Mechano-Organ-on-Chip for Cancer Research
Abstract
1. Introduction
2. Engineering Mechano-OoC Platforms: Recapitulating the Mechanical Tumor Microenvironment
2.1. Key Mechanical Dimensions in the Tumor Microenvironment
2.2. Mechano-OoC Design Principles and Material Selection
2.3. Existing Mechano-OoC Platform Implementations and Applications
2.4. Challenges, Standardization, and Path Toward Reproducible Mechano-OoC
3. Sensing, Readout, and Data Considerations: Toward Mechano-OoC as a Research Standard
3.1. Lessons from General OoC for Assays and Readouts
3.2. Emerging Readout Modalities Relevant for Mechano-OoC
3.3. Sensor-Integrated and AI-Enhanced Readouts for Mechano-OoC
3.4. Liquid Metal Flexible Sensors Empower Microfluidic Models
3.5. Data Standardization, Metadata, and Path Toward Reproducibility & Translation

4. Artificial Intelligence in Organ-on-Chip: From Image Analysis to Predictive Modeling
4.1. AI-Driven Image Analysis for Non-Destructive Evaluation in OoC Systems
4.2. From Multimodal Feature Extraction to Predictive Modeling in OoC Systems
4.3. Challenges and Future Perspectives
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Mechano-OoC | Mechano-Organ-on-Chip |
| TME | Tumor microenvironment |
| ECM | Extracellular matrix |
| EMT | Epithelial–mesenchymal transition |
| OoC | Organ-on-chip |
| PDMS | Polydimethylsiloxane |
| PS | Polystyrene |
| PMMA | Polymethyl methacrylate |
| COC/COP | Cyclic olefin copolymer/polymer |
| GelMA | Gelatin methacrylate |
| LAP | Lithium phenyl-2,4,6-trimethylbenzoylphosphinate |
| PEGDA | Poly(ethylene glycol) diacrylate |
| DLP | Digital light processing |
| CAD | Computer-aided design |
| TEER | Trans-epithelial/endothelial electrical resistance |
| AIE | Aggregation-induced emission |
| DARPins | Designed ankyrin repeat proteins |
| COMSOL | COMSOL multiphysics |
| AI | Artificial intelligence |
References
- Marrella, A.; Fedi, A.; Varani, G.; Vaccari, I.; Fato, M.; Firpo, G.; Guida, P.; Aceto, N.; Scaglione, S. High blood flow shear stress values are associated with circulating tumor cells cluster disaggregation in a multi-channel microfluidic device. PLoS ONE 2021, 16, e0245536. [Google Scholar] [CrossRef]
- Yankaskas, C.L.; Bera, K.; Stoletov, K.; Serra, S.A.; Carrillo-Garcia, J.; Tuntithavornwat, S.; Mistriotis, P.; Lewis, J.D.; Valverde, M.A.; Konstantopoulos, K. The fluid shear stress sensor TRPM7 regulates tumor cell intravasation. Sci. Adv. 2021, 7, eabh3457. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.H.D.; Yin, B.; Li, Z.; Yuan, W.; Zhang, Q.; Xie, X.; Tan, Y.; Wong, N.; Zhang, K.; Bian, L. Mechanical manipulation of cancer cell tumorigenicity via heat shock protein signaling. Sci. Adv. 2023, 9, eadg9593. [Google Scholar] [CrossRef] [PubMed]
- Aydin, H.B.; Ozcelikkale, A.; Acar, A. Exploiting Matrix Stiffness to Overcome Drug Resistance. ACS Biomater. Sci. Eng. 2024, 10, 4682–4700. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, M.; Zhang, Y.; Su, Q.; Xie, Z.; Chen, X.; Yan, R.; Li, P.; Li, T.; Qin, X. Functions and clinical significance of mechanical tumor microenvironment: Cancer cell sensing, mechanobiology and metastasis. Cancer Commun. 2022, 42, 374–400. [Google Scholar] [CrossRef] [PubMed]
- Barbazan, J.; Perez-Gonzalez, C.; Gomez-Gonzalez, M.; Dedenon, M.; Richon, S.; Latorre, E.; Serra, M.; Mariani, P.; Descroix, S.; Sens, P.; et al. Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction. Nat. Commun. 2023, 14, 6966. [Google Scholar] [CrossRef]
- Wu, B.; Liu, D.A.; Guan, L.; Myint, P.K.; Chin, L.; Dang, H.; Xu, Y.; Ren, J.; Li, T.; Yu, Z.; et al. Stiff matrix induces exosome secretion to promote tumour growth. Nat. Cell Biol. 2023, 25, 415–424, Correction in Nat. Cell Biol. 2024, 26, 490–491. [Google Scholar] [CrossRef]
- Zamprogno, P.; Wuthrich, S.; Achenbach, S.; Thoma, G.; Stucki, J.D.; Hobi, N.; Schneider-Daum, N.; Lehr, C.M.; Huwer, H.; Geiser, T.; et al. Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane. Commun. Biol. 2021, 4, 168. [Google Scholar] [CrossRef]
- Grebenyuk, S.; Abdel Fattah, A.R.; Kumar, M.; Toprakhisar, B.; Rustandi, G.; Vananroye, A.; Salmon, I.; Verfaillie, C.; Grillo, M.; Ranga, A. Large-scale perfused tissues via synthetic 3D soft microfluidics. Nat. Commun. 2023, 14, 193. [Google Scholar] [CrossRef]
- Quintard, C.; Tubbs, E.; Jonsson, G.; Jiao, J.; Wang, J.; Werschler, N.; Laporte, C.; Pitaval, A.; Bah, T.S.; Pomeranz, G.; et al. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat. Commun. 2024, 15, 1452. [Google Scholar] [CrossRef]
