Complete Mitochondrial Genome Sequence Structure and Phylogenetic Analysis of Choy Sum (Brassica rapa var. parachinensis)
Abstract
1. Introduction
2. Results
2.1. Structural Features and Functional Annotation of the Mitochondrial Genome in Choy Sum
2.2. Codon Usage and Preference Analysis
2.3. RNA Editing Site Analysis
2.4. Analysis of Repetitive Sequences
2.5. Selection Pressure and Nucleotide Diversity Analysis
2.6. Collinearity Analysis of the Mitochondrial Genome in Choy Sum
2.7. Analysis of Homologous Sequences Between Mitochondrial and Chloroplast Genomes in Choy Sum
2.8. Phylogenetic Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Materials, DNA Extraction, and Sequencing
4.2. Genome Assembly and Annotation
4.3. Analysis of RNA Editing Sites, Codon Usage Bias, and Repetitive Sequences
4.4. Analysis of Ka/Ks, Nucleotide Diversity, and Collinearity
4.5. Phylogenetic Analysis and Identification of Homologous Sequences Between Chloroplast and Mitochondrial Genomes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ML | Maximum likelihood |
| NCBI | National Center for Biotechnology Information |
| PCGs | protein-coding genes |
| rRNA | ribosomal RNA |
| RSCU | Relative synonymous codon usage |
| SSRs | Simple sequence repeats |
| tRNA | transfer RNA |
References
- Gualberto, J.M.; Newton, K.J. Plant mitochondrial genomes: Dynamics and mechanisms of mutation. Annu. Rev. Plant Biol. 2017, 68, 225–252. [Google Scholar] [CrossRef] [PubMed]
- Skippington, E.; Barkman, T.J.; Rice, D.W.; Palmer, J.D. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proc. Natl. Acad. Sci. USA 2015, 112, 3515–3524. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Xu, W.; Hu, H.; Jiang, X.; Sun, L.; Zhao, W.; Wang, Y. Super-large record-breaking mitochondrial genome of Cathaya argyrophylla in Pinaceae. Front. Plant Sci. 2025, 16, 1556332. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Cuthbert, J.M.; Taylor, D.R.; Sloan, D.B. The massive mitochondrial genome of the angiosperm Silene noctiflora is evolving by gain or loss of entire chromosomes. Proc. Natl. Acad. Sci. USA 2015, 112, 10185–10191. [Google Scholar] [CrossRef]
- Qu, Y.; Zhou, P.; Tong, C.; Bi, C.; Xu, L. Assembly and analysis of the Populus deltoides mitochondrial genome: The first report of a multicircular mitochondrial conformation for the genus Populus. J. For. Res. 2023, 34, 717–733. [Google Scholar] [CrossRef]
- Bi, C.; Shen, F.; Han, F.; Qu, Y.; Hou, J.; Xu, K.; Xu, L.A.; He, W.; Wu, Z.; Yin, T. PMAT: An efficient plant mitogenome assembly toolkit using low-coverage HiFi sequencing data. Hortic. Res. 2024, 11, uhae023. [Google Scholar] [CrossRef]
- Zhong, X.; Chen, D.; Cui, J.; Li, H.; Huang, Y.; Kang, J. Comparative analysis of the complete mitochondrial genome sequences and anther development cytology between maintainer and Ogura-type cytoplasm male-sterile cabbage (B. oleracea var. capitata). BMC Genom. 2021, 22, 646. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Z.; Yang, Y.; Tao, Q.; Na, N.; Wan, W.; Tian, C.; Gong, W.; Li, Z. The complete mitochondrial genome and phylogenetic analysis of Lotus corniculatus (Fabaceae, Papilionoideae). Front. Plant Sci. 2025, 16, 1555595. [Google Scholar] [CrossRef]
- Gualberto, J.M.; Mileshina, D.; Wallet, C.; Niazi, A.K.; Weber-Lotfi, F.; Dietrich, A. The plant mitochondrial genome: Dynamics and maintenance. Biochimie 2014, 100, 107–120. [Google Scholar] [CrossRef]
- Unseld, M.; Marienfeld, J.R.; Brandt, P.; Brennicke, A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat. Genet. 1997, 15, 57–61. [Google Scholar] [CrossRef]
- Notsu, Y.; Masood, S.; Nishikawa, T.; Kubo, N.; Akiduki, G.; Nakazono, M.; Hirai, A.; Kadowaki, K. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: Frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol. Genet. Genom. 2002, 268, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Clifton, S.W.; Minx, P.; Fauron, C.M.; Gibson, M.; Allen, J.O.; Sun, H.; Newton, K.J. Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol. 2004, 136, 3486–3503. [Google Scholar] [CrossRef] [PubMed]
