Oral Nano-Delivery of Crotoxin Modulates Experimental Ulcerative Colitis in a Mouse Model of Maximum Acute Inflammatory Response
Abstract
1. Introduction
2. Results
2.1. Analysis of Crotoxin Incorporated into SBA-15 Mesoporous Silica Nanoparticles
2.2. Crotoxin Incorporated into SBA-15 Mesoporous Silica Nanoparticles (CTX-SBA-15) Modulates DSS-Induced Colitis
3. Discussion
4. Materials and Methods
4.1. Crotoxin Purification
4.2. Preparation of the Complex Crotoxin and SBA-15 Mesoporous Silica (CTX-SBA-15)
4.3. CTX-SBA-15 Characterization
4.4. Mice
4.5. Ulcerative Colitis Induction and CTX-SBA-15 Treatment
4.6. Disease Activity Index (DAI)
4.7. Histological Analysis
4.8. FACS Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, B.; Li, S.; Shi, R.; Liu, H. Multifunctional Mesoporous Silica Nanoparticles for Biomedical Applications. Signal Transduct. Target. Ther. 2023, 8, 435. [Google Scholar] [CrossRef]
- de Oliveira, D.G.; Toyama, M.H.; Martins, A.M.; Havt, A.; Nobre, A.C.; Marangoni, S.; Câmara, P.R.; Antunes, E.; de Nucci, G.; Beliam, L.O.; et al. Structural and Biological Characterization of a Crotapotin Isoform Isolated from Crotalus Durissus Cascavella Venom. Toxicon Off. J. Int. Soc. Toxinology 2003, 42, 53–62. [Google Scholar] [CrossRef]
- Hanashiro, M.A.; Da Silva, M.H.; Bier, O.G. Neutralization of Crotoxin and Crude Venom by Rabbit Antiserum to Crotalus Phospholipase A. Immunochemistry 1978, 15, 745–750. [Google Scholar] [CrossRef]
- Rangel-Santos, A.; Lima, C.; Lopes-Ferreira, M.; Cardoso, D. Immunosuppresive Role of Principal Toxin (crotoxin) of Crotalus Durissus Terrificus Venom. Toxicon Off. J. Int. Soc. Toxinology 2004, 44, 609–661. [Google Scholar] [CrossRef]
- Faure, G.; Bon, C. Crotoxin, a Phospholipase A2 Neurotoxin from the South American Rattlesnake Crotalus Durissus Terrificus: Purification of Several Isoforms and Comparison of Their Molecular Structure and of Their Biological Activities. Biochemistry 1988, 27, 730–738. [Google Scholar] [CrossRef]
- Sant’Anna, M.B.; Giardini, A.C.; Ribeiro, M.A.C.; Lopes, F.S.R.; Teixeira, N.B.; Kimura, L.F.; Bufalo, M.C.; Ribeiro, O.G.; Borrego, A.; Cabrera, W.H.K.; et al. The Crotoxin:SBA-15 Complex Down-Regulates the Incidence and Intensity of Experimental Autoimmune Encephalomyelitis Through Peripheral and Central Actions. Front. Immunol. 2020, 11, 591563. [Google Scholar] [CrossRef]
- Almeida, C.D.S.; Andrade-Oliveira, V.; Câmara, N.O.S.; Jacysyn, J.F.; Faquim-Mauro, E.L. Crotoxin from Crotalus Durissus Terrificus Is Able to down-Modulate the Acute Intestinal Inflammation in Mice. PLoS ONE 2015, 10, e0121427. [Google Scholar] [CrossRef] [PubMed]
- Abebe, Z.; Wassie, M.M.; Reynolds, A.C.; Melaku, Y.A. Burden and Trends of Diet- Related Colorectal Cancer in OECD Countries: Systematic Analysis Based on Global Burden of Disease Study 1990–2021 with Projections to 2050. Nutrients 2025, 17, 1320. [Google Scholar] [CrossRef] [PubMed]
