The Complete Chloroplast Genome and the Phylogenetic Analysis of Panicum bisulcatum (Thumb.) (Poaceae)
Abstract
1. Introduction
2. Results
2.1. Chloroplast Genome Component
2.2. Gene Function Annotation and Classification
2.3. Gene Order and Operon Organization
2.4. IR Expansion and Contraction
2.5. Phylogenetic Analysis Among Common Poaceae Plants
2.6. Single Nucleotide Polymorphism Analysis
3. Discussion
3.1. Genomic Architecture and Repetitive Elements of the P. bisulcatum Chloroplast Genome
3.2. Gene Content and Functional Implications
3.3. Comparative Analysis of IR Boundary Dynamics
3.4. Phylogenetic Position and Evolutionary Insights
3.5. Sequence Divergence and Evolutionary Constraints Revealed by SNP Analysis
3.6. Future Perspectives: Gene Transfer and RNA Editing
4. Materials and Methods
4.1. DNA Extraction and Sequencing
4.2. Genome Assembly
4.3. Genome Component Analysis
4.4. Gene Function Annotation and Classification Analysis
4.5. Contraction and Expansion Analysis of Inverted Repeats Regions
4.6. Phylogenetic Analysis
4.7. Single Nucleotide Polymorphism (SNP) Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhandari, H.S.; Ebina, M.; Saha, M.C.; Bouton, J.H.; Rudrabhatla, S.V.; Goldman, S.L. Panicum. In Wild Crop Relatives: Genomic and Breeding Resources: Millets and Grasses; Springer: Berlin, Heidelberg, 2010; pp. 175–196. [Google Scholar]
- Zuloaga, F.O.; Morrone, O.; Davidse, G.; Pennington, S.J. Classification and biogeography of Panicoideae (Poaceae) in the New World. Aliso. J. Syst. Florist. Bot. 2007, 23, 503–529. [Google Scholar] [CrossRef]
- Zuloaga, F.O.; Salariato, D.L.; Scataglini, A. Molecular phylogeny of Panicum s. str. (Poaceae, Panicoideae, Paniceae) and insights into its biogeography and evolution. PLoS ONE 2018, 13, e0191529. [Google Scholar] [CrossRef]
- Řezáčová, V.; Zemková, L.; Beskid, O.; Püschel, D.; Konvalinková, T.; Hujslová, M.; Slavíková, R.; Jansa, J. Little cross-feeding of the mycorrhizal networks shared between C3-Panicum bisulcatum and C4-Panicum maximum under different temperature regimes. Front. Plant Sci. 2018, 9, 449. [Google Scholar] [CrossRef]
- Beard, J.B. Origin, Biogeographical Migrations and Diversifications of Turfgrasses; Michigan State University Press: East Lansing, MI, USA, 2012. [Google Scholar]
- Sun, J.; Yu, X.; Yang, Y.; Xu, H.; Liu, M.; Lü, Z.; Tang, W. Physiological, biochemical, and transcriptomic responses to waterlogging stress in Panicum bisulcatum, an emerging weed in rice fields. BMC Plant Biol. 2025, 25, 866. [Google Scholar] [CrossRef]
- Liu, M.; Yu, X.; Yang, Y.; He, H.; Sun, J.; Wang, M.; Tang, W. Waterlogging adaptation in the rice weed Panicum bisulcatum: Morpho-anatomical, physiological, and molecular strategies from submerged to emersed stages. Plant Physiol. Bioch. 2025, 229, 110604. [Google Scholar] [CrossRef]
- Xu, W.D.; Li, J.; Lu, Q. Study on the effects of the occurrence of Panicum bisulcatum Thunb. on rice growth and Sensitivity to herbicides in paddy fields in rice-wheat rotation area of northern Zhejiang. China Rice 2021, 27, 47. (In Chinese) [Google Scholar]
- Song, Y.; Ke, X.; Liu, W.; Davy, A.J.; Liu, G. Life-history plasticity of riparian annual plants adapted to extreme variations in water level: Mesocosm experiments. River Res. Appl. 2015, 31, 1311–1318. [Google Scholar] [CrossRef]