- Ogihara, Y.; Yamazaki, Y.; Murai, K.; Kanno, A.; Terachi, T.; Shiina, T.; Miyashita, N.; Nasuda, S.; Nakamura, C.; Mori, N. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Res. 2005, 33, 6235–6250. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Chen, Z.; Grover, C.E.; Wang, Y.; Li, S.; Liu, G.; Ma, Z.; Wendel, J.F.; Hua, J. Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes. BMC Genom. 2015, 16, 770. [Google Scholar] [CrossRef]
- Bailey, C.D.; Koch, M.A.; Mayer, M.; Mummenhoff, K.; O’Kane, S.L.; Warwick, S.I.; Windham, M.D.; Al-Shehbaz, I.A. Toward a global phylogeny of the Brassicaceae. Mol. Biol. Evol. 2006, 23, 2142–2160. [Google Scholar] [CrossRef]
- Yang, J.; Liu, D.; Wang, X.; Ji, C.; Cheng, F.; Liu, B.; Hu, Z.; Chen, S.; Pental, D.; Ju, Y.; et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat. Genet. 2016, 48, 1225–1232. [Google Scholar] [CrossRef]
- Woo, J.C. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. J. Jpn. Bot. 1935, 7, 389–452. [Google Scholar]
- Laluk, K.; AbuQamar, S.; Mengiste, T. The Arabidopsis mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance. Plant Physiol. 2011, 156, 2053–2068. [Google Scholar] [CrossRef]
- Handa, H. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): Comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res. 2003, 31, 5907–5916. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, X.; Chen, B.; Huang, F.; Xu, K.; Huang, Q.; Huang, Y.; Hu, Q.; Wu, X. Synchronous dissection of chloroplast and mitochondrial genomes clarifies the intra- and inter-genus phylogeny for the agriculturally important genus Brassica. BMC Genom. 2020, 21, 480. [Google Scholar] [CrossRef]
- Yamagishi, H.; Tanaka, Y.; Terachi, T.; Bonen, L. Complete mitochondrial genome sequence of black mustard (Brassica nigra; BB) and comparison with Brassica oleracea (CC) and Brassica carinata (BBCC). Genome 2014, 57, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.K.; Goenadie, V.; Lee, H.W.; Liang, X.; Loh, C.S.; Ong, C.N.; Tan, H.T.W. Growth and glucosinolate profiles of a common Asian green leafy vegetable, Brassica rapa subsp. chinensis var. parachinensis (choy sum), under LED lighting. Sci. Hortic. 2020, 261, 108922. [Google Scholar] [CrossRef]
- Domínguez-Perles, R.; Mena, P.; Garcia-Viguera, C.; Moreno, D. Brassica foods as a dietary source of vitamin C: A review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1076–1091. [Google Scholar] [CrossRef]
- Zhao, H.; Du, H.; Xiang, L.; Chen, Y.; Lu, L.; Li, Y.; Mo, C. Variations in phthalate ester (PAE) accumulation and their formation mechanism in Chinese flowering cabbage (Brassica parachinensis L.) cultivars grown on PAE-contaminated soils. Environ. Pollut. 2015, 206, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zhan, X.; Wang, Q.; Zhang, D.; Li, D.; Li, X.; Ding, X. Principal component analysis and cluster analysis of hydroponic adaptation potential in different pakchoi (Brassica campestris ssp. chinensis) parent materials. Horticulturae 2025, 11, 822. [Google Scholar] [CrossRef]
- Xu, J.; Li, J.; Zhao, X.; Liu, Z.; Xu, H.; Cao, K.; Ye, L. Impact of reduced chemical fertilizer and organic amendments on yield, nitrogen use efficiency, and soil microbial dynamics in Chinese flowering cabbage. Horticulturae 2025, 11, 859. [Google Scholar] [CrossRef]
- Du, P.; Li, Y.; Chen, Y.; Huang, H.; Dai, F.; Chen, J.; Wang, L. Chondroitin sulfate alleviates leaf senescence of Chinese flowering cabbage by modulating homeostasis of ROS and chlorophyll catabolism during storage. Postharvest Biol. Technol. 2025, 224, 113463. [Google Scholar] [CrossRef]
- Pan, B.; Bu, W. Progress on heredity and evolution of mitochondrial genome. Bull. Biol. 2005, 40, 1–3. [Google Scholar]
