How Good Can the Characteristic Polynomial Be for Correlations?
Abstract
:1. Introduction
2. Statement of the Problem and Mathematical Solution
3. Calculation Algorithm
- Parse polynomials formulas for all given molecules (ChPj, 1 ≤ j ≤ n); parse measured data values for given molecules (Yj, 1 ≤ j ≤ n). Comments:
- The polynomials are stored as sums of monomials;
- Every monomial is in fact a pair of two values: the power of variable (X) and the coefficient;
- A measured data value is assigned with a polynomial through j value (where j is an integer and takes value from 1 to n).
- Search in the polynomial formulas and remove the identical monomials (as in Table 1). Comments:
- It is better to remove the identical monomials in order to reduce the calculation complexity, magnitude of numbers, and errors propagation.
- Compute the polynomial of squared correlation coefficient formula as pair of two polynomials: numerator and denominator. Comment: The following procedures has been used:
- Compute the mean and dispersion of Y (as numbers): mY = M(Y); and d2Y = M(Y2)-M2(Y);
- Compute the average polynomial (as polynomial): MChP(X) = M(ChP(X));
- Compute the average of YChP(X) products (as polynomial): MYChP(X) = M(YChP(X));
- Construct square polynomials of ChPj2(X) and average them (as polynomial): MChP2(X) = M(ChP2(X));
- Make the product of MChP (as polynomial): M2ChP(X) = MChP(X)·MChP(X);
- Change the sign of M2ChP (as polynomial): M2ChP(X) = (−1)·M2ChP(X);
- Add M2ChP to MChP2 (as polynomial): MChP2(X) = MChP2(X) + M2ChP(X);
- Multiply the obtained MChP2 by d2Y: MChP2(X) = (d2Y)·MChP2(X) // Comment: now the MChP2(X) polynomial contains the denominator of r2;
- Multiply MChP with (−mY): MChP(X) = (−mY)·MChP(X);
- Add the obtained MChP(X) polynomial to the MYChP(X) polynomial: MYChP(X) = MYChP(X) + MChP(X) // Comment: now the MYChP(X) contains the numerator of r;
- Square the obtained MYChP(X) polynomial: MYChP(X) = MYChP(X)·MYChP(X) // Comment: now the MYChP(X) polynomial contains the numerator of r2;
- Return the pair of polynomials (MYChP(X),MChP2(X)).
- Calculate derivative of the numerator of r2 (as polynomial): numerator1(X) = ∂numerator(X)/∂X;
- Calculate derivative of the denominator of r2 (as polynomial): denominator1(X) = ∂denominator(X)/∂X;
- Calculate the product between numerator1(X) and denominator(X) (as polynomial): product1(X) = numerator1(X)·denominator(X);
- Calculate the product between numerator(X) and denominator1(X) (as polynomial): product2(X) = numerator(X)·denominator1(X);
- Change the sign of the product2(X): product2(X) = (−1)·product2(X);
- Add the product2(X) to the product1(X) and store the result in the r2_1_numerator: r2_1_numerator(X) = product1(X) + product2(X);
- Factorize r2_1_numerator(X) if it is possible (usually is easy to factorize with X if this factor is contain in it, so will factorize on X); let Xp be the factor; delete the factor; thus the r2_1_numerator became: r2_1_numerator(X) = r2_1_numerator(X)/Xp;
- Find roots of equation r2_1_numerator(X) = 0 and return them as pairs (xi,ɛi) 1 ≤ i ≤ m where in fact r2_1_numerator(xi) = ɛi. Comments:
- The procedure of finding roots is an approximate one for at least two reasons. First, the M(·) operator is used, so the coefficients cannot be integers. Second, even if the S(·) operator (sum operator) is used instead of the M(·) operator in order to obtain integer coefficients, the degree of the obtained polynomial is too great to apply some nonnumeric methods here (for our example the degree of the obtained polynomial equation was 12);
- The returning of the ɛi is used in order to know how close the exact solution is to the result;
- The procedure of finding roots is a recursive one and it also calculates and uses all superior derivatives of the polynomial in order to find all real roots of the equation.