- Lu, R.-S.; Li, P.; Qiu, Y.-X. The complete chloroplast genomes of three Cardiocrinum (Liliaceae) species: Comparative genomic and phylogenetic analyses. Front. Plant Sci. 2017, 7, 2054. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.-T.; Jabbour, F.; Barrett, R.L.; Ye, J.-F.; Zhang, Z.-Z.; Lu, K.-Q.; Lu, L.-M.; Chen, Z.-D. Combining complete chloroplast genome sequences with target loci data and morphology to resolve species limits in Triplostegia (Caprifoliaceae). Mol. Phylogenet. Evol. 2018, 129, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Pinard, D.; Myburg, A.A.; Mizrachi, E. The plastid and mitochondrial genomes of Eucalyptus grandis. BMC Genom. 2019, 20, 132. [Google Scholar] [CrossRef]
- Cosner, M.E.; Raubeson, L.A.; Jansen, R.K. Chloroplast DNA rearrangements in Campanulaceae: Phylogenetic utility of highly rearranged genomes. BMC Evol. Biol. 2004, 4, 27. [Google Scholar] [CrossRef]
- Plunkett, G.M.; Downie, S.R. Expansion and contraction of the chloroplast inverted repeat in Apiaceae subfamily Apioideae. Syst. Bot. 2000, 25, 648–667. [Google Scholar] [CrossRef]
- Wicke, S.; Schneeweiss, G.M.; Depamphilis, C.W.; Müller, K.F.; Quandt, D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol. 2011, 76, 273–297. [Google Scholar] [CrossRef]
- Hong, Z.; Wu, Z.; Zhao, K.; Yang, Z.; Zhang, N.; Guo, J.; Tembrock, L.R.; Xu, D. Comparative analyses of five complete chloroplast genomes from the genus Pterocarpus (Fabacaeae). Int. J. Mol. Sci. 2020, 21, 3758. [Google Scholar] [CrossRef]
- Bi, Y.; Zhang, M.-F.; Xue, J.; Dong, R.; Du, Y.-P.; Zhang, X.-H. Chloroplast genomic resources for phylogeny and DNA barcoding: A case study on Fritillaria. Sci. Rep. 2018, 8, 1184. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Lu, R.-S.; Xu, W.-Q.; Ohi-Toma, T.; Cai, M.-Q.; Qiu, Y.-X.; Cameron, K.M.; Fu, C.-X. Comparative genomics and phylogenomics of East Asian tulips (Amana, Liliaceae). Front. Plant Sci. 2017, 8, 451. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.-H.; Chan, M.-T.; Liao, D.-C.; Hsu, C.-T.; Lee, Y.-W.; Daniell, H.; Duvall, M.R.; Lin, C.-S. Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol. 2010, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Rajasekaran, R.; Krishnamoorthy, I.; Alagarswamy, S.; Chandrakumar, K.; Pulapet, S.; Markkandan, K.; Kanagarajan, S.; Narayanan, M.B. Comparative chloroplast genomics of wild-type Panicum miliaceum cv. ATL1 and its M4 mutant line: Insights for molecular breeding applications. BMC Plant Biol. 2025, 25, 1023. [Google Scholar] [CrossRef]
- Kugita, M.; Kaneko, A.; Yamamoto, Y.; Takeya, Y.; Matsumoto, T.; Yoshinaga, K. The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: Insight into the earliest land plants. Nucleic Acids Res. 2003, 31, 716–721. [Google Scholar] [CrossRef]
- Henry, R.J. Plant Diversity and Evolution: Genotypic and Phenotypic Variation in Higher Plants; CABI Publishing: Cambridge, MA, USA, 2005. [Google Scholar]
- Yamane, K.; Yasui, Y.; Ohnishi, O. Intraspecific cpDNA variations of diploid and tetraploid perennial buckwheat, Fagopyrum cymosum (Polygonaceae). Am. J. Bot. 2003, 90, 339–346. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Yang, J.X.; Bai, M.Z.; Zhang, G.Q.; Liu, Z.J. The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC Plant Biol. 2021, 21, 248. [Google Scholar] [CrossRef]
- Provan, J.; Powell, W.; Hollingsworth, P.M. Chloroplast microsatellites: New tools for studies in plant ecology and evolution. Trends Ecol. Evol. 2001, 16, 142–147. [Google Scholar] [CrossRef]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [PubMed]
