Exploring Spiders Without Venom as New Sources of Peptidase Inhibitors
Abstract
1. Introduction
2. Results
2.1. Determination of Specific Activities in the Digestive System of Z. geniculata
2.2. Inhibition Assays of Different Trypsins by Preparations from Z. geniculata
2.3. RNA Extraction, Transcriptomic Analysis, and Identification of Inhibitors from Z. geniculata
2.4. Peptidase Inhibitor’s Structure
3. Discussion
3.1. The Evolution of Digestion in Spiders
3.2. Identification and Functions of Toxin-like and Peptidase Inhibitors in the MD of Uloboridae Spiders
4. Materials and Methods
4.1. Sample Preparation and Protein Quantity Estimation
4.2. Enzymatic Assays
4.3. Inhibition Assays
4.4. RNA Extraction, Sequencing Data Analysis and Molecular Modeling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rawlings, N.D.; Bateman, A. Origins of peptidases. Biochimie 2019, 166, 4–18. [Google Scholar] [CrossRef]
- Voshavar, C. Protease inhibitors for the treatment of HIV/AIDS: Recent advances and future challenges. Curr. Top. Med. Chem. 2019, 19, 1571–1598. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, P.; Pekár, S.; Birkhofer, K.; Chuang, A.; Fukushima, C.S.; Hebets, E.A.; Henaut, Y.; Hesselberg, T.; Malumbres-Olarte, J.; Michálek, O.; et al. Ecosystem services provided by spiders. Biol. Rev. 2025, 100, 2217–2236. [Google Scholar] [CrossRef] [PubMed]
- Michálek, O.; King, G.F.; Pekár, S. Prey specificity of predatory venoms. Biol. Rev. Camb. Philos. Soc. 2024, 99, 2253–2273. [Google Scholar] [CrossRef] [PubMed]
- Redd, M.A.; Scheuer, S.E.; Saez, N.J.; Yoshikawa, Y.; Chiu, H.S.; Gao, L.; Hicks, M.; Villanueva, J.E.; Joshi, Y.; Chow, C.Y.; et al. Therapeutic inhibition of acid-sensing ion channel 1a recovers heart function after ischemia–reperfusion injury. Circulation 2021, 144, 947–960. [Google Scholar] [CrossRef]
- Fuzita, F.J.; Pinkse, M.W.; Verhaert, P.D.; Lopes, A.R. Cysteine cathepsins as digestive enzymes in the spider Nephilengys cruentata. Insect Biochem. Mol. Biol. 2015, 60, 47–58. [Google Scholar] [CrossRef]
- Fuzita, F.J.; Pinkse, M.W.H.; Patane, J.S.L.; Verhaert, P.D.E.M.; Lopes, A.R. High throughput techniques to reveal the molecular physiology and evolution of digestion in spiders. BMC Genom. 2016, 17, 716. [Google Scholar] [CrossRef]
- Neto, O.B.S.; Valladão, R.; Coelho, G.R.; Dias, R.; Pimenta, D.C.; Lopes, A.R. Spiders’ digestive system as a source of trypsin inhibitors: Functional activity of a member of atracotoxin structural family. Sci. Rep. 2023, 13, 2389. [Google Scholar] [CrossRef]
- Ranasinghe, S.; McManus, D.P. Structure and function of invertebrate Kunitz serine protease inhibitors. Dev. Comp. Immunol. 2013, 39, 219–227. [Google Scholar] [CrossRef]
- Kunitz, M.; Northrop, J.H. Isolation from beef pancreas of crystalline trypsinogen, trypsin, a trypsin inhibitor, and an inhibitor-trypsin compound. J. Gen. Physiol. 1936, 19, 991–1007. [Google Scholar] [CrossRef]