- Shouval, D.S.; Rufo, P.A. The Role of Environmental Factors in the Pathogenesis of Inflammatory Bowel Diseases: A Review. JAMA Pediatr. 2017, 171, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Legaki, E.; Gazouli, M. Influence of Environmental Factors in the Development of Inflammatory Bowel Diseases. World J. Gastrointest. Pharmacol. Ther. 2016, 7, 112–125. [Google Scholar] [CrossRef]
- Molodecky, N.A.; Soon, I.S.; Rabi, D.M.; Ghali, W.A.; Ferris, M.; Chernoff, G.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Barkema, H.W.; et al. Increasing Incidence and Prevalence of the Inflammatory Bowel Diseases with Time, Based on Systematic Review. Gastroenterology 2012, 142, 46–54.e42. [Google Scholar] [CrossRef]
- Jurjus, A.R.; Khoury, N.N.; Reimund, J.-M. Animal Models of Inflammatory Bowel Disease. J. Pharmacol. Toxicol. Methods 2004, 50, 81–92. [Google Scholar] [CrossRef]
- Ohkusa, T. [Production of experimental ulcerative colitis in hamsters by dextran sulfate sodium and changes in intestinal microflora]. Nihon Shokakibyo Gakkai Zasshi Jpn. J. Gastro Enterol. 1985, 82, 1327–1336. [Google Scholar]
- Okayasu, I.; Hatakeyama, S.; Yamada, M.; Ohkusa, T.; Inagaki, Y.; Nakaya, R. A Novel Method in the Induction of Reliable Experimental Acute and Chronic Ulcerative Colitis in Mice. Gastroenterology 1990, 98, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Strober, W.; Fuss, I.J.; Blumberg, R.S. The Immunology of Mucosal Models of Inflammation. Annu. Rev. Immunol. 2002, 20, 495–549. [Google Scholar] [CrossRef] [PubMed]
- Perše, M.; Cerar, A. Dextran Sodium Sulphate Colitis Mouse Model: Traps and Tricks. J. Biomed. Biotechnol. 2012, 2012, 718617. [Google Scholar] [CrossRef]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies. Lancet 2017, 390, 2769–2778, Erratum in Lancet 2020, 396, e56. [Google Scholar] [CrossRef]
- Le Berre, C.; Honap, S.; Peyrin-Biroulet, L. Ulcerative Colitis. Lancet 2023, 402, 571–584. [Google Scholar] [CrossRef]
- Quaresma, A.B.; Damiao, A.O.; Coy, C.S.; Magro, D.O.; Hino, A.A.; Valverde, D.A.; Panaccione, R.; Coward, S.B.; Ng, S.C.; Kaplan, G.G.; et al. Temporal Trends in the Epidemiology of Inflammatory Bowel Diseases in the Public Healthcare System in Brazil: A Large Population-Based Study. Lancet Reg. Health Am. 2022, 13, 100298. [Google Scholar]
- Ye, Y.; Pang, Z.; Chen, W.; Ju, S.; Zhou, C. The Epidemiology and Risk Factors of Inflammatory Bowel Disease. Int. J. Clin. Exp. Med. 2015, 8, 22529–22542. [Google Scholar]
- Iskandar, H.N.; Dhere, T.; Farraye, F.A. Ulcerative Colitis: Update on Medical Management. Curr. Gastroenterol. Rep. 2015, 17, 44. [Google Scholar] [CrossRef]
- Talley, N.J.; Abreu, M.T.; Achkar, J.-P.; Bernstein, C.N.; Dubinsky, M.C.; Hanauer, S.B.; Kane, S.V.; Sandborn, W.J.; Ullman, T.A.; Moayyedi, P.; et al. An Evidence-Based Systematic Review on Medical Therapies for Inflammatory Bowel Disease. Am. J. Gastroenterol. 2011, 106 (Suppl. S1), S2–S25. [Google Scholar] [CrossRef] [PubMed]
- Asakura, K.; Nishiwaki, Y.; Inoue, N.; Hibi, T.; Watanabe, M.; Takebayashi, T. Prevalence of Ulcerative Colitis and Crohn’s Disease in Japan. J. Gastroenterol. 2009, 44, 659–665. [Google Scholar] [CrossRef]
