Design of Anti-HIV Ligands by Means of Minimal Topological Difference (MTD) Method
Abstract
:1. Introduction
2. The MTD (Minimal Topological Difference) Method
- molecular superposition, based on certain common molecular elements or on a “pharmacophoral” constellation” of the atoms, and
- defining equivalent positions.
3. Computational Details
i/Li | R1 | R2 | R3 | X |
---|---|---|---|---|
1 | methyl | 2-methylphenylthio | 2-hidroxyethyl | O |
2 | methyl | 2-nitrophenhylthio | 2-hidroxyethyl | O |
3 | methyl | 2-methoxyphenylthio | 2-hidroxyethyl | O |
4 | methyl | 3-metilfeniltio | 2-hidroxietil | O |
5 | methyl | 3-ethylphenylthio | 2-hidroxyethyl | O |
6 | methyl | 3- tertbuthylphenylthio | 2-hidroxyethyl | O |
7 | methyl | 3-trifluoromethylphenylthio | 2-hidroxyethyl | O |
8 | methyl | 3-fluorophenylthio | 2-hidroxyethyl | O |
9 | methyl | 3-clorophenylthio | 2-hidroxyethyl | O |
10 | methyl | 3-bromophenylthio | 2-hidroxyethyl | O |
11 | methyl | 3-iodophenylthio | 2-hidroxyethyl | O |
12 | methyl | 3-nitrophenylthio | 2-hidroxyethyl | O |
13 | methyl | 3-hidroxyphenylthio | 2-hidroxyethyl | O |
14 | methyl | 3-metoxyphenylthio | 2-hidroxyethyl | O |
15 | methyl | 3,5-dimetilphenylthio | 2-hidroxyethyl | O |
16 | methyl | 3,5-diclorophenylthio | 2-hidroxyethyl | O |
17 | methyl | 3,5-dimethylphenylthio | 2-hidroxyethyl | S |
18 | methyl | 3-metoxycarbonylphenylthio | 2-hidroxyethyl | O |
19 | methyl | 3-acetylphenylthio | 2-hidroxyethyl | O |
20 | methyl | 3-cyanophenylthio | 2-hidroxyethyl | O |
21 | allyl | phenylthio | 2-hidroxyethyl | O |
22 | ethyl | phenylthio | 2-hidroxyethyl | S |
23 | propyl | phenylthio | 2-hidroxyethyl | S |
24 | isopropyl | phenylthio | 2-hidroxyethyl | S |
25 | ethyl | 3,5-dimethylphenylthio | 2-hidroxyethyl | S |
26 | isopropyl | 3,5-dimethylphenylthio | 2-hidroxyethyl | S |
27 | ethyl | 3,5-diclorophenylthio | 2-hidroxyethyl | S |
28 | ethyl | phenylthio | 2-hidroxyethyl | O |
29 | propyl | phenylthio | 2-hidroxyethyl | O |
30 | isopropyl | phenylthio | 2-hidroxyethyl | O |
31 | ethyl | 3,5-dimetylphenylthio | 2-hidroxyethyl | O |
32 | isopropyl | 3,5-dimetylphenylthio | 2-hidroxyethyl | O |
33 | ethyl | 3,5-diclorophenylthio | 2-hidroxyethyl | O |
34 | methyl | 4-metylphenylthio | 2-hidroxyethyl | O |
35 | methyl | phenylthio | 2-hidroxyethyl | O |
36 | methyl | phenylthio | 2-hidroxyethyl | S |
37 | iodo | phenylthio | 2-hidroxyethyl | O |
38 | ethenyl | phenylthio | 2-hidroxyethyl | O |
39 | 2-phenylethenyl | phenylthio | 2-hidroxyethyl | O |
40 | benzyl | phenylthio | 2-hidroxyethyl | O |