- Andrew King, R.; Ferris, C. Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn. Mol. Ecol. 1998, 7, 1151–1161. [Google Scholar] [CrossRef]
- Long, C.; Min, Y.; Zhao, X.; Yany, C.; Sun, H.; Lü, H.; Tang, L.; Zhou, Z. Origin area and migration route: Chloroplast DNA diversity in the arctic-alpine plant Koenigia islandica. Sci. China Earth Sci. 2014, 57, 1760–1770. [Google Scholar] [CrossRef]
- Shen, Y.; Cheng, Y.; Li, K.; Li, H. Integrating phylogeographic analysis and geospatial methods to infer historical dispersal routes and glacial refugia of Liriodendron chinense. Forests 2019, 10, 565. [Google Scholar] [CrossRef]
- Noriyuki, F.; Kei, S. Phylogeography of Japanese alpine plants: Biogeographic importance of alpine region of Central Honshu in Japan. Taxon 2006, 55, 43–52. [Google Scholar] [CrossRef]
- Cross, H.B.; Lowe, A.J.; Gurgel, C.F.D. DNA barcoding of invasive species. In Fifty Years of Invasion Ecology: The Legacy of Charles Elton; Wiley-Blackwell: Hoboken, NJ, USA, 2011; Volume 1, pp. 289–300. [Google Scholar]
- Provan, J. The effects of past, present and future climate change on range-wide genetic diversity in northern North Atlantic marine species. Front. Biogeogr. 2013, 5, 60–66. [Google Scholar] [CrossRef]
- Doorduin, L.; Gravendeel, B.; Lammers, Y.; Ariyurek, Y.; Chin-A-Woeng, T.; Vrieling, K. The complete chloroplast genome of 17 individuals of pest species Jacobaea vulgaris: SNPs, microsatellites and barcoding markers for population and phylogenetic studies. DNA Res. 2011, 18, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-T.; Yi, T.-S.; Gao, L.-M.; Ma, P.-F.; Zhang, T.; Yang, J.-B.; Gitzendanner, M.A.; Fritsch, P.W.; Cai, J.; Luo, Y.; et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 2019, 5, 461–470. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Henry, R.J.; Rossetto, M.; Wang, Y.; Chen, S. Plant DNA barcoding: From gene to genome. Biol. Rev. 2015, 90, 157–166. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Song, M.; Guan, Y.; Ma, X. Species identification of Dracaena using the complete chloroplast genome as a super-barcode. Front. Pharmacol. 2019, 10, 1441, Erratum in: Front Pharmacol. 2020, 11, 51.. [Google Scholar] [CrossRef]
- Onaran, A.; Yavuz, T.; Bayar, Y. Antifungal Activities of Different Organic Solvent Extracts of Switchgrass (Panicum virgatum L.) Against Some Plant Pathogenic Fungi. Bahri Dağdaş Bitkisel Araştırma Dergisi. 2022, 11, 93–101. [Google Scholar]
- Tahir, N.A.; Majeed, H.O.; Azeez, H.A.; Omer, D.A.; Faraj, J.M.; Palani, W.R. Allelopathic plants: 27. Moringa species. Allelopath. J. 2020, 50, 35–48. [Google Scholar] [CrossRef]
- Sallam, S.M.; Khalil, M.M.; Attia, M.F.; El-Zaiat, H.M.; Abdellattif, M.G.; Abo-Zeid, H.M.; Zeitoun, M.M. Utilization of blue panic (Panicum antidotale) as an alternative feed resource for feeding Barky sheep in arid regions. Trop. Anim. Health Prod. 2019, 51, 2351–2360. [Google Scholar] [CrossRef]
- McLaughlin, S.B.; Kszos, L.A. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 2005, 28, 515–535. [Google Scholar] [CrossRef]