- Svergun, D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 1992, 25, 495–503. [Google Scholar] [CrossRef]
- Fernandes, C.A.H.; Pazin, W.M.; Dreyer, T.R.; Bicev, R.N.; Cavalcante, W.L.G.; Fortes-Dias, C.L.; Ito, A.S.; Oliveira, C.L.P.; Fernandez, R.M.; Fontes, M.R.M. Biophysical Studies Suggest a New Structural Arrangement of Crotoxin and Provide Insights into Its Toxic Mechanism. Sci. Rep. 2017, 7, 43885. [Google Scholar] [CrossRef] [PubMed]
- Pinto, O.; Luis, C. Investigating Macromolecular Complexes in Solution by Small Angle X-Ray Scattering. In Current Trends in X-Ray Crystallography; InTech: London, UK, 2011. [Google Scholar]
- Svergun, D.; Barberato, C.; Koch, M.H.J. CRYSOL–A Program to Evaluate X-Ray Solution Scattering of Biological Macromolecules from Atomic Coordinates. J. Appl. Crystallogr. 1995, 28, 768–773. [Google Scholar] [CrossRef]
- Svergun, D. Restoring Low Resolution Structure of Biological Macromolecules from Solution Scattering Using Simulated Annealing. Biophys. J. 1999, 76, 2879–2886. [Google Scholar] [CrossRef]
- Svergun, D.I.; Petoukhov, M.V.; Koch, M.H. Determination of Domain Structure of Proteins from X-Ray Solution Scattering. Biophys. J. 2001, 80, 2946–2953. [Google Scholar] [CrossRef]
- Konarev, P.V.; Petoukhov, M.V.; Svergun, D.I. Rapid Automated Superposition of Shapes and Macromolecular Models Using Spherical Harmonics. J. Appl. Crystallogr. 2016, 49 Pt 3, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Morrison, I.D.; Grabowski, E.F.; Herb, C.A. Improved Techniques for Particle Size Determination by Quasi-Elastic Light Scattering. Langmuir ACS J. Surf. Colloids 1985, 1, 496–501. [Google Scholar] [CrossRef]
- Ortega, A.; Amorós, D.; de la Torre, J.G. Prediction of Hydrodynamic and Other Solution Properties of Rigid Proteins from Atomic- and Residue-Level Models. Biophys. J. 2011, 101, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Wallace, B.A. Protein Characterisation by Synchrotron Radiation Circular Dichroism Spectroscopy. Q. Rev. Biophys. 2009, 42, 317–370. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.G.; Miles, A.J.; Wien, F.; Wallace, B.A. A Reference Database for Circular Dichroism Spectroscopy Covering Fold and Secondary Structure Space. Bioinformatics 2006, 22, 1955–1962. [Google Scholar] [CrossRef]
- Jameson, D.M. Introduction to Fluorescence; CRC Press: Boca Raton, Florida; Taylor and Francis Publishers: New York, NY, USA, 2014. [Google Scholar]
- Broering, M.F.; Filho, P.L.O.; Borges, P.P.; da Silva, L.C.C.; Knirsch, M.C.; Xavier, L.F.; Scharf, P.; Sandri, S.; Stephano, M.A.; de Oliveira, F.A.; et al. Development of Ac2-26 Mesoporous Microparticle System as a Potential Therapeutic Agent for Inflammatory Bowel Diseases. Int. J. Nanomed. 2024, 19, 3537–3554. [Google Scholar] [CrossRef] [PubMed]
- Cussa, J.; Juárez, J.M.; Costa, M.B.G.; Anunziata, O.A. Nanostructured SBA-15 Host Applied in Ketorolac Tromethamine Release System. J. Mater. Sci. Mater. Med. 2017, 28, 113. [Google Scholar] [CrossRef]