- Xiao, W.; Wu, X.; Zhou, X.; Zhang, J.; Huang, J.; Dai, X.; Ren, H.; Xu, D. Assembly and comparative analysis of the first complete mitochondrial genome of zicaitai (Brassica rapa var. purpuraria): Insights into its genetic architecture and evolutionary relationships. Front. Plant Sci. 2024, 15, 1475064. [Google Scholar] [CrossRef]
- Ren, Y. The complete mitochondrial genome of turnip (Brassica rapa ssp. rapa). Mitochondrial DNA Part B Resour. 2021, 6, 1566–1567. [Google Scholar] [CrossRef]
- Shao, D.; Ma, Y.; Li, X.; Ga, S.; Ren, Y. The sequence structure and phylogenetic analysis by complete mitochondrial genome of kohlrabi (Brassica oleracea var. gongylodes L.). Mitochondrial DNA B Resour. 2021, 6, 2714–2716. [Google Scholar] [CrossRef]
- Hershberg, R.; Petrov, D.A. Selection on codon bias. Annu. Rev. Genet. 2008, 42, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, Y.; Luo, S.; Gao, J.; Hu, H.; Liu, J.; Huang, D. Mitochondrial genome assembly and comparative analysis of decaploid Camellia hainanica. Front. Plant Sci. 2025, 16, 1556379. [Google Scholar] [CrossRef] [PubMed]
- Qu, K.; Chen, Y.; Liu, D.; Guo, H.; Xu, T.; Jing, Q.; Ge, L.; Shu, X.; Xin, X.; Xie, X. Comprehensive analysis of the complete mitochondrial genome of Lilium tsingtauense reveals a novel multichromosome structure. Plant Cell Rep. 2024, 43, 150. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Huang, L.; Huang, X.; Liao, J.; Zeng, G.; Liu, D. Assembly and comparative analysis of the complete mitochondrial genome of Cardiocrinum giganteum: A primitive Liliaceae group with significant scientific research value. BMC Genom. 2025, 26, 602. [Google Scholar] [CrossRef]
- Bulmer, M. The selection-mutation-drift theory of synonymous codon usage. Genetics 1991, 129, 897–907. [Google Scholar] [CrossRef]
- Fan, Y.; Tan, L.; Feng, R.; Zhao, X.; Xu, X. Assembly and comparative analysis of the complete mitochondrial genome of the spice plant Cinnamomum longepaniculatum. BMC Plant Biol. 2025, 25, 916. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Ma, Y.; Kou, L.; Wei, J.; Wang, W. The complete mitochondrial genome of okra (Abelmoschus esculentus): Using nanopore long reads to investigate gene transfer from chloroplast genomes and rearrangements of mitochondrial DNA molecules. BMC Genom. 2022, 23, 481. [Google Scholar] [CrossRef]
- Guo, W.; Felix, G.; Fan, W.; Young, G. Ginkgo and Welwitschia mitogenomes reveal extreme contrasts in gymnosperm mitochondrial evolution. Mol. Biol. Evol. 2016, 33, 1448–1460. [Google Scholar] [CrossRef]
- Feng, S.; Wu, Z.; Tian, C.; Yang, Y.; Gong, W.; Li, Z. Assembly and comparative analysis of the complete mitochondrial genome of Bromus inermis. Genes 2025, 16, 652. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Li, L.; Huang, D.; Qin, Y. Assembly and comparative analysis of the complete mitochondrial genome of Indocalamus longiauritus. Front. Plant Sci. 2025, 16, 1599464. [Google Scholar] [CrossRef]
- Ping, J.; Feng, P.; Li, J.; Zhang, R.; Su, Y.; Wang, T. Molecular evolution and SSRs analysis based on the chloroplast genome of Callitropsis funebris. Ecol. Evol. 2021, 11, 4786–4802. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 2000, 17, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Bazin, E.; Glémin, S.; Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 2006, 312, 570–572. [Google Scholar] [CrossRef]
- Feng, L.; Wang, Z.; Wang, C.; Yang, X.; An, M.; Yin, Y. Multichromosomal mitochondrial genome of Punica granatum: Comparative evolutionary analysis and gene transformation from chloroplast genomes. BMC Plant Biol. 2023, 23, 512. [Google Scholar] [CrossRef] [PubMed]
- Straub, S.C.; Cronn, R.C.; Edwards, C.; Fishbein, M.; Liston, A. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae). Genome Biol. Evol. 2013, 5, 1872–1885. [Google Scholar] [CrossRef]
- Lyons, E.; Freeling, M. How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J. 2008, 53, 661–673. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Q.; Zhang, C.; Huang, H.; He, H.; Wang, M.; Li, M.; Huang, Z.; Tang, Y.; Chen, Q.; et al. Sequencing and analysis of complete chloroplast genomes provide insight into the evolution and phylogeny of Chinese kale (Brassica oleracea var. alboglabra). Int. J. Mol. Sci. 2023, 24, 10287. [Google Scholar] [CrossRef]
