Genome-Wide Identification and Expression Analysis of the Dof Transcription Factor Family in Prunella vulgaris
Abstract
1. Introduction
2. Results
2.1. Identification of Dof Family Genes, Analysis of Physical and Chemical Properties, and Chromosomal Localization of P. vulgaris
2.2. Phylogenetic Analysis and Collinearity Analysis of Dof Gene Family in P. vulgaris
2.3. Analysis of the Conservative Domain and Gene Structure of Dof Family Members in P. vulgaris
2.4. Analysis of Cis-Regulatory Elements of Dof Gene in P. vulgaris
2.5. Analysis of Protein Interaction Network of Dof Gene Family Members in P. vulgaris
2.6. Screening of Candidate Dof Gene for Regulation of Rosemary Acid Biosynthesis in P. vulgaris
2.7. Analysis of the Expression Pattern of Dof Gene Family in P. vulgaris
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Experimental Methods
4.2.1. Identification of Dof Gene Family Members in P. vulgaris
4.2.2. Analysis of Physicochemical Properties and Secondary Structure Prediction of P. vulgaris Dof Proteins
4.2.3. Chromosomal Localization and Phylogenetic Analysis of the P. vulgaris Dof Gene Family
4.2.4. Domain Analysis of the P. vulgaris Dof Gene Family
4.2.5. Collinearity Analysis of the P. vulgaris Dof Gene Family
4.2.6. Cis-Acting Element Analysis in the Promoters of the P. vulgaris Dof Gene Family
4.2.7. Protein–Protein Interaction Network Analysis of P. vulgaris Dof Family Members
4.2.8. Screening of Candidate Dof Genes Potentially Regulating Rosmarinic Acid Biosynthesis in P. vulgaris
4.2.9. Expression Pattern Analysis of the P. vulgaris Dof Gene Family and Validation by Real-Time Quantitative PCR (qRT-PCR)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Georgiev, M.I.; Agostini, E.; Ludwig-Müller, J.; Xu, J. Genetically transformed roots: From plant disease to biotechnological resource. Trends Biotechnol. 2012, 30, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Teng, W.; Wang, J.; Wang, X.; Zhang, Z.; Wang, M. Extraction and purification, structural characteristics, pharmacological activities, structure-activity relationships, applications, and quality assessments of Prunella vulgaris L. polysaccharides: A review. Int. J. Biol. Macromol. 2025, 306, 141665. [Google Scholar] [CrossRef] [PubMed]
- Andleeb, A.; Butt, H.; Ramzan, A.; Ghufran, H.; Masaud, A.; Rahman, F.; Tasneem, S.; Baig, M.T.; Abbasi, B.H.; Mehmood, A. Prunella vulgaris and Tussilago farfara demonstrate anti-inflammatory activity in rabbits and protect human adipose stem cells against thermal stress in vitro. J. Ethnopharmacol. 2025, 337, 118985. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luo, H.; Lin, X.; Hua, L.; Wang, J.; Xie, J.; Zhang, Z.; Shi, Z.; Li, M.; Peng, Q.; et al. Triterpenes of Prunella vulgaris Inhibit Triple-Negative Breast Cancer by Regulating PTP1B/PI3K/AKT/mTOR and IL-24/CXCL12/CXCR4 Pathways. Int. J. Mol. Sci. 2025, 26, 1959. [Google Scholar] [CrossRef]
- Zhu, M.J.; Song, Y.J.; Rao, P.L.; Gu, W.Y.; Xu, Y.; Xu, H.X. Therapeutic role of Prunella vulgaris L. polysaccharides in non-alcoholic steatohepatitis and gut dysbiosis. J. Integr. Med. 2025, 23, 297–308. [Google Scholar] [CrossRef]