- Use the set of roots {xi}1 ≤ i ≤ m and pairs of polynomials (numerator(X),denominator(X)) to calculate the value of r2 in the following points: {xi}1≤i≤m → {r2(xi)}1≤i≤m
- Display the results: {xi,ɛi,r2(xi)}1≤i≤m
4. Henry’s Law Constant of Nonane Isomers: Computational Results and Discussion
5. Concluding Remarks
Comp. Abbrev. | kH(·10−5) [M/atm]* | Characteristic polynomial | After second step of calculation algorithm |
---|---|---|---|
c1 | 10 | X9 − 8·X7 + 20·X5 − 17·X3 + 3·X | 20·X5 − 17·X3 + 3·X |
c2 | 15 | X9 − 8·X7 + 17·X5 − 12·X3 + 2·X | 17·X5 − 12·X3 + 2·X |
c3 | 15 | X9 − 8·X7 + 16·X5 − 8·X3 | 16·X5 − 8·X3 |
c4 | 16 | X9 − 8·X7 + 15·X5 − 6·X3 | 15·X5 − 6·X3 |
c5 | 16 | X9 − 8·X7 + 18·X5 − 16·X3 + 5·X | 18·X5 − 16·X3 + 5·X |
c6 | 17 | X9 − 8·X7 + 21·X5 − 20·X3 + 5·X | 21·X5 − 20·X3 + 5·X |
c7 | 17 | X9 − 8·X7 + 17·X5 − 10·X3 | 17·X5 − 10·X3 |
c8 | 17 | X9 − 8·X7 + 17·X5 − 11·X3 + 2·X | 17·X5 − 11·X3 + 2·X |
c9 | 17 | X9 − 8·X7 + 18·X5 − 14·X3 + 3·X | 18·X5 − 14·X3 + 3·X |
c10 | 17 | X9 − 8·X7 + 16·X5 − 6·X3 | 16·X5 − 6·X3 |
c11 | 18 | X9 − 8·X7 + 19·X5 − 15·X3 + 3·X | 19·X5 − 15·X3 + 3·X |
c12 | 18 | X9 − 8·X7 + 18·X5 − 12·X3 + 2·X | 18·X5 − 12·X3 + 2·X |
c13 | 18 | X9 − 8·X7 + 19·X5 − 16·X3 + 4·X | 19·X5 − 16·X3 + 4·X |
c14 | 18 | X9 − 8·X7 + 17·X5 − 10·X3 | 17·X5 − 10·X3 |
c15 | 18 | X9 − 8·X7 + 18·X5 − 12·X3 | 18·X5 − 12·X3 |
c16 | 19 | X9 − 8·X7 + 19·X5 − 14·X3 + 2·X | 19·X5 − 14·X3 + 2·X |
c17 | 19 | X9 − 8·X7 + 18·X5 − 12·X3 + 2·X | 18·X5 − 12·X3 + 2·X |
c18 | 19 | X9 − 8·X7 + 18·X5 − 12·X3 | 18·X5 − 12·X3 |
c19 | 19 | X9 − 8·X7 + 20·X5 − 18·X3 + 5·X | 20·X5 − 18·X3 + 5·X |
c20 | 19 | X9 − 8·X7 + 20·X5 − 18·X3 + 4·X | 20·X5 − 18·X3 + 4·X |
c21 | 19 | X9 − 8·X7 + 17·X5 − 9·X3 | 17·X5 − 9·X3 |
c22 | 19 | X9 − 8·X7 + 17·X5 − 6·X3 | 17·X5 − 6·X3 |
c23 | 19 | X9 − 8·X7 + 17·X5 − 8·X3 | 17·X5 − 8·X3 |
c24 | 19 | X9 − 8·X7 + 19·X5 − 15·X3 + 2·X | 19·X5 − 15·X3 + 2·X |
c25 | 19 | X9 − 8·X7 + 15·X5 | 15·X5 |
c26 | 20 | X9 − 8·X7 + 20·X5 − 17·X3 + 4·X | 20·X5 − 17·X3 + 4·X |
c27 | 20 | X9 − 8·X7 + 19·X5 − 13·X3 + 2·X | 19·X5 − 13·X3 + 2·X |
c28 | 20 | X9 − 8·X7 + 19·X5 − 14·X3 + 3·X | 19·X5 − 14·X3 + 3·X |
c29 | 20 | X9 − 8·X7 + 18·X5 − 10·X3 | 18·X5 − 10·X3 |
c30 | 21 | X9 − 8·X7 + 20·X5 − 16·X3 + 2·X | 20·X5 − 16·X3 + 2·X |
c31 | 21 | X9 − 8·X7 + 18·X5 − 10·X3 | 18·X5 − 10·X3 |
c32 | 21 | X9 − 8·X7 + 19·X5 − 13·X3 | 19·X5 − 13·X3 |
c33 | 21 | X9 − 8·X7 + 19·X5 − 12·X3 | 19·X5 − 12·X3 |
c34 | 21 | X9 − 8·X7 + 17·X5 − 7·X3 | 17·X5 − 7·X3 |
c35 | 21 | X9 − 8·X7 + 19·X5 − 14·X3 + 2·X | 19·X5 − 14·X3 + 2·X |
Solution | xi | ɛi | r2(xi) |
---|---|---|---|
1.1 | − 1.656… | − 5.5…·10−11 | 0.296… |
2.1 | − 0.856… | 1.1…·10−13 | 0 |
3.1 | − 0.481… | 2.7…·10−13 | 0.055… |
3.2 | 0.481… | 2.7…·10−13 | 0.055… |
2.2 | 0.856… | 1.1…·10−13 | 0 |
1.2 | 1.656… | − 5.5…·10−11 | 0.296… |
Acknowledgement
References
- Balaban, A.T.; Ivanciuc, O. Topological Indices and Related Descriptors in QSAR and QSPR; Devillers, J., Balaban, A.T., Eds.; Gordon & Breach: Amsterdam, 1999; Volume Chapter 2, pp. 21–57. [Google Scholar]