- Pradhan, A.K.; Prakash, S.; Mukhopadhyay, A.; Pental, D. Phylogeny of Brassica and allied genera based on variation in chloroplast and mitochondrial DNA patterns: Molecular and taxonomic classifications are incongruous. Theor. Appl. Genet. 1992, 85, 331–340. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef]
- Chan, P.P.; Lowe, T.M. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. Methods Mol. Biol. 2019, 1962, 1–14. [Google Scholar]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Nucleic Acids Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, Y.; Zhang, Z.; Zhu, J.; Yu, J. KaKs_calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies. Genom. Proteom. Bioinform. 2010, 8, 77–80. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Silvestro, D.; Michalak, I. raxmlGUI: A graphical front-end for RAxML. Org. Divers. Evol. 2012, 12, 335–337. [Google Scholar] [CrossRef]







| Category of Sequence | Base Composition (%) | Size in bp (Proportion in Percentage) | |||||
|---|---|---|---|---|---|---|---|
| A% | T% | G% | C% | A + T% | G + C% | ||
| Whole genome | 27.45 | 27.31 | 22.32 | 22.91 | 54.77 | 45.23 | 219,775 (100%) |
| Protein-coding genes | 26.34 | 31.03 | 21.7 | 20.92 | 57.37 | 42.63 | 29,055 (13.22%) |
| tRNA genes | 22.57 | 25.81 | 28.76 | 22.86 | 48.38 | 51.62 | 1728 (0.79%) |
| rRNA genes | 26.63 | 21.99 | 28.79 | 22.59 | 48.62 | 51.38 | 5144 (2.34%) |
| Type | RNA-Editing | Number | Percentage |
|---|---|---|---|
| hydrophilic-hydrophilic | CAC (H) → TAC (Y) | 6 | |
| CAT (H) → TAT (Y) | 19 | ||
| CGC (R) → TGC (C) | 7 | ||
| CGT (R) → TGT (C) | 21 | ||
| total | 53 | 11.37% | |
| hydrophilic-hydrophobic | ACA (T) → ATA (I) | 6 | |
| ACC (T) → ATC (I) | 2 | ||
| ACG (T) → ATG (M) | 6 | ||
| ACT (T) → ATT (I) | 8 | ||
| CGG (R) → TGG (W) | 21 | ||
| TCA (S) → TTA (L) | 56 | ||
| TCC (S) → TTC (F) | 21 | ||
| TCG (S) → TTG (L) | 41 | ||
| TCT (S) → TTT (F) | 42 | ||
| total | 203 | 43.56% | |
| hydrophilic-stop | CGA (R) → TGA (X) | 1 | |
| total | 1 | 0.21% | |
| hydrophobic-hydrophilic | CCA (P) → TCA (S) | 7 | |
| CCC (P) → TCC (S) | 6 | ||
| CCG (P) → TCG (S) | 5 | ||
| CCT (P) → TCT (S) | 21 | ||
| total | 39 | 8.37% | |
| hydrophobic-hydrophobic | CCA (P) → CTA (L) | 35 | |
| CCC (P) → CTC (L) | 10 | ||
| CCC (P) → TTC (F) | 6 | ||
| CCG (P) → CTG (L) | 24 | ||
| CCT (P) → CTT (L) | 28 | ||
| CCT (P) → TTT (F) | 10 | ||
| CTC (L) → TTC (F) | 11 | ||
| CTT (L) → TTT (F) | 22 | ||
| GCA (A) → GTA (V) | 8 | ||
| GCC (A) → GTC (V) | 6 | ||
| GCG (A) → GTG (V) | 7 | ||
| GCT (A) → GTT (V) | 3 | ||
| total | 170 | 36.48% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, T.; Xu, L.; Hu, Z.; Xiong, X.; An, X.; Cao, J. Complete Mitochondrial Genome Sequence Structure and Phylogenetic Analysis of Choy Sum (Brassica rapa var. parachinensis). Int. J. Mol. Sci. 2026, 27, 872. https://doi.org/10.3390/ijms27020872
Liu T, Xu L, Hu Z, Xiong X, An X, Cao J. Complete Mitochondrial Genome Sequence Structure and Phylogenetic Analysis of Choy Sum (Brassica rapa var. parachinensis). International Journal of Molecular Sciences. 2026; 27(2):872. https://doi.org/10.3390/ijms27020872
Chicago/Turabian StyleLiu, Tingting, Li’ai Xu, Ziwei Hu, Xingpeng Xiong, Xia An, and Jiashu Cao. 2026. "Complete Mitochondrial Genome Sequence Structure and Phylogenetic Analysis of Choy Sum (Brassica rapa var. parachinensis)" International Journal of Molecular Sciences 27, no. 2: 872. https://doi.org/10.3390/ijms27020872
APA StyleLiu, T., Xu, L., Hu, Z., Xiong, X., An, X., & Cao, J. (2026). Complete Mitochondrial Genome Sequence Structure and Phylogenetic Analysis of Choy Sum (Brassica rapa var. parachinensis). International Journal of Molecular Sciences, 27(2), 872. https://doi.org/10.3390/ijms27020872

