Cardiovascular Disease and Diabetes: A New Challenge in the Treatment and Management
Abstract
1. Introduction
- An interdisciplinary healthcare clinician approach from different disciplines and expertise in several medical areas;
- A personalised treatment strategy to reduce each patient’s disease burden, resulting from the presence of cardio-nephro-metabolic complications which modify therapeutic indications;
- Common goals in managing CVD in patients with T2D to improve patients’ prognosis and health-related quality of life.
2. Efficacy—Estabilished Oral Glucose-Lowering Drugs
2.1. Metformin
2.2. Thiazolinedion
3. Efficacy—Newer Oral Glucose-Lowering Drugs
3.1. DPP-4 Inhibitors
3.2. GLP-1 Agonists
- (1)
- The gastrointestinal system, slowing motility and reducing the fatty acid absorption [24];
- (2)
- The central nervous system (CNS), inducing satiety and thus weight loss, and the reduction in adipose tissue;
- (3)
- The kidney, promoting natriuresis and reducing the volume of circulating, blood and in this way improving cardiac contractility;
- (4)
- The immune system, reducing the state of inflammation and oxidative stress.
3.3. SGLT2-Inhibitors
4. CV Tolerability Profile
4.1. Established Oral Glucose-Lowering Drugs
4.1.1. Metformin and Thiazolinedion
4.1.2. DPP-4 Inhibitors
4.1.3. GLP-1 Agonists
4.1.4. SGLT2-Inhibitors
5. Conclusions
6. Final Thoughts
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of hyperglycemia in type 2 diabetes, A consensus report by the American Diabetes Association (ADA) and the European Association for the study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC guidelines for the management of cardiovascular disease in patients with diabetes. Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef]
- Nelson, A.J.; Peterson, E.D.; Pagidipati, N.J. Atherosclerotic cardiovascular disease and heart failure: Determinants of risk and outcomes in patients with diabetes. Prog. Cardiovasc. Dis. 2019, 62, 306–314. [Google Scholar] [CrossRef]
- Packer, M. Differential pathophysiological mechanisms in heart failure with a reduced or preserved ejection fraction in diabetes. JACC Heart Fail. 2021, 9, 535–549. [Google Scholar] [CrossRef]
- American Diabetes Association. Lifestyle management: Standards of medical care in Diabetes—2018. Diabetes Care 2017, 41, S38–S50. [Google Scholar] [CrossRef]
- Look AHEAD Research Group; Rena, R.; Wing, P.; Bolin, F.L.; Brancati, G.A.; Bray, J.M.; Clark, M.; Coday, R.S.; Crow, J.M.; Curtis, C.M.; et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 2013, 369, 145–154. [Google Scholar]
- Look AHEAD Research Group. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: A secondary analysis of the look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2014, 2, 801–809. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Małkowska, P. Positive effects of physical activity on insulin signaling. CIMB 2024, 46, 5467–5487. [Google Scholar] [CrossRef]
- Schnell, O.; Barnard-Kelly, K.; Battelino, T.; Ceriello, A.; Larsson, H.E.; Fernández-Fernández, B.; Forst, T.; Frias, J.P.; Gavin, J.R., 3rd; Giorgino, F.; et al. CVOT summit report 2023: New cardiovascular, kidney, and metabolic outcomes. Cardiovasc. Diabetol. 2024, 23, 104–108. [Google Scholar] [CrossRef]
- Hunter, R.W.; Hughey, C.C.; Lantier, L.; Sundelin, E.I.; Peggie, M.; Zeqiraj, E.; Sicheri, F.; Jessen, N.; Wasserman, D.H.; Sakamoto, K. Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nat. Med. 2018, 24, 1395–1406. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Wu, Y. Amp-activated protein kinase activation as a strategy for protecting vascular endothelial function. Clin. Exp. Pharma. Physiol. 2008, 35, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, T.; Galiero, R.; Caturano, A.; Vetrano, E.; Rinaldi, L.; Coviello, F.; Di Martino, A.; Albanese, G.; Marfella, R.; Sardu, C.; et al. Effects of metformin in heart failure: From pathophysiological rationale to clinical evidence. Biomolecules 2021, 11, 1834. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.L.; Valdez, H.; Conde, M.; Viaña-Mendieta, P.; Boccaccini, A.R. Polymers and bioactive compounds with a macrophage modulation effect for the rational design of hydrogels for skin regeneration. Pharmaceutics 2023, 15, 1655. [Google Scholar] [CrossRef]