- Fang, G.; Chen, Y.C.; Lu, H.; Jin, D. Advances in Spheroids and Organoids on a Chip. Adv. Funct. Mater. 2023, 33, 2215043. [Google Scholar] [CrossRef]
- Ge, J.Y.; Wang, Y.; Li, Q.L.; Liu, F.K.; Lei, Q.K.; Zheng, Y.W. Trends and challenges in organoid modeling and expansion with pluripotent stem cells and somatic tissue. PeerJ 2024, 12, e18422. [Google Scholar] [CrossRef]
- Jin, J.; Yoshimura, K.; Sewastjanow-Silva, M.; Song, S.; Ajani, J.A. Challenges and Prospects of Patient-Derived Xenografts for Cancer Research. Cancers 2023, 15, 4352. [Google Scholar] [CrossRef]
- Wang, H.; Ning, X.; Zhao, F.; Zhao, H.; Li, D. Human organoids-on-chips for biomedical research and applications. Theranostics 2024, 14, 788–818. [Google Scholar] [CrossRef]
- Abizanda-Campo, S.; Virumbrales-Munoz, M.; Humayun, M.; Marmol, I.; Beebe, D.J.; Ochoa, I.; Olivan, S.; Ayuso, J.M. Microphysiological systems for solid tumor immunotherapy: Opportunities and challenges. Microsyst. Nanoeng. 2023, 9, 154. [Google Scholar] [CrossRef]
- Peng, Y.; Lee, E. Microphysiological Systems for Cancer Immunotherapy Research and Development. Adv. Biol. 2024, 8, e2300077. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, E.Y.; Lai, F.B.L.; Cheung, K.; Radisic, M. Organs-on-a-chip: A union of tissue engineering and microfabrication. Trends Biotechnol. 2023, 41, 410–424. [Google Scholar] [CrossRef] [PubMed]
- Peel, S.; Jackman, M. Imaging microphysiological systems: A review. Am. J. Physiol.-Cell Physiol. 2021, 320, C669–C680. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, G.; Wu, J.; Liu, X.; Fan, Y.; Chen, J.; Wallace, G.; Gu, Q. Microphysiological Constructs and Systems: Biofabrication Tactics, Biomimetic Evaluation Approaches, and Biomedical Applications. Small Methods 2024, 8, e2300685. [Google Scholar] [CrossRef]
- Skubal, M.; Larney, B.M.; Phung, N.B.; Desmaras, J.C.; Dozic, A.V.; Volpe, A.; Ogirala, A.; Machado, C.L.; Djibankov, J.; Ponomarev, V.; et al. Vascularized tumor on a microfluidic chip to study mechanisms promoting tumor neovascularization and vascular targeted therapies. Theranostics 2025, 15, 766–783. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Quiros-Solano, W.F.; Kuijten, M.M.P.; Haspels, B.; Mallya, S.; Lo, C.S.Y.; Othman, A.; Silvestri, C.; van de Stolpe, A.; Gaio, N.; et al. A Microfluidic Cancer-on-Chip Platform Predicts Drug Response Using Organotypic Tumor Slice Culture. Cancer Res. 2022, 82, 510–520. [Google Scholar] [CrossRef]
- Monteiro, C.F.; Deus, I.A.; Silva, I.B.; Duarte, I.F.; Custódio, C.A.; Mano, J.F. Tumor-On-A-Chip Model Incorporating Human-Based Hydrogels for Easy Assessment of Metastatic Tumor Inter-Heterogeneity. Adv. Funct. Mater. 2024, 34, 2315940. [Google Scholar] [CrossRef]
- Liang, L.; Song, X.; Zhao, H.; Lim, C.T. Insights into the mechanobiology of cancer metastasis via microfluidic technologies. APL Bioeng. 2024, 8, 021506. [Google Scholar] [CrossRef]
- Gil, J.F.; Moura, C.S.; Silverio, V.; Goncalves, G.; Santos, H.A. Cancer Models on Chip: Paving the Way to Large-Scale Trial Applications. Adv. Mater. 2023, 35, e2300692. [Google Scholar] [CrossRef]
- Souza, I.F.; Vieira, J.P.J.; Bonifácio, E.D.; Avelar Freitas, B.A.d.; Torres, L.A.G. The Microenvironment of Solid Tumors: Components and Current Challenges of Tumor-on-a-Chip Models. Tissue Eng. Part B Rev. 2025, 31, 266–283. [Google Scholar] [CrossRef]
- Mai, Z.; Lin, Y.; Lin, P.; Zhao, X.; Cui, L. Modulating extracellular matrix stiffness: A strategic approach to boost cancer immunotherapy. Cell Death Dis. 2024, 15, 307. [Google Scholar] [CrossRef]
- Denais, C.M.; Gilbert, R.M.; Isermann, P.; McGregor, A.L.; te Lindert, M.; Weigelin, B.; Davidson, P.M.; Friedl, P.; Wolf, K.; Lammerding, J. Nuclear envelope rupture and repair during cancer cell migration. Science 2016, 352, 353–358. [Google Scholar] [CrossRef]
- Nguyen, H.-T.; Rissanen, S.-L.; Peltokangas, M.; Laakkonen, T.; Kettunen, J.; Barthod, L.; Sivakumar, R.; Palojärvi, A.; Junttila, P.; Talvitie, J.; et al. Highly scalable and standardized organ-on-chip platform with TEER for biological barrier modeling. Tissue Barriers 2024, 12, 2315702. [Google Scholar] [CrossRef]
- Chaudhuri, O.; Gu, L.; Klumpers, D.; Darnell, M.; Bencherif, S.A.; Weaver, J.C.; Huebsch, N.; Lee, H.P.; Lippens, E.; Duda, G.N.; et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 2016, 15, 326–334. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, B. Extracellular matrix stiffness: Mechanisms in tumor progression and therapeutic potential in cancer. Exp. Hematol. Oncol. 2025, 14, 54. [Google Scholar] [CrossRef]