- Shinozaki, K.; Ohme, M.; Tanaka, M.; Wakasugi, T.; Hayashida, N.; Matsubayashi, T.; Zaita, N.; Chunwongse, J.; Obokata, J.; Yamaguchi-Shinozaki, K.; et al. The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J. 1986, 5, 2043–2049. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Shen, G.; Yuan, G.; Tian, Z. Comparative analysis of whole chloroplast genomes of three common species of Echinochloa (Gramineae) in paddy fields. Int. J. Mol. Sci. 2022, 23, 13864. [Google Scholar] [CrossRef]
- Gao, Y.; Li, S.; Yuan, G.; Fang, J.; Shen, G.; Tian, Z. Comparison of Biological and genetic characteristics between two most common broad-leaved weeds in Paddy Fields: Ammannia arenaria and A. multiflora (Lythraceae). Biology 2023, 12, 936. [Google Scholar] [CrossRef]
- Gao, Z.; Cai, Y.; Long, J.; Wang, B.; Huang, Z.; Gao, Y. The Complete Chloroplast Genome and the Phylogenetic Analysis of Fimbristylis littoralis (Cyperaceae) Collected in Cherry Blossom Nursery. Int. J. Mol. Sci. 2025, 26, 2321. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, T.; Long, J.; Shen, G.; Tian, Z. Complete chloroplast genome and comparison of herbicides toxicity on Aeschynomene indica (Leguminosae) in upland direct-seeding paddy field. BMC Genom. 2024, 25, 277. [Google Scholar] [CrossRef]
- NCBI. Available online: https://www.ncbi.nlm.nih.gov (accessed on 21 October 2025).
- Fu, J.; Liu, H.; Hu, J.; Liang, Y.; Liang, J.; Wuyun, T.; Tan, X. Five complete chloroplast genome sequences from Diospyros: Genome organization and comparative analysis. PLoS ONE 2016, 11, e0159566. [Google Scholar] [CrossRef]
- Maréchal, A.; Brisson, N. Recombination and the maintenance of plant organelle genome stability. New Phytol. 2010, 186, 299–317. [Google Scholar] [CrossRef]
- He, S.; Wang, Y.; Volis, S.; Li, D.; Yi, T. Genetic diversity and population structure: Implications for conservation of wild soybean (Glycine soja Sieb. et Zucc) based on nuclear and chloroplast microsatellite variation. Int. J. Mol. Sci. 2012, 13, 12608–12628. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.H.; Zhang, J.J.; Yao, X.H.; Huang, H.W. Chloroplast microsatellite markers in Liriodendron tulipifera (Magnoliaceae) and cross-species amplification in L. chinense. Am. J. Bot. 2011, 98, e123–e126. [Google Scholar] [CrossRef]
- Xue, J.; Wang, S.; Zhou, S.L. Polymorphic chloroplast microsatellite loci in Nelumbo (Nelumbonaceae). Am. J. Bot. 2012, 99, e240–e244. [Google Scholar] [CrossRef]
- Harhay, G.P.; Harhay, D.M.; Bono, J.L.; Capik, S.F.; DeDonder, K.D.; Apley, M.D.; Lubbers, B.V.; White, B.J.; Larson, R.L.; Smith, T.P.L. A computational method to quantify the effects of slipped strand mispairing on bacterial tetranucleotide repeats. Sci. Rep. 2019, 9, 18087, Erratum in Sci. Rep. 2020, 10, 1633.. [Google Scholar] [CrossRef]
- Herbert, A. The simple biology of flipons and condensates enhances the evolution of complexity. Molecules 2021, 26, 4881. [Google Scholar] [CrossRef]
- Zhao, L.; An, K.; Gu, W.; Lu, Q.; Wang, D.-J.; XiaHou, Z.; Zhang, R.; Yi, T.-S. Dispersed repeats and inverted repeat expansion drive major plastomic rearrangements in Calliandra haematocephala (Leguminosae: Mimoseae). Front. Plant Sci. 2025, 16, 1673127. [Google Scholar] [CrossRef] [PubMed]
- Puthiyaveetil, S.; Allen, J.F. Chloroplast two-component systems: Evolution of the link between photosynthesis and gene expression. Proc. R. Soc. B Biol. Sci. 2009, 276, 2133–2145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tian, L.; Lu, C. Chloroplast gene expression: Recent advances and perspectives. Plant Commun. 2023, 4, 100611. [Google Scholar] [CrossRef]