41 | methyl | phenylthio | 2-metoxyethyl | O |
42 | methyl | phenylthio | 2-acetyloxyethyl | O |
43 | methyl | phenylthio | 2-benzoyloxyethyl | O |
44 | methyl | phenylthio | ethyl | O |
45 | methyl | phenylthio | 2-cloroethyl | O |
46 | methyl | phenylthio | 2-azidoethyl | O |
47 | methyl | phenylthio | 2-fluoroethyl | O |
48 | methyl | phenylthio | propyl | O |
49 | methyl | phenylthio | benzyl | O |
50 | ethyl | phenylthio | ethyl | O |
51 | ethyl | phenylthio | ethyl | S |
52 | ethyl | 3,5-dimethylphenylthio | ethyl | O |
53 | ethyl | 3,5-dimethylphenhylthio | ethyl | S |
54 | ethyl | phenylthio | benzyl | O |
55 | ethyl | 3,5-dimethylphenylthio | benzyl | O |
56 | ethyl | phenylthio | benzyl | S |
57 | ethyl | 3,5-dimethylphenylthio | benzyl | S |
58 | isopropyl | phenylthio | ethyl | O |
59 | isopropyl | phenylthio | benzyl | O |
60 | isopropyl | phenylthio | ethyl | S |
61 | isopropyl | phenylthio | benzyl | S |
62 | methyl | phenylthio | methyl | O |
63 | methyl | phenylthio | butyl | O |
64 | methyl | phenylthio | methyl | S |
65 | methyl | phenylthio | propyl | S |
66 | ethyl | 3,5-diclorophenylthio | ethyl | S |
67 | ethyl | phenylthio | isopropyl | S |
68 | ethyl | phenylthio | cyclohexyl | S |
69 | ethyl | phenylthio | cyclohexylmethyl | S |
70 | ethyl | phenylthio | 4-methylbenzyl | S |
71 | ethyl | phenylthio | 4-clorobenzyl | S |
72 | ethyl | phenylthio | 2-phenylethyl | S |
73 | ethyl | 3,5-diclorophenylthio | ethyl | O |
74 | ethyl | phenylthio | isopropyl | O |
75 | ethyl | phenylthio | cyclohexyl | O |
76 | ethyl | phenylthio | cyclohexylmethyl | O |
77 | ethyl | phenylthio | 2-ciclohexylethyl | O |
78 | cyclopropyl | phenylthio | ethyl | S |
79 | cyclopropyl | phenylthio | ethyl | O |
- flexible torsion angles variation: ±60º - ±180º;
- energetic criteria to accept a conformation: 4 kcal/mol above the minimum;
- conformation cancellation: for atoms with distances less than 0.5 Å and torsion angles differences less than 15º;
- duplicate conformations: energy differences less than 0.05 kcal/mol;
- optimization program: MM+;
- optimization algorithm: Polak-Ribiere;
- optimization RMS (root mean square value) gradient: 0.05 kcal/mol;
- maximum iterations: 250;
- maximum optimizations: 250;
- maximum retained conformations: 20.
i/Li | Vertices occupancy in hypermolecule | i/Li | Vertices occupancy in hypermolecule |
---|---|---|---|
1 | 1,2,3,4,5,6,7,8,9,10,11 | 41 | 1,2,4,5,6,7,8,9,10,27,48 |
2 | 1,2,3,4,5,6,7,8,9,10,11,12,13 | 42 | 1,2,3,4,5,6,7,8,9,10,49,50,51 |
3 | 1,2,4,5,6,7,8,9,10,11,12,14 | 43 | 1,2,3,4,5,6,7,8,9,10,49,50,51,52 |