- Grant, P.J. Beneficial effects of metformin on haemostasis and vascular function in man. Diabetes Metab. 2003, 29, 644–652. [Google Scholar] [CrossRef]
- Caturano, A.; Vetrano, E.; Galiero, R.; Sardu, C.; Rinaldi, L.; Russo, V.; Monda, M.; Marfella, R.; Sasso, F.C. Advances in the Insulin–Heart axis: Current therapies and future directions. Int. J. Mol. Sci. 2024, 25, 10173. [Google Scholar] [CrossRef]
- Rubio-Ruíz, M.; Plata-Corona, J.C.; Soria-Castro, E.; Díaz-Juárez, J.A.; Sánchez-Aguilar, M. Pleiotropic effects of peroxisome proliferator-activated receptor alpha and gamma agonists on myocardial damage: Molecular mechanisms and clinical Evidence—A narrative review. Cells 2024, 1, 1488. [Google Scholar] [CrossRef]
- Lebovitz, H.E. Thiazolidinediones: The forgotten diabetes medications. Curr. Diab. Rep. 2019, 19, 151. [Google Scholar] [CrossRef]
- Scheen, A.J. Cardiovascular effects of new oral glucose-lowering agents DPP-4 and SGLT-2 inhibitors. Circ. Res. 2018, 112, 1439–1459. [Google Scholar] [CrossRef]
- Pechmann, L.M.; Pinheiro, F.I.; Andrade, V.F.C.; Moreira, C.A. The multiple actions of dipeptidyl peptidase 4 (DPP-4) and its pharmacological inhibition on bone metabolism: A review. Diabetol. Metab. Syndr. 2024, 16, 175–184. [Google Scholar] [CrossRef]
- Ussher, J.R.; Drucker, D.J. Cardiovascular biology of the incretin system. Endocr. Rev. 2012, 33, 187–215. [Google Scholar] [CrossRef]
- Wang, X.; Ke, J.; Zhu, Y.J.; Cao, b.; Yin, R.L.; Wang, Y.; Wei, L.L.; Zhang, L.J.; Zhao, D. Dipeptidyl peptidase-4 (DPP4) inhibitor sitagliptin alleviates liver inflammation of diabetic mice by acting as a ROS scavenger and inhibiting the NFκB pathway. Cell Death Discov. 2021, 7, 236–243. [Google Scholar] [CrossRef]
- Ussher, J.R.; Drucker, D.J. Cardiovascular actions of incretin-based therapies. Circ. Res. 2014, 114, 1788–1803. [Google Scholar] [CrossRef]
- Muzurović, E.M.; Volčanšek, Š.; Tomšić, K.Z.; Janez, A.; Mikhailidis, D.P.; Rizzo, M.; Mantzoros, C.S. Glucagon-like peptide-1 receptor agonists and dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 receptor agonists in the treatment of obesity/metabolic syndrome, prediabetes/diabetes and non-alcoholic fatty liver Disease—Current evidence. J. Cardiovasc. Pharmacol. Ther. 2022, 27, 1074–1082. [Google Scholar]
- Ma, X.; Liu, Z.; Ilyas, I.; Little, P.J.; Kamato, D.; Sahebka, A.; Chen, Z.; Luo, S.; Zheng, X.; Weng, J.; et al. GLP-1 receptor agonists (GLP-1RAs): Cardiovascular actions and therapeutic potential. Int. J. Biol. Sci. 2021, 17, 2050–2068. [Google Scholar] [CrossRef]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes—State-of-the-art. Mol. Metab. 2020, 46, 1011–1014. [Google Scholar] [CrossRef] [PubMed]
- Capehorn, M.S.; Catarig, A.; Furberg, J.K.; Janez, A.; Price, H.C.; Tadayon, S.; Vergès, B.; Marre, M. Efficacy and safety of once-weekly semaglutide 1.0 mg vs once-daily liraglutide 1.2 mg as add-on to 1–3 oral antidiabetic drugs in subjects with type 2 diabetes (SUSTAIN 10). Diabetes Amp. Metab. 2019, 46, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Shaman, A.M.; Bain, S.C.; Bakris, G.L.; Buse, J.B.; Idorn, T.; Mahaffey, K.W.; Mann, J.F.E.; Nauck, M.A.; Rasmussen, S.; Rossing, P.; et al. Effect of the glucagon-like peptide-1 receptor agonists semaglutide and liraglutide on kidney outcomes in patients with type 2 diabetes: Pooled analysis of SUSTAIN 6 and LEADER. Circulation 2022, 145, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, Y.; Sato, K.; Watanabe, T.; Nohtomi, K.; Terasaki, M.; Nagashima, M.; Hirano, T. A glucagon-like peptide-1 analog liraglutide suppresses macrophage foam cell formation and atherosclerosis. Peptides 2014, 54, 19–26. [Google Scholar] [CrossRef]