- Kuroda, H.; Maliga, P. The plastid clpP1 protease gene is essential for plant development. Nature 2003, 425, 86–89. [Google Scholar] [CrossRef]
- Zheng, B.; Halperin, T.; Hruskova-Heidingsfeldova, O.; Adam, Z.; Clarke, A.K. Characterization of chloroplast Clp proteins in Arabidopsis: Localization, tissue specificity and stress responses. Physiol. Plant. 2002, 114, 92–101. [Google Scholar] [CrossRef]
- Li, H.; Guo, Q.; Xu, L.; Gao, H.; Liu, L.; Zhou, X. CPJSdraw: Analysis and visualization of junction sites of chloroplast genomes. PeerJ 2023, 11, 15326. [Google Scholar] [CrossRef]
- Allen, J.F.; de Paula, W.B.; Puthiyaveetil, S.; Nield, J. A structural phylogenetic map for chloroplast photosynthesis. Trends Plant Sci. 2011, 16, 645–655. [Google Scholar] [CrossRef]
- Martin, W.; Deusch, O.; Stawski, N.; Grünheit, N.; Goremykin, V. Chloroplast genome phylogenetics: Why we need independent approaches to plant molecular evolution. Trends Plant Sci. 2005, 10, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Erixon, P.; Oxelman, B. Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene. PLoS ONE 2008, 3, 1386. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Ishii, C.; Kagawa, D.; Muramoto, K.; Kamiya, H. Accelerated evolution in the protein-coding region of galectin cDNAs, congerin I and congerin II, from skin mucus of conger eel (Conger myriaster). Biosci. Biotech. Bioch. 1999, 63, 1203–1208. [Google Scholar] [CrossRef]
- Germano, J.; Klein, A.S. Species-specific nuclear and chloroplast single nucleotide polymorphisms to distinguish Picea glauca, P. mariana and P. rubens. Theor. Appl. Genet. 1999, 99, 37–49. [Google Scholar] [CrossRef]
- Landegren, U.; Nilsson, M.; Kwok, P.Y. Reading bits of genetic information: Methods for single-nucleotide polymorphism analysis. Genome Res. 1998, 8, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Xiong, A.S.; Peng, R.H.; Zhuang, J.; Gao, F.; Zhu, B.; Fu, X.Y.; Xue, Y.; Jin, X.-F.; Tian, Y.-S.; Zhao, W.; et al. Gene duplication, transfer, and evolution in the chloroplast genome. Biotechnol. Adv. 2009, 27, 340–347. [Google Scholar] [CrossRef]
- Gao, C.; Li, T.; Zhao, X.; Wu, C.; Zhang, Q.; Zhao, X.; Wu, M.; Lian, Y.; Li, Z. Comparative analysis of the chloroplast genomes of Rosa species and RNA editing analysis. BMC Plant Biol. 2023, 23, 318. [Google Scholar] [CrossRef]
- Wang, S.; Yang, C.; Zhao, X.; Chen, S.; Qu, G.Z. Complete chloroplast genome sequence of Betula platyphylla: Gene organization, RNA editing, and comparative and phylogenetic analyses. BMC Genom. 2018, 19, 950. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Jin, E.; Wang, A.; Chen, T.; Zhang, X.; Zhu, J.; Dong, L.; Sun, Y.; Yu, C.; et al. The GSA Family in 2025: A Broadened Sharing Platform for Multi-Omics and Multimodal Data. Genom. Proteom. Bioinform. 2025, 23, qzaf072. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Bai, X.; Bu, C.; Chen, H.; Chen, K.; Chen, M.; Cheng, X.; Fan, Z.; Gao, H.; He, S.; et al. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2025. Nucleic Acids Res. 2025, 53, D30–D44. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.K.; Raubeson, L.A.; Boore, J.L.; Depamphilis, C.W.; Chumley, T.W.; Haberle, R.C.; Wyman, S.K.; Alverson, A.J.; Peery, R.; Herman, S.J.; et al. Methods for obtaining and analyzing whole chloroplast genome sequences. In Methods in Enzymology; Academic Press: San Diego, CA, USA, 2005; Volume 395, pp. 348–384. [Google Scholar]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq–versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Palmer, J.D.; Jansen, R.K.; Michaels, H.J.; Chase, M.W.; Manhart, J.R. Chloroplast DNA variation and plant phylogeny. Ann. Mo. Bot. Gard. 1988, 75, 1180–1206. [Google Scholar] [CrossRef]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Tembrock, L.R.; Ge, S. Are differences in genomic data sets due to true biological variants or errors in genome assembly: An example from two chloroplast genomes. PLoS ONE 2015, 10, e0118019. [Google Scholar] [CrossRef] [PubMed]






| Category | Gene Groups | Gene Name |
|---|---|---|
| Photosynthesis | Subunits_of_photosystem_I | psaA, psaB, psaC, psaI, psaJ |
| Subunits_of_photosystem_II | pbf1, psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbT, psbZ | |
| Subunits_of_NADH_dehydrogenase | ndhA, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | |
| Subunits_of_cytochrome_b/f_complex | petA, petB, petD, petG, petL, petN | |
| Subunits_of_ATP_synthase | atpA, atpB, atpE, atpF, atpF, atpH, atpI | |
| Large_subunit_of_Rubisco | rbcL | |
| Genetic system | Large_subunits_of_ribosome | rpl14, rpl16, rpl20, rpl22, rpl23, rpl32, rpl33, rpl36 |
| Small_subunits_of_ribosome | rps11, rps12, rps14, rps15, rps16, rps18, rps19, rps2, rps3, rps4, rps7, rps8 | |
| DNA-dependent_RNA_polymerase | rpoA, rpoB, rpoC1, rpoC2 | |
| Ribosomal_RNAs | rrn16, rrn23, rrn4.5, rrn5 | |
| Transfer_RNAs | trnA-UGC, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC, trnG-UCC, trnH-GUG, trnI-CAU, trnI-GAU, trnK-UUU, trnL-CAA, trnL-UAA, trnL-UAG, trnM-CAU, trnN-GUU, trnP-UGG, trnQ-UUG, trnR-ACG, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC, trnV-UAC, trnW-CCA, trnY-GUA, trnfM-CAU | |
| Other genes | Maturase | matK |
| Protease | clpP1 | |
| Envelope_membrane_protein | cemA | |
| Acetyl-CoA_carboxylase | ||
| C-type_cytochrome_synthesis_gene | ccsA | |
| Translation_initiation_factor | infA | |
| protochlorophillide_reductase_subunit | ||
| Unknown Genes | Proteins_of_unknown_function | ycf2, ycf3, ycf4, ycf68 |
| Species | Start | Stop | Synonymous | Nonsynonymous | CDS | Intergenic | Total SNPs |
|---|---|---|---|---|---|---|---|
| Panicum incomtum | 2 | 8 | 2000 | 1252 | 3281 | 1378 | 4659 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gao, Y.; Cai, Y.; Wang, H.; Tian, Z.; Huang, Z. The Complete Chloroplast Genome and the Phylogenetic Analysis of Panicum bisulcatum (Thumb.) (Poaceae). Int. J. Mol. Sci. 2026, 27, 135. https://doi.org/10.3390/ijms27010135
Gao Y, Cai Y, Wang H, Tian Z, Huang Z. The Complete Chloroplast Genome and the Phylogenetic Analysis of Panicum bisulcatum (Thumb.) (Poaceae). International Journal of Molecular Sciences. 2026; 27(1):135. https://doi.org/10.3390/ijms27010135
Chicago/Turabian StyleGao, Yuan, Yutong Cai, Huifeng Wang, Zhihui Tian, and Zhaofeng Huang. 2026. "The Complete Chloroplast Genome and the Phylogenetic Analysis of Panicum bisulcatum (Thumb.) (Poaceae)" International Journal of Molecular Sciences 27, no. 1: 135. https://doi.org/10.3390/ijms27010135
APA StyleGao, Y., Cai, Y., Wang, H., Tian, Z., & Huang, Z. (2026). The Complete Chloroplast Genome and the Phylogenetic Analysis of Panicum bisulcatum (Thumb.) (Poaceae). International Journal of Molecular Sciences, 27(1), 135. https://doi.org/10.3390/ijms27010135