4 | 1,2,3,4,5,6,7,8,9,10,11 | 44 | 1,2,4,5,6,7,8,9,10 |
5 | 1,2,3,10,15,16,17,18,19,20,21,22 | 45 | 1,2,3,4,5,6,7,8,9,10 |
6 | 1,2,10,14,15,16,17,18,19,20,23,24,25,26 | 46 | 1,2,3,4,5,6,7,8,9,10,49,50 |
7 | 1,2,4,5,6,7,8,9,10,27,28,29,30,31 | 47 | 1,2,3,4,5,6,7,8,9,10 |
8 | 1,4,5,6,7,8,9,10,28,32,33 | 48 | 1,2,3,4,5,6,7,8,9,10 |
9 | 1,2,3,10,15,16,17,18,19,20,23 | 49 | 1,4,5,6,7,8,9,10,53 |
10 | 1,2,3,10,15,16,17,18,19,20,23 | 50 | 1,2,4,5,6,7,8,9,10,40 |
11 | 1,2,3,10,15,16,17,18,19,20,23 | 51 | 1,2,3,4,5,6,7,8,9,10,42 |
12 | 1,2,3,4,5,6,7,8,9,10,28,29,31 | 52 | 1,2,3,4,5,6,7,8,9,10,28,35,40 |
13 | 1,2,3,10,15,16,17,18,19,20,23 | 53 | 1,2,3,4,5,6,7,8,9,10,28,35,42 |
14 | 1,10,15,16,17,18,19,20,23,26,32,34 | 54 | 1,4,5,6,7,8,9,10,40,53 |
15 | 1,2,3,10,15,16,17,18,19,20,21,23 | 55 | 1,4,5,6,7,8,9,10,28,35,40,53 |
16 | 1,2,3,4,5,6,7,8,9,10,28,35 | 56 | 1,4,5,6,7,8,9,10,42,54 |
17 | 1,2,3,4,5,6,7,8,9,10,28,35 | 57 | 1,4,5,6,7,8,9,10,28,35,42,55 |
18 | 1,2,3,4,5,6,7,8,9,10,28,29,31,36 | 58 | 1,2,3,4,5,6,7,8,9,10,40,42 |
19 | 1,2,3,4,5,6,7,8,9,10,35,37,38 | 59 | 1,4,5,6,7,8,9,10,40,42,53 |
20 | 1,2,10,15,16,17,18,19,20,23,27,39 | 60 | 1,2,3,4,5,6,7,8,9,10,40,42 |
21 | 1,2,3,4,5,6,7,8,9,10,40,41 | 61 | 1,4,5,6,7,8,9,10,40,42,56 |
22 | 1,4,5,6,7,8,9,10,32,34,42 | 62 | 1,4,5,6,7,8,9,10 |
23 | 1,4,5,6,7,8,9,10,32,34,42,43 | 63 | 1,2,3,4,5,6,7,8,9,10,49 |
24 | 1,10,15,16,17,18,19,20,32,34,40,42 | 64 | 1,4,5,6,7,8,9,10 |
25 | 1,4,5,6,7,8,9,10,28,32,34,35,40 | 65 | 1,2,3,4,5,6,7,8,9,10 |
26 | 1,4,5,6,7,8,9,10,28,32,34,35,40,42 | 66 | 1,2,4,5,6,7,8,9,10,28,35,40 |
27 | 1,4,5,6,7,8,9,10,28,32,34,35,40 | 67 | 1,2,4,5,6,7,8,9,10,40,57 |
28 | 1,2,3,4,5,6,7,8,9,10,40 | 68 | 4,5,6,7,8,9,10,40,58 |
29 | 1,2,3,4,5,6,7,8,9,10,40,41 | 69 | 1,4,5,6,7,8,9,10,40,59 |
30 | 1,2,3,4,5,6,7,8,9,10,40,42 | 70 | 1,4,5,6,7,8,9,10,40,60 |
31 | 1,2,3,4,5,6,7,8,9,10,28,35,40 | 71 | 1,4,5,6,7,8,9,10,41,61 |
32 | 1,2,3,4,5,6,7,8,9,10,28,35,40,42 | 72 | 1,2,4,5,6,7,8,9,10,40,62 |
33 | 1,2,4,5,6,7,8,9,10,27,28,35,40 | 73 | 1,4,5,6,7,8,9,10,28,35,42,57 |
34 | 1,4,5,6,7,8,9,10,32,34,44 | 74 | 1,2,4,5,6,7,8,9,10,40 |
35 | 1,4,5,6,7,8,9,10,32,33 | 75 | 4,5,6,7,8,9,10,40,58 |
36 | 1,4,5,6,7,8,9,10,32,34 | 76 | 1,4,5,6,7,8,9,10,42,59 |
37 | 1,2,10,14,15,16,17,18,19,20 | 77 | 1,2,4,5,6,7,8,9,10,40,63 |
38 | 1,2,3,4,5,6,7,8,9,10,45 | 78 | 1,2,3,4,5,6,7,8,9,10,40,45 |
39 | 1,2,3,4,5,6,7,8,9,10,45,46 | 79 | 1,2,4,5,6,7,8,9,10,40,45 |
40 | 1,2,4,5,6,7,8,9,10,27,47 |
4. Results and Discussions
- the mono-parametric model of hidrophobicity:
- the case of linear mono-parametric model where MTD is the steric parameter:
- and the combined correlation
i/Li | logP | MTD* | MTD*logP | AlogP | AMTD | AMTD+LogP | Aexp |
---|---|---|---|---|---|---|---|
1 | 2.14 | 13 | 15 | 5.529 | 5.052 | 4.778 | 4.15 |
2 | 1.62 | 14 | 16 | 5.118 | 4.218 | 3.851 | 3.85 |
3 | 1.42 | 13 | 14 | 4.960 | 5.052 | 5.101 | 4.72 |
4 | 2.14 | 13 | 15 | 5.529 | 5.052 | 4.778 | 5.59 |
5 | 2.53 | 12 | 14 | 5.837 | 5.886 | 5.643 | 5.57 |
6 | 3.3 | 13 | 16 | 6.445 | 5.052 | 4.670 | 4.92 |
7 | 2.55 | 14 | 16 | 5.853 | 4.218 | 4.304 | 4.35 |
8 | 1.81 | 12 | 13 | 5.268 | 5.886 | 5.965 | 5.48 |
9 | 2.19 | 13 | 15 | 5.568 | 5.052 | 4.803 | 4.89 |
10 | 2.46 | 13 | 15 | 5.781 | 5.052 | 4.934 | 5.24 |
11 | 2.93 | 13 | 15 | 6.153 | 5.052 | 5.164 | 5,00 |
12 | 1.62 | 13 | 15 | 5.118 | 5.052 | 4.525 | 4.47 |
13 | 1.39 | 13 | 15 | 4.936 | 5.052 | 4.412 | 4.09 |
14 | 1.42 | 14 | 15 | 4.960 | 4.218 | 4.427 | 4.66 |
15 | 2.61 | 12 | 14 | 5.900 | 5.886 | 5.682 | 6.59 |
16 | 2.71 | 11 | 13 | 5.979 | 6.720 | 6.404 | 5.89 |
17 | 3.25 | 11 | 13 | 6.406 | 6.720 | 6.668 | 6.66 |
18 | 1.4 | 13 | 14 | 4.944 | 5.052 | 5.091 | 5.10 |
19 | 0.98 | 13 | 14 | 4.612 | 5.052 | 4.886 | 5.14 |
20 | 1.71 | 13 | 14 | 5.189 | 5.052 | 5.242 | 5,00 |
21 | 2.25 | 12 | 14 | 5.616 | 5.886 | 5.506 | 5.60 |
22 | 2.72 | 11 | 13 | 5.987 | 6.720 | 6.409 | 6.96 |
23 | 3.11 | 12 | 14 | 6.295 | 5.886 | 5.926 | 5,00 |
24 | 3.05 | 10 | 12 | 6.248 | 7.554 | 7.244 | 7.23 |
25 | 3.65 | 10 | 12 | 6.722 | 7.554 | 7.537 | 8.11 |
26 | 3.98 | 9 | 11 | 6.982 | 8.388 | 8.372 | 8.30 |
27 | 3.75 | 10 | 12 | 6.801 | 7.554 | 7.586 | 7.37 |
28 | 2.07 | 11 | 13 | 5.473 | 6.720 | 6.092 | 6.92 |
29 | 2.46 | 12 | 14 | 5.781 | 5.886 | 5.608 | 5.47 |
30 | 2.4 | 10 | 12 | 5.734 | 7.554 | 6.927 | 7.20 |
31 | 3 | 10 | 12 | 6.208 | 7.554 | 7.220 | 7.89 |
32 | 3.33 | 9 | 11 | 6.469 | 8.388 | 8.055 | 8.57 |
33 | 3.1 | 10 | 12 | 6.287 | 7.554 | 7.269 | 7.85 |
34 | 2.14 | 13 | 15 | 5.529 | 5.052 | 4.778 | 3.66 |
35 | 1.67 | 13 | 14 | 5.157 | 5.052 | 5.223 | 5.15 |
36 | 2.32 | 12 | 14 | 5.671 | 5.886 | 5.540 | 6.01 |
37 | 2.03 | 12 | 13 | 5.442 | 5.886 | 6.073 | 5.44 |
38 | 1.85 | 12 | 14 | 5.300 | 5.886 | 5.311 | 5.69 |
39 | 3.42 | 13 | 15 | 6.540 | 5.052 | 5.403 | 5.22 |
40 | 3.28 | 13 | 15 | 6.429 | 5.052 | 5.335 | 4.37 |
41 | 1.95 | 13 | 14 | 5.379 | 5.052 | 5.360 | 5.06 |
42 | 1.8 | 12 | 14 | 5.260 | 5.886 | 5.286 | 5.17 |
43 | 3.71 | 13 | 15 | 6.769 | 5.052 | 5.544 | 5.12 |
44 | 2.46 | 12 | 14 | 5.781 | 5.886 | 5.608 | 6.48 |
45 | 2.82 | 12 | 14 | 6.066 | 5.886 | 5.784 | 5.82 |
46 | 3.15 | 12 | 14 | 6.327 | 5.886 | 5.945 | 5.24 |