- Tan, H.C.; Dampil, O.A.; Marquez, M.M. Efficacy and safety of semaglutide for weight loss in obesity without diabetes: A systematic review and meta-analysis. JAFES 2022, 37, 65–72. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Lundg ren, J.R.; Janus, C.; Jensen, S.B.K.; Juhl, C.R.; Olsen, L.M.; Christensen, R.M.; Svane, M.S.; Bandholm, T.; Bojsen-Møller, K.N.; Blond, M.B.; et al. Healthy weight loss maintenance with exercise, liraglutide, or both combined. N. Engl. J. Med. 2021, 384, 1719–1730. [Google Scholar] [CrossRef] [PubMed]
- Weghuber, D.; Barrett, T.; Barrientos-Pérez, M.; Gies, I.; Hesse, D.; Jeppesen, O.K.; Kelly, A.S.; Mastrandrea, L.D.; Sørrig, R.; Arslanian, S. Once-weekly semaglutide in adolescents with obesity. N. Engl. J. Med. 2022, 387, 2245–2257. [Google Scholar] [CrossRef]
- Jensen, A.B.; Renström, F.; Aczél, S.; Folie, P.; Biraima-Steinemann, M.; Beuschlein, F.; Bilz, S. Efficacy of the glucagon-like peptide-1 receptor agonists liraglutide and semaglutide for the treatment of weight regain after bariatric surgery: A retrospective observational study. Obes. Surg. 2023, 33, 1017–1025. [Google Scholar] [CrossRef]
- Abdul-Ghani, M.A.; Norton, L.; Defronzo, R.A. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr. Rev. 2011, 324, 515–531. [Google Scholar] [CrossRef]
- Alicic, R.Z.; Johnson, E.J.; Tuttle, K.R. SGLT2 inhibition for the prevention and treatment of diabetic kidney disease: A review. Am. J. Kidney Dis. 2018, 72, 267–277, Erratum in Am. J. Kidney Dis. 2021, 77, 550. [Google Scholar] [CrossRef]
- Mazidi, M.; Rezaie, P.; Gao, H.; Kengne, P. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: A systematic review and meta-analysis of 43 randomized control trials with 22,528 patients. J. Am. Heart Assoc. 2017, 25, e004007. [Google Scholar] [CrossRef]
- Thomas, M.C.; Cherney, D.Z.I. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia 2018, 61, 2098–2107. [Google Scholar] [CrossRef] [PubMed]
- Palmiero, G.; Cesaro, A.; Vetrano, E.; Pafundi, P.C.; Galiero, R.; Caturano, A.; Moscarella, E.; Gragnano, F.; Salvatore, T.; Rinaldi, L.; et al. Impact of SGLT2 inhibitors on heart failure: From pathophysiology to clinical effects. Int. J. Mol. Sci. 2021, 30, 5863. [Google Scholar] [CrossRef]
- Cesaro, A.; Acerbo, V.; Vetrano, E.; Signore, G.; Scherillo, G.; Rotolo, F.P.; De Michele, G.; Scialla, F.; Raucci, G.; Panico, D.; et al. Sodium–Glucose cotransporter 2 inhibitors in patients with diabetes and coronary artery disease: Translating the benefits of the molecular mechanisms of gliflozins into clinical practice. Int. J. Mol. Sci. 2023, 24, 8099. [Google Scholar] [CrossRef] [PubMed]
- Papazafiropoulou, A.K.; Georgopoulos, M.M.; Katsilambros, N.L. Ketone bodies and the heart. Arch. Med. Sci. Atheroscler. Dis. 2021, 6, 209–214. [Google Scholar] [CrossRef]
- Fioretto, P.; Zambon, A.; Rossato, M.; Busetto, L.; Vettor, R. SGLT2 inhibitors and the diabetic kidney. Diabetes Care 2016, 39, 165–171. [Google Scholar] [CrossRef]
- Turner, R. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. The Lancet 1998, 352, 854–865. [Google Scholar]
- Soccio, R.E.; Chen, E.R.; Lazar, M.A. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 2014, 20, 573–591. [Google Scholar] [CrossRef]
- Erdmann, E.; Charbonnel, B.; Wilcox, R.G.; Skene, A.M.; Massi-Benedetti, M.; Yates, J.; Tan, M.; Spanheimer, R.; Standl, E.; Dormandy, J.A.; et al. Pioglitazone use and heart failure in patients with type 2 diabetes and preexisting cardiovascular disease. Diabetes Care 2007, 30, 2773–2778. [Google Scholar] [CrossRef]