- Zhang, S.; Grifno, G.; Passaro, R.; Regan, K.; Zheng, S.; Hadzipasic, M.; Banerji, R.; O’Connor, L.; Chu, V.; Kim, S.Y.; et al. Intravital measurements of solid stresses in tumours reveal length-scale and microenvironmentally dependent force transmission. Nat. Biomed. Eng. 2023, 7, 1473–1492. [Google Scholar] [CrossRef]
- Stylianopoulos, T.; Martin, J.D.; Chauhan, V.P.; Jain, S.R.; Diop-Frimpong, B.; Bardeesy, N.; Smith, B.L.; Ferrone, C.R.; Hornicek, F.J.; Boucher, Y.; et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl. Acad. Sci. USA 2012, 109, 15101–15108. [Google Scholar] [CrossRef]
- Joshi, I.M.; Mansouri, M.; Ahmed, A.; De Silva, D.; Simon, R.A.; Esmaili, P.; Desa, D.E.; Elias, T.M.; Brown, E.B.; Abhyankar, V.V. Microengineering 3D Collagen Matrices with Tumor-Mimetic Gradients in Fiber Alignment. Adv. Funct. Mater. 2023, 34, 2308071. [Google Scholar] [CrossRef]
- Kamaras, C.; Frank, D.; Wang, H.; Drepper, F.; Huesgen, P.F.; Grosse, R. Nuclear rupture in confined cell migration triggers nuclear actin polymerization to limit chromatin leakage. EMBO J. 2025, 44, 6112–6136. [Google Scholar] [CrossRef]
- Hopkins, E.; Valois, E.; Stull, A.; Le, K.; Pitenis, A.A.; Wilson, M.Z. An Optogenetic Platform to Dynamically Control the Stiffness of Collagen Hydrogels. ACS Biomater. Sci. Eng. 2021, 7, 408–414. [Google Scholar] [CrossRef]
- Smits, J.; van der Pol, A.; Goumans, M.J.; Bouten, C.V.C.; Jorba, I. GelMA hydrogel dual photo-crosslinking to dynamically modulate ECM stiffness. Front. Bioeng. Biotechnol. 2024, 12, 1363525. [Google Scholar] [CrossRef]
- Prakash, J.; Shaked, Y. The Interplay between Extracellular Matrix Remodeling and Cancer Therapeutics. Cancer Discov. 2024, 14, 1375–1388. [Google Scholar] [CrossRef]
- Kutluk, H.; Bastounis, E.E.; Constantinou, I. Integration of Extracellular Matrices into Organ-on-Chip Systems. Adv. Healthc. Mater. 2023, 12, e2203256. [Google Scholar] [CrossRef]
- Zhou, Z.; Vessella, T.; Wang, P.; Cui, F.; Wen, Q.; Zhou, H.S. Mechanical cues in tumor microenvironment on chip. Biosens. Bioelectron. X 2023, 14, 100376. [Google Scholar] [CrossRef]
- Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H.Y.; Ingber, D.E. Reconstituting organ-level lung functions on a chip. Science 2010, 328, 1662–1668. [Google Scholar] [CrossRef]
- Polacheck, W.J.; Charest, J.L.; Kamm, R.D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl. Acad. Sci USA 2011, 108, 11115–11120. [Google Scholar] [CrossRef]
- Stowers, R.S.; Allen, S.C.; Suggs, L.J. Dynamic phototuning of 3D hydrogel stiffness. Proc. Natl. Acad. Sci USA 2015, 112, 1953–1958. [Google Scholar] [CrossRef]
- Farhang Doost, N.; Srivastava, S.K. A Comprehensive Review of Organ-on-a-Chip Technology and Its Applications. Biosensors 2024, 14, 225. [Google Scholar] [CrossRef]
- Iakovlev, A.P.; Erofeev, A.S.; Gorelkin, P.V. Novel Pumping Methods for Microfluidic Devices: A Comprehensive Review. Biosensors 2022, 12, 956. [Google Scholar] [CrossRef]
- Ferrari, D.; Sengupta, A.; Heo, L.; Petho, L.; Michler, J.; Geiser, T.; de Jesus Perez, V.A.; Kuebler, W.M.; Zeinali, S.; Guenat, O.T. Effects of biomechanical and biochemical stimuli on angio- and vasculogenesis in a complex microvasculature-on-chip. iScience 2023, 26, 106198. [Google Scholar] [CrossRef]
- Toepke, M.W.; Beebe, D.J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 2006, 6, 1484–1486. [Google Scholar] [CrossRef]
- Campbell, S.B.; Wu, Q.; Yazbeck, J.; Liu, C.; Okhovatian, S.; Radisic, M. Beyond Polydimethylsiloxane: Alternative Materials for Fabrication of Organ-on-a-Chip Devices and Microphysiological Systems. ACS Biomater. Sci. Eng. 2021, 7, 2880–2899. [Google Scholar] [CrossRef]
- Sanchez-Salazar, M.G.; Crespo-Lopez Oliver, R.; Ramos-Meizoso, S.; Jerezano-Flores, V.S.; Gallegos-Martinez, S.; Bolivar-Monsalve, E.J.; Ceballos-Gonzalez, C.F.; Trujillo-de Santiago, G.; Alvarez, M.M. 3D-Printed Tumor-on-Chip for the Culture of Colorectal Cancer Microspheres: Mass Transport Characterization and Anti-Cancer Drug Assays. Bioengineering 2023, 10, 554. [Google Scholar] [CrossRef]
- Wang, L.; Tong, L.; Xiong, Z.; Chen, Y.; Zhang, P.; Gao, Y.; Liu, J.; Yang, L.; Huang, C.; Ye, G.; et al. Ferroptosis-inducing nanomedicine and targeted short peptide for synergistic treatment of hepatocellular carcinoma. J. Nanobiotechnol. 2024, 22, 533. [Google Scholar] [CrossRef]
- Li, C.; Holman, J.B.; Shi, Z.; Qiu, B.; Ding, W. On-chip modeling of tumor evolution: Advances, challenges and opportunities. Mater. Today Bio. 2023, 21, 100724. [Google Scholar] [CrossRef]
- Pinho, D.; Santos, D.; Vila, A.; Carvalho, S. Establishment of Colorectal Cancer Organoids in Microfluidic-Based System. Micromachines 2021, 12, 497. [Google Scholar] [CrossRef]