47 | 2.27 | 12 | 14 | 5.631 | 5.886 | 5.516 | 5.96 |
48 | 2.93 | 12 | 14 | 6.153 | 5.886 | 5.838 | 5.48 |
49 | 3.89 | 11 | 14 | 6.911 | 6.720 | 6.306 | 7.06 |
50 | 2.85 | 9 | 11 | 6.090 | 8.388 | 7.821 | 7.72 |
51 | 3.5 | 9 | 11 | 6.603 | 8.388 | 8.138 | 7.58 |
52 | 3.79 | 10 | 12 | 6.832 | 7.554 | 7.606 | 8.24 |
53 | 4.44 | 9 | 11 | 7.346 | 8.388 | 8.597 | 8.30 |
54 | 4.29 | 10 | 12 | 7.227 | 7.554 | 7.850 | 8.23 |
55 | 5.22 | 9 | 11 | 7.962 | 8.388 | 8.977 | 8.55 |
56 | 4.94 | 10 | 12 | 7.741 | 7.554 | 8.167 | 8.09 |
57 | 5.87 | 9 | 13 | 8.475 | 8.388 | 7.947 | 8.14 |
58 | 3.18 | 12 | 14 | 6.350 | 5.886 | 5.960 | 7.99 |
59 | 4.62 | 12 | 13 | 7.488 | 5.886 | 7.337 | 8.51 |
60 | 3.83 | 12 | 14 | 6.864 | 5.886 | 6.277 | 7.89 |
61 | 5.27 | 12 | 14 | 8.001 | 5.886 | 6.980 | 8.14 |
62 | 2.11 | 10 | 12 | 5.505 | 7.554 | 6.786 | 5.68 |
63 | 3.32 | 12 | 14 | 6.461 | 5.886 | 6.028 | 5.33 |
64 | 2.11 | 11 | 13 | 5.505 | 6.720 | 6.112 | 5.66 |
65 | 2.93 | 11 | 14 | 6.153 | 6.720 | 5.838 | 5.92 |
66 | 4.54 | 10 | 12 | 7.425 | 7.554 | 7.972 | 7.89 |
67 | 3.91 | 12 | 14 | 6.927 | 5.886 | 6.316 | 6.66 |
68 | 4.74 | 12 | 14 | 7.583 | 5.886 | 6.721 | 5.79 |
69 | 5.06 | 11 | 13 | 7.835 | 6.720 | 7.551 | 6.45 |
70 | 5.4 | 11 | 13 | 8.104 | 6.720 | 7.717 | 7.11 |
71 | 5.45 | 11 | 13 | 8.144 | 6.720 | 7.742 | 7.92 |
72 | 5.19 | 11 | 14 | 7.938 | 6.720 | 6.941 | 7.04 |
73 | 3.89 | 10 | 12 | 6.911 | 7.554 | 7.654 | 8.13 |
74 | 3.27 | 11 | 13 | 6.421 | 6.720 | 6.678 | 6.47 |
75 | 4.1 | 11 | 13 | 7.077 | 6.720 | 7.083 | 5.40 |
76 | 4.41 | 11 | 13 | 7.322 | 6.720 | 7.234 | 6.35 |
77 | 4.17 | 11 | 13 | 7.132 | 6.720 | 7.117 | 7.02 |
78 | 3.33 | 11 | 13 | 6.469 | 6.720 | 6.707 | 7.02 |
79 | 2.68 | 11 | 13 | 5.955 | 6.720 | 6.390 | 7.00 |
(N = 79; r = 0.673; F = 63.85)
(N = 79; r = 0.830; F = 169.9; r2cv = 0.685)
(N = 79; r = 0.882; F = 133.2; r2cv = 0.774)
5. Conclusions
- the region of R1 substitute (see Table I) in the common pirymidin-2,4(1H,3H)-dione structure (corresponding to position 5 on this structure) with generally substitutes of small volume (alkyl, arylalkyl);
- the region of R2 substitute in the common structure (position 6) with phenyl-thyo rests un-substituted or substituted;
- the region of R3 substitute in the common structure (position N-1 in the primary structure of Figure 3) with the highest structural variation.
Acknowledgements
References
- Clavel, F.; Guyader, M.; Guetard, M.; Salle, M.; Montagnier, L.; Alizon, M. Molecular cloning and polymorphism of the human immune deficiency virus type 2. Nature 1986, 324, 691–695. [Google Scholar] [CrossRef]