- Kernan, W.N.; Viscoli, C.M.; Furie, K.L.; Young, L.H.; Inzucchi, S.E.; Gorman, M.; Guarino, P.D.; Lovejoy, A.M.; Peduzzi, P.N.; Conwit, R.; et al. Pioglitazone after ischemic stroke or transient ischemic attack. N. Engl. J. Med. 2016, 374, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Scirica, B.M.; Bhatt, D.L.M.; Braunwald, E.; Steg, P.G.; Davidson, J.; Hirshberg, B.; Ohman, P.; Frederich, R.; Wiviott, S.D.; Hoffman, E.B.; et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med. 2013, 369, 1317–1326. [Google Scholar] [CrossRef]
- Santamarina, M.; Carlson, C.J. Review of the cardiovascular safety of dipeptidyl peptidase-4 inhibitors and the clinical relevance of the CAROLINA trial. BMC Cardiovasc. Disord. 2019, 19, 60. [Google Scholar] [CrossRef] [PubMed]
- White, W.B.; Cannon, C.P.; Heller, S.R.; Nissen, S.E.; Bergenstal, R.M.; Bakris, G.L.; Perez, A.T.; Fleck, P.R.; Mehta, C.R.; Kupfer, S.; et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N. Engl. J. Med. 2013, 369, 1327–1335. [Google Scholar] [CrossRef]
- Alfayez, O.M.; Al Yami, M.S.; Alshibani, M.; Fallatah, S.B.; Al Khushaym, N.M.; Alsheikh, R.; Alkhatib, N. Network meta-analysis of nine large cardiovascular outcome trials of new antidiabetic drugs. Prim. Care Diabetes 2019, 13, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Green, J.B.; Bethel, M.A.; Armstrong, P.W.; Buse, J.B.; Engel, S.S.; Garg, J.; Josse, R.; Kaufman, K.D.; Koglin, J.; Korn, S.; et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2015, 373, 232–242, Erratum in N. Engl. J. Med. 2015, 373, 586. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Perkovic, V.; Alexander, J.H.; Cooper, M.E.; Marx, N.; Pencina, M.J.; Toto, R.D.; Wanner, C.; Zinman, B.; Baanstra, D.; et al. Rationale, design, and baseline characteristics of the CArdiovascular safety and renal microvascular outcomE study with LINAgliptin (CARMELINA®): A randomized, double-blind, placebo-controlled clinical trial in patients with type 2 diabetes and high cardio-renal risk. Cardiovasc. Diabetol. 2018, 17, 39–45. [Google Scholar]
- Epelde, F. Impact of DPP-4 Inhibitors in Patients with Diabetes Mellitus and Heart Failure: An In-Depth Review. Medicina 2024, 60, 1986. [Google Scholar] [CrossRef] [PubMed]
- Pratley, R.E.; Nauck, M.A.; Barnett, A.H.; Feinglos, M.N.; Ovalle, F.; Harman-Boehm, I.; Ye, J.; Scott, R.; Johnson, S.; Stewart, M.; et al. Once-weekly albiglutide versus once-daily liraglutide in patients with type 2 diabetes inadequately controlled on oral drugs (HARMONY 7): A randomised, open-label, multicentre, non-inferiority phase 3 study. Lancet Diabetes Endocrinol. 2014, 155, 2112–2121. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Rydén, L.; et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef]
- Savarese, G.; D’Amore, C.; Federici, M.; De Martino, F.; Dellegrottaglie, S.; Marciano, C.; Ferrazzano, F.; Losco, T.; Lund, L.H.; Trimarco, B.; et al. Effects of dipeptidyl peptidase 4 inhibitors and sodium-glucose linked coTransporter-2 inhibitors on cardiovascular events in patients with type 2 diabetes mellitus: A meta-analysis. Int. J. Cardiol. 2016, 220, 595–601. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Swedberg, K.; Rydén, L. Treatment of diabetes and heart failure: Joint forces. Eur. Heart J. 2016, 37, 1535–1537, Erratum in Eur. Heart J. 2016, 37, 1526–1534. [Google Scholar] [CrossRef]
- Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B.; et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Sonesson, C.; Johansson, P.A.; Johnsson, E.; Gause-Nilsson, I. Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: A meta-analysis. Cardiovasc. Diabetol. 2016, 19, 15–37. [Google Scholar] [CrossRef]
- Kosiborod, M.; Cavender, M.A.; Fu, A.Z.; Wilding, J.P.; Khunti, K.; Holl, R.W.; Norhammar, A.; Birkeland, K.I.; Jørgensen, M.E.; Thuresson, M.; et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs. Circulation 2024, 136, 249–259. [Google Scholar] [CrossRef]