- Kazal, L.A.; Spicer, D.S.; Brahinsky, R.A. Isolation of a crystalline trypsin inhibitor-anticoagulant protein from pancreas1a. J. Am. Chem. Soc. 1948, 70, 3034–3040. [Google Scholar] [CrossRef] [PubMed]
- Rimphanitchayakit, V.; Tassanakajon, A. Structure and function of invertebrate Kazal-type serine proteinase inhibitors. Dev. Comp. Immunol. 2010, 34, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Hormiga, G.; Griswold, C.E. Systematics, phylogeny, and evolution of orb-weaving spiders. Annu. Rev. Entomol. 2014, 59, 487–512. [Google Scholar] [CrossRef] [PubMed]
- Valladão, R.; Neto, O.B.S.; de Oliveira Gonzaga, M.; Pimenta, D.C.; Lopes, A.R. Digestive enzymes and sphingomyelinase D in spiders without venom (Uloboridae). Sci. Rep. 2023, 13, 2661. [Google Scholar] [CrossRef]
- Peng, X.; Dersch, L.; Dresler, J.; Lüddecke, T.; Dederichs, T.; Michalik, P.; Peigneur, S.; Tytgat, J.; Hassan, A.; Mucciolo, A.; et al. Beyond venomous fangs: Uloboridae spiders have lost their venom but not their toxicity. BMC Biol. 2025, 23, 159. [Google Scholar] [CrossRef]
- World Spider Catalog. World Spider Catalog. Version 25.0. Bern: Natural History Museum. 2025. Available online: http://wsc.nmbe.ch (accessed on 13 June 2025).
- Götz, S.; Garcia-Gomez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef]
- Zhu, B.; Jin, P.; Zhang, Y.; Shen, Y.; Wang, W.; Li, S. Genomic and transcriptomic analyses support a silk gland origin of spider venom glands. BMC Biol. 2023, 21, 82. [Google Scholar] [CrossRef]
- Zhou, S.-Y.; Dong, Q.-L.; Zhu, K.-S.; Gao, L.; Chen, X.; Xiang, H. Long-read transcriptomic analysis of orb-weaving spider Araneus ventricosus indicates transcriptional diversity of spidroins. Int. J. Biol. Macromol. 2021, 168, 395–402. [Google Scholar] [CrossRef]
- Sanggaard, K.; Bechsgaard, J.; Fang, X.; Duan, J.; Dyrlund, T.F.; Gupta, V.; Jiang, X.; Cheng, L.; Fan, D.; Feng, Y.; et al. Spider genomes provide insight into composition and evolution of venom and silk. Nat Commun. 2014, 5, 3765. [Google Scholar] [CrossRef]
- Zhang, R.; Xiang, N.; Gao, X.; Zhang, G.; Lu, T.; Yuan, T. Molecular phylogenetic relationships based on mitogenomes of spider: Insights into evolution and adaptation to extreme environments. Ecol. Evol. 2025, 15, e70774. [Google Scholar] [CrossRef]
- Fuzita, F.J.; Pinkse, M.W.H.; Patane, J.S.L.; A Juliano, M.; Verhaert, P.D.E.M.; Lopes, A.R. Biochemical, transcriptomic and proteomic analyses of digestion in the scorpion Tityus serrulatus: Insights into function and evolution of digestion in an ancient arthropod. PLoS ONE 2015, 10, e0123841. [Google Scholar] [CrossRef] [PubMed]