- Guyader, M.; Emerman, M.; Sonigo, P.; Clavel, F.; Montagnier, M.; Alizon, M. Genome organization and transactivation of the human immunodeficiency virus type 2. Nature 1987, 326, 662–669. [Google Scholar] [CrossRef]
- Fauci, A.S. The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 1988, 239, 617–622. [Google Scholar]
- Barre-Sinoussi, F.; Chermann, J.-C.; Rey, F.; Nugeyre, M.T.; Chamaret, S.; Gruest, J.; Dauguet, C.; Axler-Blin, C.; Vezinet-Brun, F.; Rouzioux, C.; Rozenbaum, W.; Montagnier, L. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 1983, 220, 868–871. [Google Scholar]
- Popovic, M.; Sarngadharan, M.G.; Read, E.; Gallo, R.C. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 1984, 224, 497–500. [Google Scholar]Gallo, R.C.; Salahuddin, S.Z.; Popovic, M.; Shearer, G.M.; Kaplan, M.; Haynes, B.F.; Palker, T.J.; Redfield, R.; Oleske, J.; Safai, B.; White, G.; Foster, P.; Markham, P.D. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 1984, 224, 500–503. [Google Scholar]
- Fauci, A.S.; Lane, H.C. Human Immunodeficiency virus disease: AIDS and related disorders. In Harrison’s Principles of Internal Medicine, 16th ed.; Kasper, D. L., Braunwald, E., Fauci, A. S., Hauser, S. L., Longo, D. L., Jameson, J. L., Eds.; McGraw-Hill Companies Inc., 2005; pp. 1076–1139. [Google Scholar]
- De Clercq, E. HIV-1-specific RT inhibitors: highly selective inhibitors of human immunodeficiency virus type 1 that are specifically targeted at the viral reverse transcriptase. Med. Res. Rev. 1993, 13, 229–258. [Google Scholar] [CrossRef]
- Miyasaka, T.; Tanaka, H.; Baba, M.; Hayakawa, H.; Walker, R.T.; Balzarini, J.; De Clercq, E. A novel lead for specific anti-HIV-1 agents: 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine. J. Med. Chem. 1989, 32, 2507–2509. [Google Scholar]Baba, M.; Tanaka, H.; De Clercq, E.; Pauwels, R.; Balzarini, J.; Schols, D.; Nakashima, H.; Perno, C.F.; Walker, R.T.; Miyasaka, T. Highly specific inhibition of human immunodeficiency virus type 1 by a novel 6-substituted acyclouridine derivative. Biochem. Biophys. Res. Commun. 1989, 165, 1375–1381. [Google Scholar]
- Tanaka, H.; Hirayama, M.; Suzuki, M.; Miyasaka, T.; Matsuda, A.; Ueda, T. A lithiation route to c-5 substitution of an imidazole nucleoside and its application to the synthesis of 3-deazaguanosine. Tetrahedron 1986, 42, 1971–1980. [Google Scholar] [CrossRef]
