Rational Method for Structural Simplification as Key Step in Hit Discovery: The Case of FGFR2 and IGF1R Dual Inhibitors
Abstract
1. Introduction
2. Results and Discussion
2.1. QSAR Model Performance
Application of the Prediction Model on the Test Set
2.2. SAR-Based Structural Simplification
Finding Privileged Substituents
2.3. Final Candidate Selection
2.4. Synthesis of the Candidates
2.4.1. Synthesis of IQS226
2.4.2. Synthesis of IQS229
2.4.3. Synthesis of IQS224
2.5. Biological Evaluation
3. Computational Methodology
3.1. Datasets
3.2. Feature Selection
3.3. QSAR Model Creation Methodology
3.4. Structural Simplification Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFE | Correlation-Based Feature Elimination |
CV | Cross-Validation |
DEL | DNA-Encoded Libraries |
DMF | Dimethylformamide |
FBLG | Fragment-Based Lead Generation |
FGFR2 | Fibroblast Growth Factor Receptor 2 |
FS | Focused Screening |
HTS | High-Throughput Screening |
IGF1R | Insulin-Like Growth Factor 1 Receptor |
KBLG | Knowledge-Based Lead Generation |
LBDD | Ligand-Based Drug Design |
LOO | Leave One Out |
NIS | N-Iodosuccinimide |
MOE | Molecular Operating Environment |
MW | Microwave |
PDAC | Pancreatic Ductal Adenocarcinoma |
QSAR | Quantitative Structure–Activity Relationship |
RFA | Recursive Feature Addition |
RFE | Recursive Feature Elimination |
SAR | Structure–Activity Relationship |
SBDD | Structure-Based Drug Design |
SVM | Support Vector Machines |
TKI | Tyrosine Kinase Inhibitor |
References
- Blay, V.; Tolani, B.; Ho, S.P.; Arkin, M.R. High-Throughput Screening: Today’s Biochemical and Cell-Based Approaches. Drug Discov. Today 2020, 25, 1807–1821. [Google Scholar] [CrossRef]
- Moitessier, N.; Pottel, J.; Therrien, E.; Englebienne, P.; Liu, Z.; Tomberg, A.; Corbeil, C.R. Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods. Acc. Chem. Res. 2016, 49, 1646–1657. [Google Scholar] [CrossRef]
- Erlanson, D.A.; Fesik, S.W.; Hubbard, R.E.; Jahnke, W.; Jhoti, H. Twenty Years on: The Impact of Fragments on Drug Discovery. Nat. Rev. Drug Discov. 2016, 15, 605–619. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Z.; Holenz, J.; Yang, H. Competitive Intelligence–Based Lead Generation and Fast Follower Approaches. In Lead Generation; Holenz, J., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 183–220. [Google Scholar]
- Brown, D.G.; Boström, J. Where Do Recent Small Molecule Clinical Development Candidates Come From? J. Med. Chem. 2018, 61, 9442–9468. [Google Scholar] [CrossRef]
- Hughes, J.P.; Rees, S.S.; Kalindjian, S.B.; Philpott, K.L. Principles of Early Drug Discovery. Br. J. Pharmacol. 2011, 162, 1239–1249. [Google Scholar] [CrossRef]
- Ajjarapu, S.M.; Tiwari, A.; Ramteke, P.W.; Singh, D.B.; Kumar, S. Ligand-Based Drug Designing. In Bioinformatics: Methods and Applications; Academic Press: Cambridge, MA, USA, 2022; pp. 233–252. ISBN 9780323897754. [Google Scholar]
- Welsch, M.E.; Snyder, S.A.; Stockwell, B.R. Privileged Scaffolds for Library Design and Drug Discovery. Curr. Opin. Chem. Biol. 2010, 14, 347–361. [Google Scholar] [CrossRef]
- Méndez-Lucio, O.; Medina-Franco, J.L. The Many Roles of Molecular Complexity in Drug Discovery. Drug Discov. Today 2017, 22, 120–126. [Google Scholar] [CrossRef]
- Matsuda, Y.; Yoshimura, H.; Suzuki, T.; Uchida, E.; Naito, Z.; Ishiwata, T. Inhibition of Fibroblast Growth Factor Receptor 2 Attenuates Proliferation and Invasion of Pancreatic Cancer. Cancer Sci. 2014, 105, 1212–1219. [Google Scholar] [CrossRef]
- Urtasun, N.; Vidal-Pla, A.; Pérez-Torras, S.; Mazo, A. Human Pancreatic Cancer Stem Cells Are Sensitive to Dual Inhibition of IGF-IR and ErbB Receptors. BMC Cancer 2015, 15, 223. [Google Scholar] [CrossRef]
- Raghavendra, N.M.; Pingili, D.; Kadasi, S.; Mettu, A.; Prasad, S.V.U.M. Dual or Multi-Targeting Inhibitors: The next Generation Anticancer Agents. Eur. J. Med. Chem. 2018, 143, 1277–1300. [Google Scholar] [CrossRef]
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer Drug Resistance: An Evolving Paradigm. Nat. Rev. Cancer 2013, 13, 714–726. [Google Scholar] [CrossRef]
- Chand, S.; O’Hayer, K.; Blanco, F.F.; Winter, J.M.; Brody, J.R. The Landscape of Pancreatic Cancer Therapeutic Resistance Mechanisms. Int. J. Biol. Sci. 2016, 12, 273–283. [Google Scholar] [CrossRef]