- Walter, A.; Bechsgaard, J.; Scavenius, C.; Dyrlund, T.S.; Sanggaard, K.W.; Enghild, J.J.; Bilde, T. Characterisation of protein families in spider digestive fluids and their role in extra-oral digestion. BMC Genom. 2017, 18, 600. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef] [PubMed]
- Mansfeld, J.; Vriend, G.; Dijkstra, B.W.; Veltman, O.R.; Burg, B.V.D.; Venema, G.; Ulbrich-Hofmann, R.; Eijsink, V.G. Extreme stabilization of a thermolysin-like protease by an engineered disulfide bond. J. Biol. Chem. 1997, 272, 11152–11156. [Google Scholar] [CrossRef]
- Weng, J.-L.; Barrantes, G.; Eberhard, W. Feeding by Philoponella vicina (Araneae, Uloboridae) and how uloborid spiders lost their venom glands. Can. J. Zool. 2006, 84, 1752–1762. [Google Scholar] [CrossRef]
- Nicholson, G.M.; Little, M.J.; Birinyi-Strachan, L.C. Structure and function of δ-atracotoxins: Lethal neurotoxins targeting the voltage-gated sodium channel. Toxicon 2004, 43, 587–599. [Google Scholar] [CrossRef]
- Pedroso, A.; Matioli, S.R.; Murakami, M.T.; Pidde-Queiroz, G.; Tambourgi, D.V. Adaptive evolution in the toxicity of a spider’s venom enzymes. BMC Evol. Biol. 2015, 15, 290, Erratum in: BMC Evol. Biol. 2016, 16, 58. [Google Scholar] [CrossRef]
- Machado, I.C.; Lopes, A.V. Floral traits and pollination systems in the Caatinga, a Brazilian tropical dry forest. Ann. Bot. 2004, 94, 365–376. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Waller, M.; Barrett, A.J.; Bateman, A. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014, 42, D503–D509. [Google Scholar] [CrossRef]
- Turk, V.; Stoka, V.; Turk, D. Cystatins: Biochemical and structural properties, and medical relevance. Front. Biosci. 2008, 13, 5406–5420. [Google Scholar] [CrossRef]
- Horn, M.; Nussbaumerová, M.; Šanda, M.; Kovářová, Z.; Srba, J.; Franta, Z.; Sojka, D.; Bogyo, M.; Caffrey, C.R.; Kopáček, P.; et al. Hemoglobin digestion in blood-feeding ticks: Mapping a multipeptidase pathway by functional proteomics. Chem. Biol. 2009, 16, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Swift, M.L. GraphPad prism, data analysis, and scientific graphing. J. Chem. Inf. Comput. Sci. 1997, 37, 411–412. [Google Scholar] [CrossRef]
- Fulton, K.F.; Buckle, A.M.; Cabrita, L.D.; Irving, J.A.; Butcher, R.E.; Smith, I.; Reeve, S.; Lesk, A.M.; Bottomley, S.P.; Rossjohn, J.; et al. The high resolution crystal structure of a native thermostable serpin reveals the complex mechanism underpinning the stressed to relaxed transition. J. Biol. Chem. 2005, 280, 8435–8442. [Google Scholar] [CrossRef]
- Andrews, S.; Krueger, F.; Segonds-Pichon, A.; Biggins, L.; Krueger, C.; Wingett, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 20 September 2024).
- Sewe, S.O.; Silva, G.; Sicat, P.; Seal, S.E.; Visendi, P. Trimming and validation of Illumina short reads using trimmomatic, trinity assembly, and assessment of RNA-seq data. In Plant Bioinformatics: Methods and Protocols; Springer: New York, NY, USA, 2022; pp. 211–232. [Google Scholar]
- Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics 2010, 26, 680–682. [Google Scholar] [CrossRef]
- Prakash, A.; Jeffryes, M.; Bateman, A.; Finn, R.D. The HMMER web server for protein sequence similarity search. Curr. Protoc. Bioinform. 2017, 60, 3.1.1–3.1.23. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016, 34, 525–527, Erratum in: Nat. Biotechnol. 2016, 34, 888. [Google Scholar]





| Enzyme | Specific Activity (mU·mg−1) |
|---|---|
| Carbohydrases | |
| chitinase | 1.88 ± 0.77 mU·mg−1 |
| hexosaminidase | 0.69 ± 0.27 mU·mg−1 |
| α-L-fucosidase | 0.50 ± 0.17 mU·mg−1 |
| α-mannosidase | 0.25 ± 0.09 mU·mg−1 |
| α-Amylase | non-activity |
| Peptidases | |
| carboxypeptidase | 1.22 ± 0.26 |
| aminopeptidase | 1.12 ± 0.19 |
| astacin | ± |
| trypsin | 6.61 ± 2.51 |
| cathepsin-L | 1.14 ± 0.17 |
| Lipase | 1150.3 ± 239.9 |
| Enzymes | Highest TPM | Contigs Numbers | Individuals TPMs | Sum of TPMs |
|---|---|---|---|---|
| Chitinase | 7869.05 | 4 | 7869.05; 4963.17; 63.56; 61.93 | 12,957.70 |
| Hexosaminidase | 241.69 | 2 | 241.69; 168.56 | 410.26 |
| α-L-Fucosidase | 125.37 | 1 | 125.37 | 125.37 |
| α-Mannosidase | 60.20 | 2 | 60.20; 56.07 | 116.27 |
| α-Amylase | 388.72 | 3 | 9.24; 6.02; 388.72 | 403.97 |
| Carboxypeptidase | 1090.72 | 4 | 1090.72; 156.63; 63.0; 55.23 | 1365.57 |
| Aminopeptidase | 260.45 | 4 | 260.45; 173.70; 90.44; 56.76 | 581.35 |
| Astacin | 10,562.63 | 17 | 10,562.63; 4437.86; 2830.45; 2381.76; 1700.29; 1567.28; 1379.01; 1017.14; | 28,534.22 |
| 551.66; 440.52; 427.30; 339.43; 296.82; 232.64; 173.34; 107.35; 88.75 | ||||
| Trypsin | 108.20 | 3 | 108.20; 37.31; 27.76 | 173.27 |
| Cathepsin L | 3873.51 | 6 | 3873.51; 2310.79; 1457.78; 923.40; 733.21; 163.63 | 9462.30 |
| Lipase | 779.42 | 6 | 779.42; 495.47; 369.42; 249.88; 237.87; 95.52 | 2227.58 |
| Sequence/ID | Sequence Description | Pfam Domains | TPM |
|---|---|---|---|
| DN1235_c0_g1_i1.p1 | U24-ctenitoxin-Pn1a-like | Thyroglobulin_1 | 20,066.44 |
| DN1146_c0_g1_i5.p1 | U24-ctenitoxin-Pn1a-like | Thyroglobulin_1 | 11,540.43 |
| DN746_c0_g1_i1.p1 | U1-hexatoxin-Iw1e-like | MIT_LIKE_ACTX, Prokineticin | 10,795.41 |
| DN1489_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 10,562.63 |
| DN2079_c0_g1_i1.p1 | U24-ctenitoxin-Pn1a-like isoform X1 | Thyroglobulin_1 | 9593.79 |
| DN4294_c0_g1_i2.p1 | U21-ctenitoxin-Pn1a-like isoform X1 | Trypsin | 9575.33 |
| DN626_c0_g1_i1.p1 | U24-ctenitoxin-Pn1a-like | Thyroglobulin_1 | 5606.36 |
| DN6417_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 4437.86 |
| DN34549_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 2830.45 |
| DN1039_c0_g1_i1.p1 | U24-ctenitoxin-Pn1a-like | Thyroglobulin_1 | 2454.28 |
| DN214_c0_g1_i2.p1 | astacin-like metalloprotease toxin 5 | Astacin | 2381.76 |