- Tanaka, H.; Takashima, H.; Ubasawa, M.; Sekiya, K.; Nitta, I.; Baba, M.; Shigeta, S.; Walker, R.T.; De Clerq, E. Structure-activity relationships of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine analogues: effect of substitutions at the C-6 phenyl ring and at the C-5 position on anti-HIV-1 activity. J. Med. Chem. 1992, 35, 337–345. [Google Scholar]
- Balaban, A. T.; Chiriac, A.; Motoc, I; Simon, Z. Steric Fit in QSAR; Springer: Berlin, (Lecture Notes in Chemistry Series); 1980. [Google Scholar]
- Simon, Z; Chiriac, A.; Holban, S.; Ciubotariu, D.; Mihalas, G. I. Minimum Steric Difference. The MTD Method for QSAR Studies; Res. Studies Press (Wiley): Letchworth, 1984. [Google Scholar]
- Ciubotariu, D.; Deretey, E.; Oprea, T. I.; Sulea, T.; Simon, Z.; Kurunczi, L.; Chiriac, A. Multiconformational Minimal Steric Difference. Structure-Acetylcholinesterase Hydrolysis Rates Relations for Acetic Acid Esters. Quant. Struct. Act. Relat. 1993, 12, 367–372. [Google Scholar] [CrossRef]
- Simon, Z.; Chiriac, A.; Ciubotariu, D.; Mureşan, S.; Bologa, C.; Sulea, T.; Kurunczi, L. Metoda MTD (The MTD method). In Relaţii cantitative structură chimică – activitate biologică (QSAR). Metoda MTD (Quantitative chemical structure – biological activity relationships studies (QSAR). The MTD method); Chiriac, A., Ciubotariu, D., Simon, Z., Eds.; Mirton Publishing House: Timişoara, Romania, 1996; Chapter 5. [Google Scholar]
- Ciubotariu, D.; Gogonea, V.; Medeleanu, M. QSAR Studies by Molecular Descriptions; Diudea, M. V., Ed.; Nova Science Publ. Inc.: Huntington New York, 2001; Chapter 10. [Google Scholar]
- Ciubotariu, D.; Medeleanu, M.; Vlaia, V.; Olariu, T.; Ciubotariu, C.; Dragoş, D.; Seiman, C. Molecular van der Waals Space and Topological Indices from the Distance Matrix. Molecules 2004, 9, 1053–1078. [Google Scholar]
- Duda-Seiman, C. Doctoral Thesis: QSAR Studies of Pyrimidinic Compounds with Anti-HIV Activity; West University of Timişoara, 2005. [Google Scholar]
- Chiriac, A; Ciubotariu, D.; Funar-Timoftei, S.; Kurunczi, L.; Mracec, M.; Mracec, M.; Szabadai, Z.; Seclaman, E.; Simon, Z. QSAR and 3D-QSAR in Timişoara. 1972-2005. Rev. Roum. Chim. 2006, 51, 79–99. [Google Scholar]
- Duda-Seiman, C.; Duda-Seiman, D.; Hegheş, A.; Nuţiu, R.; Ciubotariu, D.; Suceveanu, N. Modelarea compuSilor pirimidinici cu activitate anti-HIV (Molecular modeling of pyrimidinic compounds with anti-HIV activity). Revista de Medicină şi Farmacie (Journal of Medicine and Pharmacy ) 2004, 50 (Supl. II), 144–149, ISSN 1221-2229. [Google Scholar]
- Tanaka, H.; Baba, M.; Ubasawa, M.; Takashima, H.; Sekiya, K.; Nitta, I.; Shigeta, S.; Walker, R.T.; De Clercq, E.; Miyasaka, T. Synthesis and anti-HIV activity of 2-, 3-, and 4-substituted analogues of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT). J. Med. Chem. 1991, 34, 1394–1399. [Google Scholar] [CrossRef]