- Hwangbo, H.; Chae, S.; Kim, W.; Jo, S.; Kim, G.H. Tumor-on-a-chip models combined with mini-tissues or organoids for engineering tumor tissues. Theranostics 2024, 14, 33–55. [Google Scholar] [CrossRef]
- Amereh, M.; Seyfoori, A.; Dallinger, B.; Azimzadeh, M.; Stefanek, E.; Akbari, M. 3D-Printed Tumor-on-a-Chip Model for Investigating the Effect of Matrix Stiffness on Glioblastoma Tumor Invasion. Biomimetics 2023, 8, 421. [Google Scholar] [CrossRef]
- Wei, Z.; Lei, M.; Wang, Y.; Xie, Y.; Xie, X.; Lan, D.; Jia, Y.; Liu, J.; Ma, Y.; Cheng, B.; et al. Hydrogels with tunable mechanical plasticity regulate endothelial cell outgrowth in vasculogenesis and angiogenesis. Nat. Commun. 2023, 14, 8307, Correction in Nat. Commun. 2024, 15, 3274. [Google Scholar] [CrossRef]
- Sievers, J.; Mahajan, V.; Welzel, P.B.; Werner, C.; Taubenberger, A. Precision Hydrogels for the Study of Cancer Cell Mechanobiology. Adv. Healthc. Mater. 2023, 12, e2202514. [Google Scholar] [CrossRef]
- Maller, O.; Drain, A.P.; Barrett, A.S.; Borgquist, S.; Ruffell, B.; Zakharevich, I.; Pham, T.T.; Gruosso, T.; Kuasne, H.; Lakins, J.N.; et al. Tumour-associated macrophages drive stromal cell-dependent collagen crosslinking and stiffening to promote breast cancer aggression. Nat. Mater. 2021, 20, 548–559. [Google Scholar] [CrossRef]
- Liu, Y.; Okesola, B.O.; Osuna de la Peña, D.; Li, W.; Lin, M.L.; Trabulo, S.; Tatari, M.; Lawlor, R.T.; Scarpa, A.; Wang, W.; et al. A Self-Assembled 3D Model Demonstrates How Stiffness Educates Tumor Cell Phenotypes and Therapy Resistance in Pancreatic Cancer. Adv. Healthc. Mater. 2024, 13, 2301941. [Google Scholar] [CrossRef]
- de Roode, K.E.; Hashemi, K.; Verdurmen, W.P.R.; Brock, R. Tumor-On-A-Chip Models for Predicting In Vivo Nanoparticle Behavior. Small 2024, 20, 2402311. [Google Scholar] [CrossRef]
- Shaji, M.; Tamada, A.; Fujimoto, K.; Muguruma, K.; Karsten, S.L.; Yokokawa, R. Deciphering potential vascularization factors of on-chip co-cultured hiPSC-derived cerebral organoids. Lab Chip 2024, 24, 680–696. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Y.; Islam, K.; Paul, R.; Zhou, Y.; Qin, X.; Li, Q.; Liu, Y. Microphysiologically Engineered Vessel-Tumor Model to Investigate Vascular Transport Dynamics of Immune Cells. ACS Appl. Mater. Interfaces 2024, 16, 22839–22849. [Google Scholar] [CrossRef]
- Wan, Z.; Floryan, M.A.; Coughlin, M.F.; Zhang, S.; Zhong, A.X.; Shelton, S.E.; Wang, X.; Xu, C.; Barbie, D.A.; Kamm, R.D. New Strategy for Promoting Vascularization in Tumor Spheroids in a Microfluidic Assay. Adv. Healthc. Mater. 2023, 12, 2201784. [Google Scholar] [CrossRef]
- Riveiro Rodríguez, A.; Onal, S.; Alkaisi, M.M.; Nock, V. Application of sequential cyclic compression on cancer cells in a flexible microdevice. PLoS ONE 2023, 18, e0279896. [Google Scholar]
- Mary, G.; Malgras, B.; Perez, J.E.; Nagle, I.; Luciani, N.; Pimpie, C.; Asnacios, A.; Pocard, M.; Reffay, M.; Wilhelm, C. Magnetic Compression of Tumor Spheroids Increases Cell Proliferation In Vitro and Cancer Progression In Vivo. Cancers 2022, 14, 366. [Google Scholar] [CrossRef]
- Cao, T.; Xu, P.; Yang, C.; Chen, Y.; Wang, Y.; Zhang, J.; Ye, F. Design strategy primer for organ-on-chips. Biomater. Transl. 2025, 6, 250–264. [Google Scholar]
- Stylianopoulos, T.; Jain, R.K. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc. Natl. Acad. Sci. USA 2013, 110, 18632–18637. [Google Scholar] [CrossRef]
- Nia, H.T.; Liu, H.; Seano, G.; Datta, M.; Jones, D.; Rahbari, N.; Incio, J.; Chauhan, V.P.; Jung, K.; Martin, J.D.; et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 2016, 1, 0004. [Google Scholar] [CrossRef]
- Mohapatra, R.; Leist, M.; von Aulock, S.; Hartung, T. Guidance for Good In Vitro Reporting Standards (GIVReSt)—A draft for stakeholder discussion and background documentation. ALTEX 2025, 42, 376–396. [Google Scholar]
- Pamies, D.; Ekert, J.; Zurich, M.G.; Frey, O.; Werner, S.; Piergiovanni, M.; Freedman, B.S.; Keong Teo, A.K.; Erfurth, H.; Reyes, D.R.; et al. Recommendations on fit-for-purpose criteria to establish quality management for microphysiological systems and for monitoring their reproducibility. Stem Cell Rep. 2024, 19, 604–617. [Google Scholar] [CrossRef]
- Liu, X.; Fang, J.; Huang, S.; Wu, X.; Xie, X.; Wang, J.; Liu, F.; Zhang, M.; Peng, Z.; Hu, N. Tumor-on-a-chip: From bioinspired design to biomedical application. Microsyst. Nanoeng. 2021, 7, 50. [Google Scholar]