| DN72_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 1700.29 |
| DN982_c0_g1_i16.p1 | astacin-like metalloprotease toxin 5 | Astacin | 1567.28 |
| DN1389_c0_g1_i1.p1 | U3-aranetoxin-Ce1a-like | MIT_LIKE_ACTX | 1414.86 |
| DN4141_c0_g1_i3.p1 | astacin-like metalloprotease toxin 1 | Astacin, MAM | 1379.01 |
| DN2163_c0_g1_i1.p1 | toxin CSTX-20-like | Prokineticin | 1212.46 |
| DN5_c0_g1_i15.p1 | astacin-like metalloprotease toxin 5 | Astacin | 1017.14 |
| DN2267_c0_g1_i1.p1 | U9-ctenitoxin-Pr1a-like | MIT_LIKE_ACTX | 862.07 |
| DN1042_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 551.66 |
| DN1222_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin, Peptidase_M10 | 440.52 |
| DN1261_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 427.30 |
| DN33_c0_g1_i7.p1 | U33-theraphotoxin-Cg1c | Prokineticin | 392.00 |
| DN3333_c0_g1_i2.p1 | U3-aranetoxin-Ce1a-like | MIT_LIKE_ACTX | 385.53 |
| DN1_c0_g1_i2.p1 | astacin-like metalloprotease toxin 1 | Astacin | 339.43 |
| DN762_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 296.82 |
| DN872_c0_g1_i1.p1 | U9-ctenitoxin-Pr1a-like | MIT_LIKE_ACTX, Prokineticin | 286.02 |
| DN470_c0_g1_i1.p1 | astacin-like metalloprotease toxin 1 | Astacin | 232.64 |
| DN650_c0_g1_i1.p2 | U3-aranetoxin-Ce1a-like | MIT_LIKE_ACTX | 228.77 |
| DN541_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin, Peptidase_M10 | 173.34 |
| DN387_c0_g1_i1.p1 | U24-ctenitoxin-Pn1a-like | Thyroglobulin_1 | 152.62 |
| DN672_c0_g1_i1.p1 | U21-ctenitoxin-Pn1a-like | Trypsin, Trypsin_2 | 108.07 |
| DN793_c0_g1_i3.p1 | astacin-like metalloprotease toxin 5 | Astacin | 107.35 |
| DN4977_c0_g1_i1.p1 | dermonecrotic toxin StSicTox-betaIB1i-like | GDPD_2, GDPD | 90.92 |
| DN4422_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 88.75 |
| DN877_c0_g1_i2.p1 | scoloptoxin SSD14-like isoform X1 | G_glu_transpept | 72.03 |
| DN6557_c0_g1_i1.p1 | U3-aranetoxin-Ce1a-like | - | 61.93 |
| DN2620_c0_g1_i1.p1 | U24-ctenitoxin-Pn1a-like | Thyroglobulin_1 | 56.67 |
| DN1186_c0_g1_i4.p1 | U21-ctenitoxin-Pn1a-like | Trypsin | 53.39 |
| DN1235_c0_g1_i1.p1 | U24-ctenitoxin-Pn1a-like | Thyroglobulin_1 | 20,066.44 |
| DN1146_c0_g1_i5.p1 | U24-ctenitoxin-Pn1a-like | Thyroglobulin_1 | 11,540.43 |
| DN746_c0_g1_i1.p1 | U1-hexatoxin-Iw1e-like | MIT_LIKE_ACTX, Prokineticin | 10,795.41 |
| DN1489_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 10,562.63 |
| DN2079_c0_g1_i1.p1 | U24-ctenitoxin-Pn1a-like isoform X1 | Thyroglobulin_1 | 9593.79 |
| DN4294_c0_g1_i2.p1 | U21-ctenitoxin-Pn1a-like isoform X1 | Trypsin | 9575.33 |
| DN626_c0_g1_i1.p1 | U24-ctenitoxin-Pn1a-like | Thyroglobulin_1 | 5606.36 |
| DN6417_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 4437.86 |
| DN34549_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 2830.45 |
| DN1039_c0_g1_i1.p1 | U24-ctenitoxin-Pn1a-like | Thyroglobulin_1 | 2454.28 |