- Tanaka, H.; Baba, M.; Saito, S.; Miyasaka, T.; Takashima, H.; Sekiya, K.; Ubasawa, M.; Nitta, I.; Walker, R.T.; Nakashima, H.; De Clercq, E. Specific anti-HIV-1 "acyclonucleosides" which cannot be phosphorylated: synthesis of some deoxy analogues of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine. J. Med. Chem. 1991, 34, 1508–1511. [Google Scholar] [CrossRef]
- HyperChem 7.01, Program package. Hypercube Inc., 2002.
- Olah, M.; Ciubotariu, D.; Ciubotariu, C.; Seiman, C.; Dragoş, D.; Pasere, M.; Medeleanu, M. Quantitative treatment of steric effects with the aid of molecular van der Waals descriptors for size and shape of substituents. In International Course & Conference on the Interface among Mathematics, Chemistry and Computer Sciences; Book of Abstracts; Ante, Graovac, Biserka, Pokrič, Vilko, Smrečky, Eds.; Inter University Centre: Dubrovnik, Croatia, June 24–29th; 2002; p. 55, ISBN 953-6690-22-5. [Google Scholar]
- Dean, P.M. Molecular Foundations of Drug-Receptor Interactions, 1st ed.; Vol. 1, Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
© 2006 by MDPI, (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Duda-Seiman, C.; Duda-Seiman, D.; Dragos, D.; Medeleanu, M.; Careja, V.; Putz, M.V.; Lacrama, A.-M.; Chiriac, A.; Nutiu, R.; Ciubotariu, D. Design of Anti-HIV Ligands by Means of Minimal Topological Difference (MTD) Method. Int. J. Mol. Sci. 2006, 7, 537-555. https://doi.org/10.3390/i7110537
Duda-Seiman C, Duda-Seiman D, Dragos D, Medeleanu M, Careja V, Putz MV, Lacrama A-M, Chiriac A, Nutiu R, Ciubotariu D. Design of Anti-HIV Ligands by Means of Minimal Topological Difference (MTD) Method. International Journal of Molecular Sciences. 2006; 7(11):537-555. https://doi.org/10.3390/i7110537
Chicago/Turabian StyleDuda-Seiman, Corina, Daniel Duda-Seiman, Dan Dragos, Mihai Medeleanu, Valentin Careja, Mihai V. Putz, Ana-Maria Lacrama, Adrian Chiriac, Remus Nutiu, and Dan Ciubotariu. 2006. "Design of Anti-HIV Ligands by Means of Minimal Topological Difference (MTD) Method" International Journal of Molecular Sciences 7, no. 11: 537-555. https://doi.org/10.3390/i7110537
APA StyleDuda-Seiman, C., Duda-Seiman, D., Dragos, D., Medeleanu, M., Careja, V., Putz, M. V., Lacrama, A. -M., Chiriac, A., Nutiu, R., & Ciubotariu, D. (2006). Design of Anti-HIV Ligands by Means of Minimal Topological Difference (MTD) Method. International Journal of Molecular Sciences, 7(11), 537-555. https://doi.org/10.3390/i7110537