- Bonchev, D. Information Theoretic Indices for Characterization of Chemical Structure; Research Studies Press – Wiley: Chichester, UK, 1983. [Google Scholar]
- Kier, L.B.; Hall, L.H. Molecular Connectivity in Structure-Activity Analysis; Research Studies Press: Letchworth, 1986. [Google Scholar]
- Schwenk, A.J. Computing the characteristic polynomial of a graph, Graphs and Combinatorics; Bari, R., Harary, F., Eds.; Springer: Berlin, 1974; pp. 153–172. [Google Scholar]
- Diudea, M.V.; Gutman, I.; Jäntschi, L. Molecular Topology; Nova Science: Huntington, New York, 2002; Volume Chapter 3, pp. 53–100. [Google Scholar]
- Crum-Brown, A.; Fraser, T.R. On the connection between chemical constitution and physiological action. Part 1. On the physiological action of the salts of the ammonium bases, derived from Strychnia, Brucia, Thebia, Codeia, Morphia, and Nicotia. T. Roy. Soc. Edin 1868, 25, 151–203. [Google Scholar]
- Wiener, H. Structural Determination of Paraffin Boiling Points. J. Am. Chem. Soc. 1947, 69(1), 17–20. [Google Scholar]
- Wang, H.; Yu, G. All but 49 numbers are wiener indices of trees. Acta Appl. Math. 2006, 92(1), 15–20. [Google Scholar]
- Hosoya, H. Topological index, a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn 1971, 44, 2332–2339. [Google Scholar]
- Hosoya, H.; Kawasaki, K.; Mizutani, K. Topological index and thermodynamic properties. I. Empirical rules on the boiling points of saturated hydrocarbons. Bull. Chem. Soc. Jpn 1972, 45, 3415–3421. [Google Scholar]
- Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals. Total ϕ-electron energy of alternant hydrocarbons. Chem. Phys. Lett 1972, 17, 535–538. [Google Scholar]
- Nikolić, S.; Kovacević, G.; Milicević, A.; Trinajstić, N. The Zagreb indices 30 years after. Croat. Chem. Acta 2003, 76, 113–124. [Google Scholar]
- Randić, M. Wiener-Hosoya index - A novel graph theoretical molecular descriptor. J. Chem. Inf. Comput. Sci 2004, 44, 373–377. [Google Scholar]
- Westerberg, T.M.; Dawson, K.J.; McLaughlin, K.W. The Hosoya Index, Lucas Numbers, and QSPR. Endeavor 2005, 1, 1–15. [Google Scholar]
- Randić, M. On characterization of molecular branching. J. Am. Chem. Soc 1975, 97, 6609–6615. [Google Scholar]
- Taherpour, A.; Shafiei, F. The structural relationship between Randić indices, adjacency matrixes, distance matrixes and maximum wave length of linear simple conjugated polyene compounds. J. Mol. Struct. THEOCHEM 2005, 726, 183–188. [Google Scholar]
- Narumi, H. New Topological Indices for Finite and Infinite Systems. MATCH Commun. Math. Comput. Chem 1987, 22, 195–207. [Google Scholar]
- Tomovic, Z.; Gutman, I. Narumi-Katayama index of phenylenes. J. Serb. Chem. Soc 2001, 66, 243–247. [Google Scholar]
- Pogliani, L. Modeling with Special Descriptors Derived from a Medium-Sized Set of Connectivity Indices. J. Phys. Chem 1996, 100, 18065–18077. [Google Scholar]
- Schuttz, H.P. Topological organic chemistry. 1. Graph theory and topological indices of alkanes. J. Chem. Inf. Comput. Sci 1989, 29, 227–223. [Google Scholar]
- Gutman, I.J. Selected properties of the Schultz molecular topological index. J. Chem. Inf. Comput. Sci 1994, 34, 1037–1039. [Google Scholar]