- Jakovljević, D.; Warchoł, M.; Skrzypek, E. Rosmarinic Acid as Bioactive Compound: Molecular and Physiological Aspects of Biosynthesis with Future Perspectives. Cells 2025, 14, 850. [Google Scholar] [CrossRef]
- Fan, C.; Wu, J.; Hu, S.; Xia, Y.; Wei, Z.; Tang, H.; Jin, W.; Zhang, Z.; An, P.; Luo, J.; et al. Rosmarinic acid alleviates doxorubicin-induced cellular senescence and cardiotoxicity by targeting the 14-3-3/Foxo1 signaling axis. Phytomedicine 2025, 148, 157482. [Google Scholar] [CrossRef]
- Berger, A.; Meinhard, J.; Petersen, M. Rosmarinic acid synthase is a new member of the superfamily of BAHD acyltransferases. Planta 2006, 224, 1503–1510. [Google Scholar] [CrossRef]
- Yan, C.; Li, C.; Jiang, M.; Xu, Y.; Zhang, S.; Hu, X.; Chen, Y.; Lu, S. Systematic characterization of gene families and functional analysis of PvRAS3 and PvRAS4 involved in rosmarinic acid biosynthesis in Prunella vulgaris. Front. Plant Sci. 2024, 15, 1374912. [Google Scholar] [CrossRef]
- Xu, W.; Dubos, C.; Lepiniec, L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci. 2015, 20, 176–185. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Y.; Li, H.; Wang, T.; Zhang, J.; Ouyang, B.; Ye, Z. Molecular and functional characterization of ShNAC1, an NAC transcription factor from Solanum habrochaites. Plant Sci. 2018, 271, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Skirycz, A.; Jozefczuk, S.; Stobiecki, M.; Muth, D.; Zanor, M.I.; Witt, I.; Mueller-Roeber, B. Transcription factor AtDOF4;2 affects phenylpropanoid metabolism in Arabidopsis thaliana. New Phytol. 2007, 175, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Han, L.M.; Hua, W.P.; Cao, X.Y.; Yan, J.A.; Chen, C.; Wang, Z.Z. Genome-wide identification and expression analysis of the superoxide dismutase (SOD) gene family in Salvia miltiorrhiza. Gene 2020, 742, 144603, Erratum in Gene 2020, 742, 144639. [Google Scholar] [CrossRef] [PubMed]
- Grotewold, E. Transcription factors for predictive plant metabolic engineering: Are we there yet? Curr. Opin. Biotechnol. 2008, 19, 138–144. [Google Scholar] [CrossRef]
- Singh, S.K.; Patra, B.; Singleton, J.J.; Liu, Y.; Paul, P.; Sui, X.; Suttipanta, N.; Pattanaik, S.; Yuan, L. Identification and Characterization of Transcription Factors Regulating Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus. Methods Mol. Biol. 2022, 2505, 203–221. [Google Scholar] [CrossRef]
- Yanagisawa, S. The Dof family of plant transcription factors. Trends Plant Sci. 2002, 7, 555–560. [Google Scholar] [CrossRef]
- Yanagisawa, S.; Schmidt, R.J. Diversity and similarity among recognition sequences of Dof transcription factors. Plant J. 1999, 17, 209–214. [Google Scholar] [CrossRef]
- Umemura, Y.; Ishiduka, T.; Yamamoto, R.; Esaka, M. The Dof domain, a zinc finger DNA-binding domain conserved only in higher plants, truly functions as a Cys2/Cys2 Zn finger domain. Plant J. 2004, 37, 741–749. [Google Scholar] [CrossRef]
- Yanagisawa, S.; Izui, K. Molecular cloning of two DNA-binding proteins of maize that are structurally different but interact with the same sequence motif. J. Biol. Chem. 1993, 268, 16028–16036. [Google Scholar] [CrossRef]