- Cook, S.R.; Ball, A.G.; Mohammad, A.; Pompano, R.R. A 3D-printed multi-compartment organ-on-chip platform with a tubing-free pump models communication with the lymph node. Lab Chip 2025, 25, 155–174. [Google Scholar] [CrossRef]
- Vuorenpaa, H.; Bjorninen, M.; Valimaki, H.; Ahola, A.; Kroon, M.; Honkamaki, L.; Koivumaki, J.T.; Pekkanen-Mattila, M. Building blocks of microphysiological system to model physiology and pathophysiology of human heart. Front. Physiol. 2023, 14, 1213959. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, Y.; Lin, C.; Miao, J.; Yu, X. A monolithically integrated microcantilever biosensor based on partially depleted SOI CMOS technology. Microsyst. Nanoeng. 2023, 9, 60. [Google Scholar] [CrossRef]
- Mou, L.; Mandal, K.; Mecwan, M.M.; Hernandez, A.L.; Maity, S.; Sharma, S.; Herculano, R.D.; Kawakita, S.; Jucaud, V.; Dokmeci, M.R.; et al. Integrated biosensors for monitoring microphysiological systems. Lab Chip 2022, 22, 3801–3816, Correction in Lab Chip 2022, 22, 3801–3816. [Google Scholar] [CrossRef]
- Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H.; et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell 2018, 172, 373–386 e10. [Google Scholar] [CrossRef] [PubMed]
- Pauli, C.; Hopkins, B.D.; Prandi, D.; Shaw, R.; Fedrizzi, T.; Sboner, A.; Sailer, V.; Augello, M.; Puca, L.; Rosati, R.; et al. Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine. Cancer Discov. 2017, 7, 462–477. [Google Scholar] [CrossRef]
- Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernandez-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R.; et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018, 359, 920–926. [Google Scholar] [CrossRef]
- Aydogmus, H.; Hu, M.; Ivancevic, L.; Frimat, J.P.; van den Maagdenberg, A.; Sarro, P.M.; Mastrangeli, M. An organ-on-chip device with integrated charge sensors and recording microelectrodes. Sci. Rep. 2023, 13, 8062. [Google Scholar] [CrossRef]
- Bossink, E.; Zakharova, M.; de Bruijn, D.S.; Odijk, M.; Segerink, L.I. Measuring barrier function in organ-on-chips with cleanroom-free integration of multiplexable electrodes. Lab Chip 2021, 21, 2040–2049. [Google Scholar] [CrossRef] [PubMed]
- Dornhof, J.; Kieninger, J.; Muralidharan, H.; Maurer, J.; Urban, G.A.; Weltin, A. Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures. Lab Chip 2022, 22, 225–239. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Yang, C.; Wu, Y.; Lei, G.; Yu, Y.; Gao, Y.; Du, J.; Tong, X.; Zhou, F.; et al. Investigating CENPW as a Novel Biomarker Correlated With the Development and Poor Prognosis of Breast Carcinoma. Front. Genet. 2022, 13, 900111. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, L.; Hu, W.; Tang, L.; Zhang, P.; Gao, Y.; Du, J.; Li, Y.; Wang, Y. CDC25C is a prognostic biomarker and correlated with mitochondrial homeostasis in pancreatic adenocarcinoma. Bioengineered 2022, 13, 13089–13107. [Google Scholar] [CrossRef] [PubMed]
- Stucki, A.O.; Stucki, J.D.; Hall, S.R.; Felder, M.; Mermoud, Y.; Schmid, R.A.; Geiser, T.; Guenat, O.T. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 2015, 15, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, R.F.; Sart, S.; Champetier, T.; Baroud, C.N. Individual Control and Quantification of 3D Spheroids in a High-Density Microfluidic Droplet Array. Cell Rep. 2020, 31, 107670. [Google Scholar] [CrossRef]
- Ceccarelli, M.C.; Lefevre, M.C.; Marino, A.; Pignatelli, F.; Krukiewicz, K.; Battaglini, M.; Ciofani, G. Real-time monitoring of a 3D blood-brain barrier model maturation and integrity with a sensorized microfluidic device. Lab Chip 2024, 24, 5085–5100. [Google Scholar] [CrossRef]
- Kuhlbach, C.; da Luz, S.; Baganz, F.; Hass, V.C.; Mueller, M.M. A Microfluidic System for the Investigation of Tumor Cell Extravasation. Bioengineering 2018, 5, 40. [Google Scholar] [CrossRef]
- Garcia-Chame, M.; Wadhwani, P.; Pfeifer, J.; Schepers, U.; Niemeyer, C.M.; Dominguez, C.M. A Versatile Microfluidic Platform for Extravasation Studies Based on DNA Origami-Cell Interactions. Angew. Chem. Int. Ed. Engl. 2024, 63, e202318805. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, F.; Gao, M.; Niu, Y. Concentration Gradient Constructions Using Inertial Microfluidics for Studying Tumor Cell-Drug Interactions. Micromachines 2020, 11, 493. [Google Scholar] [CrossRef]
- Steinberg, E.; Friedman, R.; Goldstein, Y.; Friedman, N.; Beharier, O.; Demma, J.A.; Zamir, G.; Hubert, A.; Benny, O. A fully 3D-printed versatile tumor-on-a-chip allows multi-drug screening and correlation with clinical outcomes for personalized medicine. Commun. Biol. 2023, 6, 1157. [Google Scholar] [CrossRef] [PubMed]