| DN214_c0_g1_i2.p1 | astacin-like metalloprotease toxin 5 | Astacin | 2381.76 |
| DN72_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 1700.29 |
| DN982_c0_g1_i16.p1 | astacin-like metalloprotease toxin 5 | Astacin | 1567.28 |
| DN1389_c0_g1_i1.p1 | U3-aranetoxin-Ce1a-like | MIT_LIKE_ACTX | 1414.86 |
| DN4141_c0_g1_i3.p1 | astacin-like metalloprotease toxin 1 | Astacin, MAM | 1379.01 |
| DN2163_c0_g1_i1.p1 | toxin CSTX-20-like | Prokineticin | 1212.46 |
| DN5_c0_g1_i15.p1 | astacin-like metalloprotease toxin 5 | Astacin | 1017.14 |
| DN2267_c0_g1_i1.p1 | U9-ctenitoxin-Pr1a-like | MIT_LIKE_ACTX | 862.07 |
| DN1042_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 551.66 |
| DN1222_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin, Peptidase_M10 | 440.52 |
| DN1261_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 427.30 |
| DN33_c0_g1_i7.p1 | U33-theraphotoxin-Cg1c | Prokineticin | 392.00 |
| DN3333_c0_g1_i2.p1 | U3-aranetoxin-Ce1a-like | MIT_LIKE_ACTX | 385.53 |
| DN1_c0_g1_i2.p1 | astacin-like metalloprotease toxin 1 | Astacin | 339.43 |
| DN762_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 296.82 |
| DN872_c0_g1_i1.p1 | U9-ctenitoxin-Pr1a-like | MIT_LIKE_ACTX, Prokineticin | 286.02 |
| DN470_c0_g1_i1.p1 | astacin-like metalloprotease toxin 1 | Astacin | 232.64 |
| DN650_c0_g1_i1.p2 | U3-aranetoxin-Ce1a-like | MIT_LIKE_ACTX | 228.77 |
| DN541_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin, Peptidase_M10 | 173.34 |
| DN387_c0_g1_i1.p1 | U24-ctenitoxin-Pn1a-like | Thyroglobulin_1 | 152.62 |
| DN672_c0_g1_i1.p1 | U21-ctenitoxin-Pn1a-like | Trypsin, Trypsin_2 | 108.07 |
| DN793_c0_g1_i3.p1 | astacin-like metalloprotease toxin 5 | Astacin | 107.35 |
| DN4977_c0_g1_i1.p1 | dermonecrotic toxin StSicTox-betaIB1i-like | GDPD_2, GDPD | 90.92 |
| DN4422_c0_g1_i1.p1 | astacin-like metalloprotease toxin 5 | Astacin | 88.75 |
| DN877_c0_g1_i2.p1 | scoloptoxin SSD14-like isoform X1 | G_glu_transpept | 72.03 |
| DN6557_c0_g1_i1.p1 | U3-aranetoxin-Ce1a-like | - | 61.93 |
| DN2620_c0_g1_i1.p1 | U24-ctenitoxin-Pn1a-like | Thyroglobulin_1 | 56.67 |
| DN1186_c0_g1_i4.p1 | U21-ctenitoxin-Pn1a-like | Trypsin | 53.39 |
| Sequence/ID | Sequence Description | Pfam Domain | TPM |
|---|---|---|---|
| DN808_c0_g1_i17.p1 | papilin-like | Kunitz_BPTI, TIL | 20,275.43 |
| DN485_c0_g1_i14.p1 | L-cystatin-like | Cystatin, SQAPI | 17,898.91 |
| DN1157_c0_g1_i1.p1 | nucleoprotein TPR-like | Apolipoprotein, YtxH, DUF6674, ApoLp-III, ApoC-I, DUF6415, DUF1664, Phasin, Rrn6_HB, OmpH, ATG17_like, ERp29, Gp-FAR-1, pAdhesive_17, Muted, phiKZ_IP, DUF5917, PGM_PMM_II, NleF_casp_inhib, PMC2NT, DUF6781, DUF2884, Exonuc_VII_L | 12,144.23 |
| DN882_c1_g1_i2.p1 | probable chitinase 10 isoform X1 | Glyco_hydro_18, CBM_14, Kunitz_BPTI | 7869.05 |
| DN458_c0_g1_i1.p1 | uncharacterized protein LOC107445376 | amfpi-1 | 6482.08 |