- Kisu, Y.; Ono, T.; Shimofurutani, N.; Suzuki, M.; Esaka, M. Characterization and expression of a new class of zinc finger protein that binds to silencer region of ascorbate oxidase gene. Plant Cell Physiol. 1998, 39, 1054–1064. [Google Scholar] [CrossRef]
- Kang, H.G.; Singh, K.B. Characterization of salicylic acid-responsive, arabidopsis Dof domain proteins: Overexpression of OBP3 leads to growth defects. Plant J. 2000, 21, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Diaz, I.; Vicente-Carbajosa, J.; Abraham, Z.; Martínez, M.; Isabel-La Moneda, I.; Carbonero, P. The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant J. 2002, 29, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Noguero, M.; Atif, R.M.; Ochatt, S.; Thompson, R.D. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Sci. 2013, 209, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Feng, Q.; Shao, G.; Zuo, A.; Yan, X.; Liu, J.; Dong, J.; Ma, P. The transcription factor Dof32 coordinates salvianolic acid biosynthesis and drought tolerance in Salvia miltiorrhiza. Plant Physiol. 2025, 198, kiaf221. [Google Scholar] [CrossRef]
- Hao, X.; Pu, Z.; Cao, G.; You, D.; Zhou, Y.; Deng, C.; Shi, M.; Nile, S.H.; Wang, Y.; Zhou, W.; et al. Tanshinone and salvianolic acid biosynthesis are regulated by SmMYB98 in Salvia miltiorrhiza hairy roots. J. Adv. Res. 2020, 23, 1–12. [Google Scholar] [CrossRef]
- Li, Q.; Fang, X.; Zhao, Y.; Cao, R.; Dong, J.; Ma, P. The SmMYB36-SmERF6/SmERF115 module regulates the biosynthesis of tanshinones and phenolic acids in salvia miltiorrhiza hairy roots. Hortic. Res. 2023, 10, uhac238. [Google Scholar] [CrossRef]
- Luo, T.; Song, Y.; Gao, H.; Wang, M.; Cui, H.; Ji, C.; Wang, J.; Yuan, L.; Li, R. Genome-wide identification and functional analysis of Dof transcription factor family in Camelina sativa. BMC Genom. 2022, 23, 812. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Z.; Hao, Z.; Chen, G.; Qi, K.; Zhang, H.; Jiao, H.; Wu, X.; Zhang, S.; Wu, J.; et al. Characterization of Dof family in Pyrus bretschneideri and role of PbDof9.2 in flowering time regulation. Genomics 2020, 112, 712–720. [Google Scholar] [CrossRef]
- Lin, T.F.; Qiu, J.N.; Zhang, S.; Zhang, Y.; Zhang, Y.; Sun, M.; Zhang, J.H.; Liu, B.; Cheng, F.F.; Jiang, Y.Y. Screening out the anti-insomnia components from Prunella vulgaris L. based on plasma pharmacochemistry combined with pharmacodynamic experiments and UPLC-MS/MS analysis. J. Ethnopharmacol. 2021, 279, 114373. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, C.; Shu, W.; Ye, Z.; Li, H.; Zhang, Y. The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochem. Biophys. Res. Commun. 2016, 474, 736–741. [Google Scholar] [CrossRef]
- Petersen, M. Rosmarinic acid: New aspects. Phytochem. Rev. 2013, 12, 207–227. [Google Scholar] [CrossRef]
- Usadel, B.; Obayashi, T.; Mutwil, M.; Giorgi, F.M.; Bassel, G.W.; Tanimoto, M.; Chow, A.; Steinhauser, D.; Persson, S.; Provart, N.J. Co-expression tools for plant biology: Opportunities for hypothesis generation and caveats. Plant Cell Environ. 2009, 32, 1633–1651. [Google Scholar] [CrossRef]