- Scheen, A.J. SGLT2 inhibitors: Benefit/risk balance. Curr. Diab. Rep. 2016, 16, 92–98. [Google Scholar] [CrossRef]
- Look AHEAD Research Group. Effects of intensive lifestyle intervention on all-cause mortality in older adults with type 2 diabetes and overweight/obesity: Results from the look AHEAD study. Diabetes Care 2022, 45, 1252–1259. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [PubMed]
- Heerspink, H.J.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- The EMPA-KIDNEY Collaborative Group. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef] [PubMed]
| Metformin | Thiazolinedion | DPP-4 Inhibitors | GLP-1 Agonists | SGLT2-Inhibitors |
|---|---|---|---|---|
|
|
|
|
|
| Metformin | Thiazolinedion | DPP-4 Inhibitors | GLP-1 Agonists | SGLT2-Inhibitors |
|---|---|---|---|---|
| Reduction in CV mortality
| Increased risk in CV mortality
| Neutral benefit in CV mortality
| Reduction in CV mortality
| Reduction in CV mortality
|
| SGUT2 inhibitors Empaglifoxin—dapaglifozin—canaglifozin | Cardiovascular effects:
|
| GLP-1 receptor agonists (es. liraglutide, semaglutide, dulaglutide) | Cardiovascular effects:
|
| Metformin | Cardiovascular effect:
|
| DPP-4 inhibitors (e.g., sitagliptin, linagliptin) | Cardiovascular effects:
|
| SGUT2 inhibitors | Work by blocking the sodium-glucose cotransporter 2 (SGLT2) protein in the kidney’s proximal convoluted tubule, which prevents glucose from being reabsorbed into the blood and causes it to be excreted in the urine(glycosuria). This mechanism lowers blood, glucose levels, is independent of insulin, and can also lead to weight loss and a reduction inblood pressure, with benefits observed for heart and kidney disease progression. |
| GLP-1 receptor agonists | work by mimicking Glucagon-Like Peptide-1(GLP-1), a naturally occurring hormone, to activate GLP-1 receptors in the brain and pancreas. In the brain, they reduce appetite and increase feelings of fullness (satiety). In the pancreas, they stimulate glucose-dependent insulin release and suppress glucagon secretion, improving blood sugar control. Additionally, they slow gastric emptying, which further contributes to reduced food intake and improved glvcemic control. |
| Metformin | suppresses gluconeogenesis by inhibiting a mitochondrion-specific isoform of glycerophosphate dehydrogenase (mGPD). This, in turn, decelerates the dihydroxyacetone phosphate (DHAP)-glycerophosphate shuttle (glycerophosphate is also called glycerol-3-phosphate[G3P]). |
| DPP-4 inhibitors | work by blocking the dipeptidyl peptidase-4 (DPP-4) enzyme which prevents the breakdown of incretin hormones like glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). This action increases the levels of active incretins in the body, leading to increased glucose-dependent insulin secretion from the pancreas and suppressed glucagon release. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Riccioni, G.; Notarangelo, C.; Riccioni, M.; D’Orazio, N. Cardiovascular Disease and Diabetes: A New Challenge in the Treatment and Management. Int. J. Mol. Sci. 2026, 27, 354. https://doi.org/10.3390/ijms27010354
Riccioni G, Notarangelo C, Riccioni M, D’Orazio N. Cardiovascular Disease and Diabetes: A New Challenge in the Treatment and Management. International Journal of Molecular Sciences. 2026; 27(1):354. https://doi.org/10.3390/ijms27010354
Chicago/Turabian StyleRiccioni, Graziano, Chiara Notarangelo, Mario Riccioni, and Nicolantonio D’Orazio. 2026. "Cardiovascular Disease and Diabetes: A New Challenge in the Treatment and Management" International Journal of Molecular Sciences 27, no. 1: 354. https://doi.org/10.3390/ijms27010354
APA StyleRiccioni, G., Notarangelo, C., Riccioni, M., & D’Orazio, N. (2026). Cardiovascular Disease and Diabetes: A New Challenge in the Treatment and Management. International Journal of Molecular Sciences, 27(1), 354. https://doi.org/10.3390/ijms27010354