- Dadgar, N.; Gonzalez-Suarez, A.M.; Fattahi, P.; Hou, X.; Weroha, J.S.; Gaspar-Maia, A.; Stybayeva, G.; Revzin, A. A microfluidic platform for cultivating ovarian cancer spheroids and testing their responses to chemotherapies. Microsyst. Nanoeng. 2020, 6, 93. [Google Scholar] [CrossRef]
- Singh, D.; Deosarkar, S.P.; Cadogan, E.; Flemington, V.; Bray, A.; Zhang, J.; Reiserer, R.S.; Schaffer, D.K.; Gerken, G.B.; Britt, C.M.; et al. A microfluidic system that replicates pharmacokinetic (PK) profiles in vitro improves prediction of in vivo efficacy in preclinical models. PLoS Biol. 2022, 20, e3001624. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.; Park, S. A Microfluidic Spheroid Culture Device with a Concentration Gradient Generator for High-Throughput Screening of Drug Efficacy. Molecules 2018, 23, 3355. [Google Scholar] [CrossRef]
- Lee, S.I.; Choi, Y.Y.; Kang, S.G.; Kim, T.H.; Choi, J.W.; Kim, Y.J.; Kim, T.H.; Kang, T.; Chung, B.G. 3D Multicellular Tumor Spheroids in a Microfluidic Droplet System for Investigation of Drug Resistance. Polymers 2022, 14, 3752. [Google Scholar] [CrossRef]
- Lipreri, M.V.; Totaro, M.T.; Boos, J.A.; Basile, M.S.; Baldini, N.; Avnet, S. A Novel Microfluidic Platform for Personalized Anticancer Drug Screening Through Image Analysis. Micromachines 2024, 15, 1521. [Google Scholar] [CrossRef] [PubMed]
- Maulana, T.I.; Teufel, C.; Cipriano, M.; Roosz, J.; Lazarevski, L.; van den Hil, F.E.; Scheller, L.; Orlova, V.; Koch, A.; Hudecek, M.; et al. Breast cancer-on-chip for patient-specific efficacy and safety testing of CAR-T cells. Cell Stem. Cell 2024, 31, 989–1002 e9. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Choi, Y.; Jang, W.; Ulziituya, B.; Ha, G.; Kang, R.; Park, S.; Kim, M.; Zhang, Y.S.; Kim, H.J.; et al. A vascularized tumors-on-a-chip model for studying tumor-angiogenesis interplay, heterogeneity and drug responses. Mater. Today Bio 2025, 32, 101741. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, Y.; Paul, R.; Qin, X.; Liu, Y. Hierarchical Vessel Network-Supported Tumor Model-on-a-Chip Constructed by Induced Spontaneous Anastomosis. ACS Appl. Mater. Interfaces 2023, 15, 6431–6441. [Google Scholar] [CrossRef]
- Shao, S.; Delk, N.A.; Jones, C.N. A microphysiological system reveals neutrophil contact-dependent attenuation of pancreatic tumor progression by CXCR2 inhibition-based immunotherapy. Sci. Rep. 2024, 14, 14142. [Google Scholar] [CrossRef]
- Xu, J.; Wu, D.; Hanada, Y.; Chen, C.; Wu, S.; Cheng, Y.; Sugioka, K. Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing. Lab Chip 2013, 13, 4608–4616. [Google Scholar] [CrossRef] [PubMed]
- Misun, P.M.; Rothe, J.; Schmid, Y.R.F.; Hierlemann, A.; Frey, O. Multi-analyte biosensor interface for real-time monitoring of 3D microtissue spheroids in hanging-drop networks. Microsyst. Nanoeng. 2016, 2, 16022. [Google Scholar] [CrossRef]
- Neairat, T.; Al-Gawati, M.; Tul Ain, Q.; Assaifan, A.K.; Alshamsan, A.; Alarifi, A.; Alodhayb, A.N.; Alzahrani, K.E.; Albrithen, H. Development of a microcantilever-based biosensor for detecting Programmed Death Ligand 1. Saudi. Pharm. J. 2024, 32, 102051. [Google Scholar] [CrossRef]
- Nolan, J.K.; Nguyen, T.N.H.; Le, K.V.H.; DeLong, L.E.; Lee, H. Simple Fabrication of Flexible Biosensor Arrays Using Direct Writing for Multianalyte Measurement from Human Astrocytes. SLAS Technol. 2020, 25, 33–46. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Aleman, J.; Shin, S.R.; Kilic, T.; Kim, D.; Mousavi Shaegh, S.A.; Massa, S.; Riahi, R.; Chae, S.; Hu, N.; et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc. Natl. Acad. Sci. USA 2017, 114, E2293–E2302. [Google Scholar] [CrossRef]
- Kanioura, A.; Filippidou, M.K.; Tsounidi, D.; Petrou, P.S.; Chatzandroulis, S.; Tserepi, A. An Organ-on-a-Chip Modular Platform with Integrated Immunobiosensors for Monitoring the Extracellular Environment. Micromachines 2025, 16, 740. [Google Scholar] [CrossRef]
- Morales, I.A.; Boghdady, C.M.; Campbell, B.E.; Moraes, C. Integrating mechanical sensor readouts into organ-on-a-chip platforms. Front. Bioeng. Biotechnol. 2022, 10, 1060895. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.A.; Hartse, B.X.; Niaraki Asli, A.E.; Taghavimehr, M.; Hashemi, N.; Abbasi Shirsavar, M.; Montazami, R.; Alimoradi, N.; Nasirian, V.; Ouedraogo, L.J.; et al. Advancement of Sensor Integrated Organ-on-Chip Devices. Sensors 2021, 21, 1367. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, S.; Johansson, S.; Tjell, A.O.; Werr, G.; Mayr, T.; Tenje, M. In-Line Analysis of Organ-on-Chip Systems with Sensors: Integration, Fabrication, Challenges, and Potential. ACS Biomater. Sci. Eng. 2021, 7, 2926–2948. [Google Scholar] [CrossRef]
