was stirred for 1 h at room temperature. During this time, 
according to TLC (hexane/EtOAc, 8:4), complete conversion occurred 4. The reaction mix-
ture was diluted with 50 mL of water, and the formed precipitate was then filtered off and 
washed on a filter with water. The solid precipitate was recrystallized from the 
EtOH/EtOAc mixture. Yield 0.29 g (80%); yellowish solid; mp 188–190 °C (dec.) lit. [35] 
mp 178–180 °C (dec.). IR (KBr): ν = 3107 (Csp2-H), 2850, 2789, 2742 (Csp3-H), 1703, 1687 
(C=O), 1597 (Csp2-Csp2), 1463 (as N=N(O)), 1390 (sy N=N(O)) cm−1.1H NMR ((CD3)2SO, 
399.78 MHz): δ = 8.05–8.08 (m, 2H, CH), 8.13–8.18 (m, 4H, CH), 8.43–8.47 (m, 2H, CH), 
10.06 (s, 1H), 10.16 (s, 1H). 13C NMR ((CD3)2SO, 100.5 MHz): δ = 123.2 (CH, Ar), 125.4 (CH, 
Ar), 130.2 (CH, Ar), 130.5 (CH, Ar), 136.1 (C, Ar), 138.5 (C, Ar), 147.5 (C, Ar), 150.8 (C, Ar), 
192.2 (C=O), 192.4 (C=O). MS (EI, 70 eV, Irel, %): m/z = 254 (17) [M+], 226 (10), 169 (8), 133 
(31), 105 (100). 

Supplementary Materials: Figure S1: 1H-NMR spectrum of 4; Figure S2: 13C-NMR spectrum of 4; 
Figure S3: HRMS of 4; Figure S4: IR spectrum of 4; Figure S5.1H-NMR spectrum of 5; Figure S6: 13C-
NMR spectrum of 5. 
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