- Rastogi, S.; Kalra, A.; Gupta, V.; Khan, F.; Lal, R.K.; Tripathi, A.K.; Parameswaran, S.; Gopalakrishnan, C.; Ramaswamy, G.; Shasany, A.K. Unravelling the genome of Holy basil: An “incomparable” “elixir of life” of traditional Indian medicine. BMC Genom. 2015, 16, 413. [Google Scholar] [CrossRef]
- Wang, S.J.; Wang, X.H.; Dai, Y.Y.; Ma, M.H.; Rahman, K.; Nian, H.; Zhang, H. Prunella vulgaris: A Comprehensive Review of Chemical Constituents, Pharmacological Effects and Clinical Applications. Curr. Pharm. Des. 2019, 25, 359–369. [Google Scholar] [CrossRef]
- Hellens, R.P.; Allan, A.C.; Friel, E.N.; Bolitho, K.; Grafton, K.; Templeton, M.D.; Karunairetnam, S.; Gleave, A.P.; Laing, W.A. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 2005, 1, 13. [Google Scholar] [CrossRef]
- Rai, A.; Saito, K.; Yamazaki, M. Integrated omics analysis of specialized metabolism in medicinal plants. Plant J. 2017, 90, 764–787. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhao, H.; Zhang, X.; Liang, Z.; He, Q. Systematic Identification and Validation of Suitable Reference Genes for the Normalization of Gene Expression in Prunella vulgaris under Different Organs and Spike Development Stages. Genes 2022, 13, 1947. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]











| PvDof48 | PvDof13 | PvDof28 | Rosmarinic Acid | ||
|---|---|---|---|---|---|
| PvDof48 | Pearson Correlation | -- | |||
| PvDof13 | Pearson Correlation | 0.833 | -- | ||
| Significance (Two-Tailed) | 0.080 | ||||
| PvDof28 | Pearson Correlation | −0.984 ** | −0.833 | -- | |
| Significance (Two-Tailed) | 0.002 | 0.080 | |||
| Rosmarinic acid | Pearson Correlation | 0.957 * | 0.927 * | −0.938 * | -- |
| Significance (Two-Tailed) | 0.011 | 0.023 | 0.019 |
| Gene Name | Forward Primer Sequence (5′ → 3′) | Reverse Primer Sequence (5′ → 3′) |
|---|---|---|
| PvDof48 | CTATGGTTCCCAAAGACACTCAGA | GATGGGGTTTGGAAGGGTTTAAAG |
| PvDof13 | TCAAAGGACGAATTAGGCAAGAGA | GTGTAGCATAGAATGGCATAGGGA |
| PvDof28 | TTACAGCCTCTCTCAACCTAGGTA | TTTTGGTGGGTTTAGATCTCGGAT |
| β-actin | GACCAGCTCTGCTGTGGAGA | ATGGCTGGAAGAGGACCTCAG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, M.; Wu, Y.; Xu, L.; Xu, R.; Yao, Y.; Ye, L.; Shi, Z. Genome-Wide Identification and Expression Analysis of the Dof Transcription Factor Family in Prunella vulgaris. Int. J. Mol. Sci. 2026, 27, 1354. https://doi.org/10.3390/ijms27031354
Zhang M, Wu Y, Xu L, Xu R, Yao Y, Ye L, Shi Z. Genome-Wide Identification and Expression Analysis of the Dof Transcription Factor Family in Prunella vulgaris. International Journal of Molecular Sciences. 2026; 27(3):1354. https://doi.org/10.3390/ijms27031354
Chicago/Turabian StyleZhang, Ming, Yong Wu, Lei Xu, Ru Xu, Yutao Yao, Lichun Ye, and Zhaohua Shi. 2026. "Genome-Wide Identification and Expression Analysis of the Dof Transcription Factor Family in Prunella vulgaris" International Journal of Molecular Sciences 27, no. 3: 1354. https://doi.org/10.3390/ijms27031354
APA StyleZhang, M., Wu, Y., Xu, L., Xu, R., Yao, Y., Ye, L., & Shi, Z. (2026). Genome-Wide Identification and Expression Analysis of the Dof Transcription Factor Family in Prunella vulgaris. International Journal of Molecular Sciences, 27(3), 1354. https://doi.org/10.3390/ijms27031354