- Fantini, M.C.A.; Oliveira, C.L.P.; Lopes, J.L.S.; Martins, T.S.; Akamatsu, M.A.; Trezena, A.G.; Franco, M.T.-D.; Botosso, V.F.; Sant’Anna, O.A.B.E.; Kardjilov, N.; et al. Using Crystallography Tools to Improve Vaccine Formulations. IUCrJ 2021, 9, 11–20. [Google Scholar] [CrossRef]
- Zambelli, V.O.; Pasqualoto, K.F.M.; Picolo, G.; Chudzinski-Tavassi, A.M.; Cury, Y. Harnessing the Knowledge of Animal Toxins to Generate Drugs. Pharmacol. Res. Off. J. Ital. Pharmacol. Soc. 2016, 112, 30–36. [Google Scholar] [CrossRef]
- Cushman, D.W.; Ondetti, M.A. History of the Design of Captopril and Related Inhibitors of Angiotensin Converting Enzyme. Hypertension 1991, 17, 589–592. [Google Scholar] [CrossRef]
- Pontieri, V.; Lopes, O.U.; Ferreira, S.H. Hypotensive Effect of Captopril. Role of Bradykinin and Prostaglandinlike Substances. Hypertension 1990, 15 (Suppl. S2), I55–I58. [Google Scholar] [CrossRef]
- Cardoso, D.F.; Lopes-Ferreira, M.; Faquim-Mauro, E.L.; Macedo, M.S.; Farsky, S.H. Role of Crotoxin, a Phospholipase A2 Isolated from Crotalus Durissus Terrificus Snake Venom, on Inflammatory and Immune Reactions. Mediat. Inflamm. 2001, 10, 125–133. [Google Scholar] [CrossRef]
- Philippart, M.; Schmidt, J.; Bittner, B. Oral Delivery of Therapeutic Proteins and Peptides: An Overview of Current Technologies and Recommendations for Bridging from Approved Intravenous or Subcutaneous Administration to Novel Oral Regimens. Drug Res. 2016, 66, 113–120. [Google Scholar] [CrossRef]
- Ibanez, O.M.; Stiffel, C.; Ribeiro, O.G.; Cabrera, W.K.; Massa, S.; de Franco, M.; Sant’Anna, O.A.; Decreusefond, C.; Mouton, D.; Siqueira, M. Genetics of Nonspecific Immunity: I. Bidirectional Selective Breeding of Lines of Mice Endowed with Maximal or Minimal Inflammatory Responsiveness. Eur. J. Immunol. 1992, 22, 2555–2563. [Google Scholar] [CrossRef] [PubMed]
- Di, P.; Francisco, R.; Massa, S.; Ribeiro, O.G.; Cabrera, W.H.K.; De Franco, M.; Starobinas, N.; Seman, M.; Ibañez, O.C.M. Inverse Genetic Predisposition to Colon versus Lung Carcinogenesis in Mouse Lines Selected Based on Acute Inflammatory Responsiveness. Carcinogenesis 2006, 27, 1517–1525. [Google Scholar]
- Sant’Anna, M.B.; Lopes, F.S.R.; Kimura, L.F.; Giardini, A.C.; Sant’Anna, O.A.; Picolo, G. Crotoxin Conjugated to SBA-15 Nanostructured Mesoporous Silica Induces Long-Last Analgesic Effect in the Neuropathic Pain Model in Mice. Toxins 2019, 11, 679. [Google Scholar] [CrossRef]
- Lu, J.; Liong, M.; Li, Z.; Zink, J.I.; Tamanoi, F. Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals. Small 2010, 6, 1794–1805. [Google Scholar] [CrossRef]
- Bon, C.; Bouchier, C.; Choumet, V.; Faure, G.; Jiang, M.S.; Lambezat, M.P.; Radvanyi, F.; Saliou, B. Crotoxin, Half-Century of Investigations on a Phospholipase A2 Neurotoxin. Acta Physiol. Pharmacol. Latinoam. 1989, 39, 439–448. [Google Scholar]
- Oliveira, C.L.P.; Pederson, J.S. Background Subtraction and Normalization in SANS and SAX. Available online: https://portal.if.usp.br/cristal/sites/portal.if.usp.br.cristal/files/Treatment_SAXS_crislpo.pdf (accessed on 5 August 2024).