| DN3530_c0_g1_i1.p1 | actinia tenebrosa protease inhibitors-like | Kunitz_BPTI | 3006.50 |
| DN474_c0_g1_i1.p1 | chymotrypsin inhibitor-like | TIL | 2709.93 |
| DN722_c0_g1_i2.p1 | uncharacterized protein LOC129963689 | amfpi-1 | 768.82 |
| DN211_c0_g1_i3.p1 | uncharacterized protein LOC129226369 | Serpin | 642.19 |
| DN19_c0_g1_i3.p1 | nascent polypeptide-associated complex subunit alpha, muscle-specific form-like isoform X1 | Kunitz_BPTI | 329.14 |
| DN3168_c0_g1_i1.p1 | insulin-like growth factor-binding protein-related protein 1 isoform X1 | I-set, Ig_3, Ig_2, IGFBP, ig, Kazal_1, Kazal_2 | 220.72 |
| DN232_c0_g2_i1.p1 | low-density lipoprotein receptor-related protein 2-like | Ldl_recept_a, Ldl_recept_b, FXa_inhibition, cEGF, EGF_CA, DUF5050, SGL | 216.94 |
| DN4190_c0_g1_i2.p1 | BPTI/Kunitz domain-containing protein-like isoform X1 | Kunitz_BPTI | 128.22 |
| DN7140_c0_g1_i2.p1 | SCO-spondin-like isoform X1 | TIL | 124.59 |
| DN1698_c0_g1_i1.p1 | serpin B6-like | Serpin | 95.71 |
| DN531_c0_g1_i1.p1 | insulin-like growth factor-binding protein-related protein 1, partial | Ig_3, I-set, IGFBP, Kazal_2, Kazal_1, ig | 70.66 |
| DN908_c0_g1_i2.p1 | low-density lipoprotein receptor-related protein 2-like | FXa_inhibition, Ldl_recept_b, SGL, Arylesterase | 67.07 |
| DN1501_c0_g1_i2.p1 | fibulin-1-like | FXa_inhibition, cEGF, EGF_CA, Sushi, EGF, HYR, EGF_3 | 66.55 |
| DN232_c0_g1_i1.p1 | low-density lipoprotein receptor-related protein 2-like | Ldl_recept_b, FXa_inhibition, cEGF, EGF_CA, DUF5050, SGL | 55.50 |
| DN3114_c0_g1_i1.p1 | SCO-spondin-like | TIL | 52.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Silva, J.O.; Silva, A.C.O.; Valladão, R.; Neto, O.B.; de Souza, V.C.; Ferreira, C.; Terra, W.R.; Lopes, A.R. Exploring Spiders Without Venom as New Sources of Peptidase Inhibitors. Int. J. Mol. Sci. 2026, 27, 186. https://doi.org/10.3390/ijms27010186
Silva JO, Silva ACO, Valladão R, Neto OB, de Souza VC, Ferreira C, Terra WR, Lopes AR. Exploring Spiders Without Venom as New Sources of Peptidase Inhibitors. International Journal of Molecular Sciences. 2026; 27(1):186. https://doi.org/10.3390/ijms27010186
Chicago/Turabian StyleSilva, Jefferson O., Ana Carolina O. Silva, Rodrigo Valladão, Oscar Bento Neto, Vinicius Carius de Souza, Clelia Ferreira, Walter Ribeiro Terra, and Adriana Rios Lopes. 2026. "Exploring Spiders Without Venom as New Sources of Peptidase Inhibitors" International Journal of Molecular Sciences 27, no. 1: 186. https://doi.org/10.3390/ijms27010186
APA StyleSilva, J. O., Silva, A. C. O., Valladão, R., Neto, O. B., de Souza, V. C., Ferreira, C., Terra, W. R., & Lopes, A. R. (2026). Exploring Spiders Without Venom as New Sources of Peptidase Inhibitors. International Journal of Molecular Sciences, 27(1), 186. https://doi.org/10.3390/ijms27010186

