Access to d- and l-Psicose Derivatives via Hydroxy Methylation of Ribono Lactone
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Remarks
3.2. Synthesis of Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- Wen, L.; Huang, K.; Wei, M.; Meisner, J.; Liu, Y.; Garner, K.; Zang, L.; Wang, X.; Li, X.; Fang, J.; et al. Facile Enzymatic Synthesis of Ketoses. Angew. Chem. Int. Ed. 2015, 54, 12654–12658. [Google Scholar] [CrossRef] [PubMed]
- Huwig, A.; Emmel, S.; Jäkel, G.; Giffhorn, F. Enzymatic synthesis of L-tagatose from galactitol with galactitol dehydrogenase from Rhodobacter sphaeroides D. Carbohydr. Res. 1997, 305, 337–339. [Google Scholar] [CrossRef]
- Li, Z.; Gao, Y.; Nakanishi, H.; Gao, X.; Cai, L. Biosynthesis of rare hexoses using microorganisms and related enzymes. Beilstein J. Org. Chem. 2013, 9, 2434–2445. [Google Scholar] [CrossRef] [PubMed]
- Ekeberg, D.; Morgenlie, S.; Stenstrøm, Y. Aldose–ketose interconversion in pyridine in the presence of aluminium oxide. Carbohydr. Res. 2007, 342, 1992–1997. [Google Scholar] [CrossRef]
- Doner, L.W. Isomerization of d-fructose by base: liquid-chromatographic evaluation and the isolation of d-psicose. Carbohydr. Res. 1979, 70, 209–216. [Google Scholar] [CrossRef]
- Mukaiyama, T.; Yuki, Y.; Suzuki, K. The steroselective synthesis of l-Tagatose-an application of Zn (II) mediated highly stereoselective addition of 2-furyllithium to polyoxygenated aldehyde. Chem. Lett. 1982, 11, 1169–1170. [Google Scholar]
- Matsumoto, T.; Enomoto, T.; Kurosaki, T. Facile synthesis of the next higher ketoses from aldoses. Chem. Commun. 1992, 610–611. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Raychaudhuri, U.; Chakraborty, R. Artificial sweeteners–a review. J. Food Sci. Technol. 2014, 51, 611–621. [Google Scholar] [CrossRef]
- Imrich, M.R.; Biehler, L.E.; Maichle-Mössmer, C.; Ziegler, T. Carbohydrate-Based Chiral Iodoarene Catalysts: A Survey through the Development of an Improved Catalyst Design. Molecules 2019, 24, 3883. [Google Scholar] [CrossRef]
- Imrich, M.R.; Kraft, J.; Maichle-Mössmer, C.; Ziegler, T. d-Fructose-based spiro-fused PHOX ligands: synthesis and application in enatioselective allylic alkylation. Beilstein J. Org. Chem. 2018, 14, 2082–2089. [Google Scholar] [CrossRef]
- Imrich, M.R.; Maichle-Mössmer, C.; Ziegler, T. d-Fructose based spiro-fused PHOX ligands: Palladium complexes and application in catalysis. Eur. J. Org. Chem. 2019, 3955–3963. [Google Scholar] [CrossRef]
- Imrich, M.R.; Ziegler, T. Carbohydrate based chiral iodoarene catalysts for enantioselective dearomative spirocyclization. Tetrahedron Lett. 2019, 60, 150954. [Google Scholar] [CrossRef]
- Price found at www.sigmaaldrich.com on 17 September 2019.
- Bols, M.; Szarek, W.A. Synthesis of 3-deoxy-3-fluoro-d-fructose. J. Chem. Soc. Chem. Commun. 1992, 445–446. [Google Scholar] [CrossRef]
- Bols, M.; Grubbe, H.; Jespersen, T.M.; Szarek, W.A. Hydroxymethylation of aldonolactones and a chemical synthesis of 3-deoxy-3-fluoro-d-fructose. Carbohydr. Res. 1994, 253, 195–206. [Google Scholar] [CrossRef]
- Shiozaki, M. Conversion of d-glucose to L-glucose: oxidative decarboxylation of alpha-oxycarboxylic acids via their diacyl peroxides. J. Org. Chem. 1991, 56, 528–532. [Google Scholar] [CrossRef]
- Martin, O.R.; Saavedra, O.M. Concise chemical synthesis of β-homonojirimycin and related compounds. Tetrahedron Lett. 1995, 36, 799–802. [Google Scholar] [CrossRef]
- Van Rijssel, E.R.; van Delft, P.; van Marle, D.V.; Bijvoets, S.M.; Lodder, G.; Overkleeft, H.S.; van der Marel, G.A.; Filippov, D.V.; Codée, J.D.C. Stereoselectivity in the Lewis Acid Mediated Reduction of Ketofuranoses. J. Org. Chem. 2015, 80, 4553–4565. [Google Scholar] [CrossRef]
- Meyer, N.; Seebach, D. Doppelt metalliertes Methanol. Alkohol-d1- und -d3-Reagenzien. Chem. Ber. 1980, 113, 1290–1303. [Google Scholar] [CrossRef]
- Corey, E.; Gras, J.L.; Ulrich, P. A new general method for protection of the hydroxyl function. Tetrahedron Lett. 1976, 17, 809–812. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Snyder, S.A.; Longbottom, D.A.; Nalbandian, A.Z.; Huang, X. New Uses for the Burgess Reagent in Chemical Synthesis: Methods for the Facile and Stereoselective Formation of Sulfamidates, Glycosylamines, and Sulfamides. Chem. Eur. J. 2004, 10, 5581–5606. [Google Scholar] [CrossRef]
- Lohse-Fraefel, N.; Carreira, E.M. Polyketide building blocks via diastereoselective nitrile oxide cycloadditions with homoallylic alcohols and monoprotected homoallylic diols. Chem. Eur. J. 2009, 15, 12065–12081. [Google Scholar] [CrossRef] [PubMed]
- Di Bussolo, V.; Fiasella, A.; Romano, M.R.; Favero, L.; Pineschi, M.; Crotti, P. Stereoselective synthesis of 2, 3-unsaturated-aza-O-glycosides via new diastereoisomeric N-Cbz-imino glycal-derived allyl epoxides. Org. Lett. 2007, 9, 4479–4482. [Google Scholar] [CrossRef] [PubMed]
- Price found at www.sigmaaldrich.com on 23 September 2019.
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imrich, M.R.; Ziegler, T. Access to d- and l-Psicose Derivatives via Hydroxy Methylation of Ribono Lactone. Molbank 2019, 2019, M1096. https://doi.org/10.3390/M1096
Imrich MR, Ziegler T. Access to d- and l-Psicose Derivatives via Hydroxy Methylation of Ribono Lactone. Molbank. 2019; 2019(4):M1096. https://doi.org/10.3390/M1096
Chicago/Turabian StyleImrich, Michael R., and Thomas Ziegler. 2019. "Access to d- and l-Psicose Derivatives via Hydroxy Methylation of Ribono Lactone" Molbank 2019, no. 4: M1096. https://doi.org/10.3390/M1096
APA StyleImrich, M. R., & Ziegler, T. (2019). Access to d- and l-Psicose Derivatives via Hydroxy Methylation of Ribono Lactone. Molbank, 2019(4), M1096. https://doi.org/10.3390/M1096