- Movčana, V.; Strods, A.; Narbute, K.; Rūmnieks, F.; Rimša, R.; Mozoļevskis, G.; Ivanovs, M.; Kadiķis, R.; Zviedris, K.G.; Leja, L.; et al. Organ-On-A-Chip (OOC) Image Dataset for Machine Learning and Tissue Model Evaluation. Data 2024, 9, 28. [Google Scholar] [CrossRef]
- Liu, B.; Qin, P.; Liu, M.; Liu, W.; Zhang, P.; Ye, Z.; Deng, Z.; Li, Z.; Gui, L. Pressure Driven Rapid Reconfigurable Liquid Metal Patterning. Micromachines 2023, 14, 717. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Zhou, J.; Chow, L.; Zhao, G.; Huang, Y.; Ma, Z.; Zhang, Q.; Yang, Y.; Yiu, C.K.; et al. A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 2024, 628, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Zhang, Y.; Zhang, J.; Hui, L.; Qi, R.; Han, Y.; Sun, X.; Li, Y.; Wei, Y.; Zhang, Y.; et al. Wearable Arduino-Based Electronic Interactive Tattoo: A New Type of High-Tech Humanized Emotional Expression for Electronic Skin. Sensors 2025, 25, 2153. [Google Scholar] [CrossRef]
- Tao, Y.; Han, F.; Shi, C.; Yang, R.; Chen, Y.; Ren, Y. Liquid Metal-Based Flexible and Wearable Sensor for Functional Human-Machine Interface. Micromachines 2022, 13, 1429. [Google Scholar] [CrossRef]
- Lin, W.; Ai, L.; Wang, Y.; Yang, X.; Liao, J.; Pan, Q.; Hong, Y.; Liu, S.; Long, Z.; Khoo, B.L.; et al. Imperceptible liquid metal based tattoo for Human-Machine interface on hairy skin. Chem. Eng. J. 2024, 490, 151595. [Google Scholar] [CrossRef]
- Gao, Z.; Mansor, M.H.; Howard, F.; MacInnes, J.; Zhao, X.; Muthana, M. Microfluidic-Assisted Silk Nanoparticles Co-Loaded with Epirubicin and Copper Sulphide: A Synergistic Photothermal-Photodynamic Chemotherapy Against Breast Cancer. Nanomaterials 2025, 15, 221. [Google Scholar] [CrossRef]
- Meng, Z.; Xue, H.; Wang, T.; Chen, B.; Dong, X.; Yang, L.; Dai, J.; Lou, X.; Xia, F. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: From chemical to clinical. J. Nanobiotechnol. 2022, 20, 344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Deng, Y.; Liu, Y.S.; Chua, S.L.; Tang, B.Z.; Khoo, B.L. Bacterial targeted AIE photosensitizers synergistically promote chemotherapy for the treatment of inflammatory cancer. Chem. Eng. J. 2022, 447, 137579. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Sun, K.; Abulimiti, A.; Xu, P.P.; Li, Z.Y. Microfluidic System for Observation of Bacterial Culture and Effects on Biofilm Formation at Microscale. Micromachines 2019, 10, 606. [Google Scholar] [CrossRef] [PubMed]
- Azharuddin, M.; Roberg, K.; Dhara, A.K.; Jain, M.V.; Darcy, P.; Hinkula, J.; Slater, N.K.H.; Patra, H.K. Dissecting multi drug resistance in head and neck cancer cells using multicellular tumor spheroids. Sci. Rep. 2019, 9, 20066. [Google Scholar] [CrossRef]
- van Duinen, V.; van den Heuvel, A.; Trietsch, S.J.; Lanz, H.L.; van Gils, J.M.; van Zonneveld, A.J.; Vulto, P.; Hankemeier, T. 96 perfusable blood vessels to study vascular permeability in vitro. Sci. Rep. 2017, 7, 18071. [Google Scholar] [CrossRef]
- Palacio-Castaneda, V.; Dumas, S.; Albrecht, P.; Wijgers, T.J.; Descroix, S.; Verdurmen, W.P.R. A Hybrid In Silico and Tumor-on-a-Chip Approach to Model Targeted Protein Behavior in 3D Microenvironments. Cancers 2021, 13, 2461. [Google Scholar] [CrossRef]
- Park, S.; Joo, Y.K.; Chen, Y. Versatile and High-throughput Force Measurement Platform for Dorsal Cell Mechanics. Sci. Rep. 2019, 9, 13286. [Google Scholar] [CrossRef]
- Bussooa, A.; Tubbs, E.; Revol-Cavalier, F.; Chmayssem, A.; Alessio, M.; Cosnier, M.-L.; Verplanck, N. Real-time monitoring of oxygen levels within thermoplastic Organ-on-Chip devices. Biosens. Bioelectron. X 2022, 11, 100198. [Google Scholar]
- Jang, H.; Kim, J.; Shin, J.H.; Fredberg, J.J.; Park, C.Y.; Park, Y. Traction microscopy with integrated microfluidics: Responses of the multi-cellular island to gradients of HGF. Lab Chip 2019, 19, 1579–1588. [Google Scholar] [CrossRef]
- Browning, A.P.; Sharp, J.A.; Murphy, R.J.; Gunasingh, G.; Lawson, B.; Burrage, K.; Haass, N.K.; Simpson, M. Quantitative analysis of tumour spheroid structure. Elife 2021, 10, e73020. [Google Scholar] [CrossRef]
- Soragni, C.; Vergroesen, T.; Hettema, N.; Rabussier, G.; Lanz, H.L.; Trietsch, S.J.; de Windt, L.J.; Ng, C.P. Quantify permeability using on-a-chip models in high-throughput applications. STAR Protoc 2023, 4, 102051. [Google Scholar] [CrossRef]
- Ahn, S.I.; Sei, Y.J.; Park, H.J.; Kim, J.; Ryu, Y.; Choi, J.J.; Sung, H.J.; MacDonald, T.J.; Levey, A.I.; Kim, Y. Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms. Nat. Commun. 2020, 11, 175. [Google Scholar] [CrossRef]