- Miles, A.J.; Wallace, B.A. CDtoolX, a Downloadable Software Package for Processing and Analyses of Circular Dichroism Spectroscopic Data. Protein Sci. A Publ. Protein Soc. 2018, 27, 1717–1722. [Google Scholar] [CrossRef]
- Whitmore, L.; Wallace, B.A. DICHROWEB, an Online Server for Protein Secondary Structure Analyses from Circular Dichroism Spectroscopic Data. Nucleic Acids Res. 2004, 32, W668–W673. [Google Scholar] [CrossRef]
- Wirtz, S.; Neufert, C.; Weigmann, B.; Neurath, M.F. Chemically Induced Mouse Models of Intestinal Inflammation. Nat. Protoc. 2007, 2, 541–546. [Google Scholar] [CrossRef] [PubMed]
- De Fazio, L.; Cavazza, E.; Spisni, E.; Strillacci, A.; Centanni, M.; Candela, M.; Praticò, C.; Campieri, M.; Ricci, C.; Valerii, M.C. Longitudinal Analysis of Inflammation and Microbiota Dynamics in a Model of Mild Chronic Dextran Sulfate Sodium-Induced Colitis in Mice. World J. Gastroenterol. 2014, 20, 2051–2061. [Google Scholar] [CrossRef] [PubMed]
- Erben, U.; Loddenkemper, C.; Doerfel, K.; Spieckermann, S.; Haller, D.; Heimesaat, M.M.; Zeitz, M.; Siegmund, B.; Kühl, A.A. A Guide to Histomorphological Evaluation of Intestinal Inflammation in Mouse Models. Int. J. Clin. Exp. Pathol. 2014, 7, 4557–4576. [Google Scholar] [PubMed]






| Stool Consistency | Bleeding | Weight Loss |
|---|---|---|
| 0 = formed | 0 = normal color stool | 0 = no weight loss |
| 1 = mild-soft | 1 = brown color | 1 = 5–10% weight loss |
| 2 = very soft | 2 = reddish color | 2 = 11–15% weight loss |
| 3 = watery stool | 3 = bloody stool | 3 = 16–20% weight loss |
| 4 = ≥20% weight loss |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira Brito, R.G.; de Araujo Neves, F.N.; de Almeida, L.F.; Favoretto, B.C.; Cabrera, W.H.K.; Starobinas, N.; Garcia, J.M.; Fernandes, N.C.C.d.A.; Lopes, J.L.d.S.; Fantini, M.C.d.A.; et al. Oral Nano-Delivery of Crotoxin Modulates Experimental Ulcerative Colitis in a Mouse Model of Maximum Acute Inflammatory Response. Int. J. Mol. Sci. 2026, 27, 185. https://doi.org/10.3390/ijms27010185
de Oliveira Brito RG, de Araujo Neves FN, de Almeida LF, Favoretto BC, Cabrera WHK, Starobinas N, Garcia JM, Fernandes NCCdA, Lopes JLdS, Fantini MCdA, et al. Oral Nano-Delivery of Crotoxin Modulates Experimental Ulcerative Colitis in a Mouse Model of Maximum Acute Inflammatory Response. International Journal of Molecular Sciences. 2026; 27(1):185. https://doi.org/10.3390/ijms27010185
Chicago/Turabian Stylede Oliveira Brito, Raquel Guedes, Fernanda Narangeira de Araujo Neves, Larissa Ferreira de Almeida, Bruna Cristina Favoretto, Wafa Hanna Koury Cabrera, Nancy Starobinas, Jamile Macedo Garcia, Natália Coelho Couto de Azevedo Fernandes, José Luiz de Souza Lopes, Marcia Carvalho de Abreu Fantini, and et al. 2026. "Oral Nano-Delivery of Crotoxin Modulates Experimental Ulcerative Colitis in a Mouse Model of Maximum Acute Inflammatory Response" International Journal of Molecular Sciences 27, no. 1: 185. https://doi.org/10.3390/ijms27010185
APA Stylede Oliveira Brito, R. G., de Araujo Neves, F. N., de Almeida, L. F., Favoretto, B. C., Cabrera, W. H. K., Starobinas, N., Garcia, J. M., Fernandes, N. C. C. d. A., Lopes, J. L. d. S., Fantini, M. C. d. A., Oseliero Filho, P. L., Ibañez, O. M., Sant’Anna, O. A., Massa, S., & Ribeiro, O. G. (2026). Oral Nano-Delivery of Crotoxin Modulates Experimental Ulcerative Colitis in a Mouse Model of Maximum Acute Inflammatory Response. International Journal of Molecular Sciences, 27(1), 185. https://doi.org/10.3390/ijms27010185