- Plavšić, D.; Nikolić, S.; Trinajstić, N.; Mihalić, Z. On the Harary index for the characterization of chemical graphs. J. Math. Chem 1993, 12, 235–250. [Google Scholar]
- Jäntschi, L.; Katona, G.; Diudea, M.V. Modeling Molecular Properties by Cluj Indices. MATCH Commun. Math. Comput. Chem 2000, 41, 151–188. [Google Scholar]
- Balaban, A.T. Highly discriminating distance-based topological index. Chem. Phys. Lett 1982, 89, 399–404. [Google Scholar]
- Ren, B.A. New Topological Index for QSPR of Alkanes. J. Chem. Inf. Comput. Sci 1999, 39, 139–143. [Google Scholar]
- Hosoya, H.; Gotoh, M.; Murakami, M.; Ikeda, S. Topological Index and Thermodynamic Properties. 5. How Can We Explain the Topological Dependency of Thermodynamic Properties of Alkanes with the Topology of Graphs? J. Chem. Inf. Comput. Sci 1999, 39, 192–196. [Google Scholar]
- Gao, Y.D.; Hosoya, H. Topological Index and Thermodynamic Properties. IV. Size Dependency of the Structure-Activity Correlation of Alkanes. Bull. Chem. Soc. Jpn. 1988, 61, 3093–3102. [Google Scholar]
- Narumi, H.; Hosoya, H. Topological Index and Thermodynamic Properties. III. Classification of Various Topological Aspects of Properties of Acyclic Saturated Hydrocarbons. Bull. Chem. Soc. Jpn 1985, 58, 1778–1786. [Google Scholar]
- Narumi, H.; Hosoya, H. Topological Index and Thermodynamic Properties. II. Analysis of the Topological Factors on the Absolute Entropy of Acyclic Saturated Hydrocarbons. Bull. Chem. Soc. Jpn. 1980, 53, 1228–1237. [Google Scholar]
- Hosoya, H.; Kawasaki, K.; Mizutani, K. Topological Index and Thermodynamic Properties. I. Empirical Rules on the Boiling Point of Saturated Hydrocarbons. Bull. Chem. Soc. Jpn 1972, 45, 3415–3421. [Google Scholar]
- Mekenyan, O.; Bonchev, D.; Trinajstić, N. Chemical graph theory: Modeling the thermodynamic properties of molecules. Int. J. Quantum Chem 2004, 18, 369–380. [Google Scholar]
- Yaws, C.L.; Yang, H.C. Thermodynamic and Physical Property Data; Yaws, C. L., Ed.; Gulf Publishing Company: Houston, TX, USA, 1992; pp. 181–206. [Google Scholar]
- Hawkins, D.M. The Problem of Overfitting. J. Chem. Inf. Comput. Sci 2004, 44, 1–12. [Google Scholar]
© 2007 by MDPI Reproduction is permitted for noncommercial purposes.
Share and Cite
Bolboaca, S.D.; Jantschi, L. How Good Can the Characteristic Polynomial Be for Correlations? Int. J. Mol. Sci. 2007, 8, 335-345. https://doi.org/10.3390/i8040335
Bolboaca SD, Jantschi L. How Good Can the Characteristic Polynomial Be for Correlations? International Journal of Molecular Sciences. 2007; 8(4):335-345. https://doi.org/10.3390/i8040335
Chicago/Turabian StyleBolboaca, Sorana Daniela, and Lorentz Jantschi. 2007. "How Good Can the Characteristic Polynomial Be for Correlations?" International Journal of Molecular Sciences 8, no. 4: 335-345. https://doi.org/10.3390/i8040335
APA StyleBolboaca, S. D., & Jantschi, L. (2007). How Good Can the Characteristic Polynomial Be for Correlations? International Journal of Molecular Sciences, 8(4), 335-345. https://doi.org/10.3390/i8040335