- Lin, Y.H.; Lin, C.M.; Man, K.M.; Hung, C.C.; Hsu, H.L.; Chen, Y.; Mu, H.Y.; Hsiao, T.H.; Huang, J.H. Real-time and regional analysis of the efficacy of anticancer drugs in a patient-derived intratumoral heterogeneous tumor microenvironment. Lab Chip 2025, 25, 1728–1743. [Google Scholar]
- Plesselova, S.; Calar, K.; Axemaker, H.; Sahly, E.; Bhagia, A.; Faragher, J.L.; Fink, D.M.; de la Puente, P. Multicompartmentalized Microvascularized Tumor-on-a-Chip to Study Tumor-Stroma Interactions and Drug Resistance in Ovarian Cancer. Cell Mol. Bioeng. 2024, 17, 345–367. [Google Scholar] [CrossRef]
- Ong, L.J.Y.; Chia, S.; Wong, S.Q.R.; Zhang, X.; Chua, H.; Loo, J.M.; Chua, W.Y.; Chua, C.; Tan, E.; Hentze, H.; et al. A comparative study of tumour-on-chip models with patient-derived xenografts for predicting chemotherapy efficacy in colorectal cancer patients. Front. Bioeng. Biotechnol. 2022, 10, 952726. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, J.; Li, C.; Gu, Q.; Li, G.; Li, Z.A.; Xu, J.; Zhou, J.; Tuan, R.S. Organoids and organs-on-chips: Recent advances, applications in drug development, and regulatory challenges. Med. 2025, 6, 100667. [Google Scholar] [CrossRef]
- Razavi, Z.; Soltani, M.; Pazoki-Toroudi, H.; Dabagh, M. Microfluidic systems for modeling digestive cancer: A review of recent progress. Biomed. Phys. Eng. Express 2024, 10, 052002. [Google Scholar] [CrossRef]
- Gangwal, A.; Lavecchia, A. Artificial intelligence in preclinical research: Enhancing digital twins and organ-on-chip to reduce animal testing. Drug Discov. Today 2025, 30, 104360. [Google Scholar] [CrossRef]
- Moen, E.; Bannon, D.; Kudo, T.; Graf, W.; Covert, M.; Van Valen, D. Deep learning for cellular image analysis. Nat. Methods 2019, 16, 1233–1246. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Tang, Y.; Huang, Z.; Ma, L.; Song, J.; Xue, L. Synergistic innovation in organ-on-a-chip and organoid technologies: Reshaping the future of disease modeling, drug development and precision medicine. Protein. Cell 2025. [Google Scholar] [CrossRef]
- Stringer, C.; Wang, T.; Michaelos, M.; Pachitariu, M. Cellpose: A generalist algorithm for cellular segmentation. Nat. Methods 2021, 18, 100–106. [Google Scholar]
- Holzreuter, M.A.; Segerink, L.I. Innovative electrode and chip designs for transendothelial electrical resistance measurements in organs-on-chips. Lab Chip 2024, 24, 1121–1134. [Google Scholar] [CrossRef]
- Deng, S.; Li, C.; Cao, J.; Cui, Z.; Du, J.; Fu, Z.; Yang, H.; Chen, P. Organ-on-a-chip meets artificial intelligence in drug evaluation. Theranostics 2023, 13, 4526. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Bai, H.; Wang, H.; Hao, S.; Ding, Y.; Peng, B.; Zhang, J.; Li, L.; Huang, W. An overview of organs-on-chips based on deep learning. Research 2022, 2022, 9869518. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. In U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Caicedo, J.C.; Cooper, S.; Heigwer, F.; Warchal, S.; Qiu, P.; Molnar, C.; Vasilevich, A.S.; Barry, J.D.; Bansal, H.S.; Kraus, O.; et al. Data-analysis strategies for image-based cell profiling. Nat. Methods 2017, 14, 849–863. [Google Scholar]
- Sabaté Del Río, J.; Ro, J.; Yoon, H.; Park, T.E.; Cho, Y.K. Integrated technologies for continuous monitoring of organs-on-chips: Current challenges and potential solutions. Biosens. Bioelectron. 2023, 224, 115057. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, H.Y.; Wan, Y.L.; Jia, J.N.; Wang, R.Z.; Gao, C.; Chao, Z.Y.; Ru, Y.H.; Wang, Z.; Cheng, K.; et al. Artificial intelligence-assisted organoid construction in congenital heart disease: Current applications and future prospects. Front. Bioeng. Biotechnol. 2025, 13, 1691972. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, L.; Cheung, J.C.W.; Zhao, X.; Khoo, B.L.; Wong, S.H.D. Mechano-Organ-on-Chip for Cancer Research. Int. J. Mol. Sci. 2026, 27, 1330. https://doi.org/10.3390/ijms27031330
Wang L, Cheung JCW, Zhao X, Khoo BL, Wong SHD. Mechano-Organ-on-Chip for Cancer Research. International Journal of Molecular Sciences. 2026; 27(3):1330. https://doi.org/10.3390/ijms27031330
Chicago/Turabian StyleWang, Luyang, James Chung Wai Cheung, Xia Zhao, Bee Luan Khoo, and Siu Hong Dexter Wong. 2026. "Mechano-Organ-on-Chip for Cancer Research" International Journal of Molecular Sciences 27, no. 3: 1330. https://doi.org/10.3390/ijms27031330
APA StyleWang, L., Cheung, J. C. W., Zhao, X., Khoo, B. L., & Wong, S. H. D. (2026). Mechano-Organ-on-Chip for Cancer Research. International Journal of Molecular Sciences, 27(3), 1330. https://doi.org/10.3390/ijms27031330