- Kammasud, N.; Boonyarat, C.; Sanphanya, K.; Utsintong, M.; Tsunoda, S.; Sakurai, H.; Saiki, I.; André, I.; Grierson, D.S.; Vajragupta, O. 5-Substituted Pyrido[2,3-d]Pyrimidine, an Inhibitor against Three Receptor Tyrosine Kinases. Bioorg Med. Chem. Lett. 2009, 19, 745–750. [Google Scholar] [CrossRef]
- Edupuganti, R.; Wang, Q.; Tavares, C.D.J.; Chitjian, C.A.; Bachman, J.L.; Ren, P.; Anslyn, E.V.; Dalby, K.N. Synthesis and Biological Evaluation of Pyrido[2,3-d]Pyrimidine-2,4-Dione Derivatives as EEF-2K Inhibitors. Bioorg. Med. Chem. 2014, 22, 4910–4916. [Google Scholar] [CrossRef]
- Elzahabi, H.S.A.; Nossier, E.S.; Khalifa, N.M.; Alasfoury, R.A.; El-Manawaty, M.A. Anticancer Evaluation and Molecular Modeling of Multi-Targeted Kinase Inhibitors Based Pyrido[2,3-d]Pyrimidine Scaffold. J. Enzyme Inhib. Med. Chem. 2018, 33, 546–557. [Google Scholar] [CrossRef]
- Anderson, K.; Chen, Y.; Chen, Z.; Dominique, R.; Glenn, K.; He, Y.; Janson, C.; Luk, K.C.; Lukacs, C.; Polonskaia, A.; et al. Pyrido[2,3-d]Pyrimidines: Discovery and Preliminary SAR of a Novel Series of DYRK1B and DYRK1A Inhibitors. Bioorg Med. Chem. Lett. 2013, 23, 6610–6615. [Google Scholar] [CrossRef]
- Puig De La Bellacasa, R.; Roué, G.; Balsas, P.; Pérez-Galán, P.; Teixidó, J.; Colomer, D.; Borrell, J.I. 4-Amino-2-Arylamino-6-(2,6-Dichlorophenyl)-Pyrido[2,3-d]Pyrimidin-7-(8 H)-Ones as BCR Kinase Inhibitors for B Lymphoid Malignancies. Eur. J. Med. Chem. 2014, 86, 664–675. [Google Scholar] [CrossRef]
- Masip, V.; Lirio, Á.; Sánchez-López, A.; Cuenca, A.B.; Puig De La Bellacasa, R.; Abrisqueta, P.; Teixidó, J.; Borrell, J.I.; Gibert, A.; Estrada-Tejedor, R.; et al. Expanding the Diversity at the C-4 Position of Pyrido[2,3-d]Pyrimidin-7(8H)-Ones to Achieve Biological Activity against ZAP-70. Pharmaceuticals 2021, 14, 1311. [Google Scholar] [CrossRef]
- Camarasa, M.; De La Bellacasa, R.P.; González, À.L.; Ondoño, R.; Estrada, R.; Franco, S.; Badia, R.; Esté, J.; Martínez, M.Á.; Teixidó, J.; et al. Design, Synthesis and Biological Evaluation of Pyrido[2,3-d]Pyrimidin-7-(8H)-Ones as HCV Inhibitors. Eur. J. Med. Chem. 2016, 115, 463–483. [Google Scholar] [CrossRef]
- Oprea, T.I.; Bologa, C. Molecular Complexity: You Know It When You See It. J. Med. Chem. 2023, 66, 12710–12714. [Google Scholar] [CrossRef]
- Guha, R. On Exploring Structure-Activity Relationships. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2013; Volume 993, pp. 81–94. ISBN 9781627033411. [Google Scholar]
- Sander, T.; Freyss, J.; Von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program for Chemistry Aware Data Visualization and Analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Fromer, J.C.; Graff, D.E.; Coley, C.W. Pareto Optimization to Accelerate Multi-Objective Virtual Screening. Digit. Discov. 2024, 3, 467–481. [Google Scholar] [CrossRef]
- Perez-Pi, I.; Berzonsa, X.; Galve, I.; Teixido, J.; Borrel, J.I. Dehydrogenation of 5,6-Dihydropyrido[2,3-d]Pyridimin-7(8H)-Ones: A Convenient Last Step for a Synthesis of Pyrido[2,3-d]Pyrimidin-7(8H)-Ones. Heterocycles 2010, 82, 581–591. [Google Scholar]
- Galve, I.; Ondoño, R.; De Rocafiguera, C.; Puig De La Bellacasa, R.; Batllori, X.; Puigjaner, C.; Font-Bardia, M.; Vallcorba, O.; Teixidó, J.; Borrell, J.I. A Captured Room Temperature Stable Wheland Intermediate as a Key Structure for the Orthogonal Decoration of 4-Amino-Pyrido[2,3-d]Pyrimidin-7(8H)-Ones. Org. Biomol. Chem. 2020, 18, 9810–9815. [Google Scholar] [CrossRef]
- Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; et al. ChEMBL: A Large-Scale Bioactivity Database for Drug Discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. [Google Scholar] [CrossRef]
- Schüller, A.; Hähnke, V.; Schneider, G. SmiLib v2.0: A Java-Based Tool for Rapid Combinatorial Library Enumeration. QSAR Comb. Sci. 2007, 26, 407–410. [Google Scholar] [CrossRef]
- Chemical Computing Group ULC. Molecular Operating Environment (MOE), 2022.0; Chemical Computing Group ULC: Montreal, QC, Canada, 2022. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Vanderplas, J.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Ito, S.; Otsuki, S.; Ohsawa, H.; Hirano, A.; Kazuno, H.; Yamashita, S.; Egami, K.; Shibata, Y.; Yamamiya, I.; Yamashita, F.; et al. Discovery of Futibatinib: The First Covalent FGFR Kinase Inhibitor in Clinical Use. ACS Med. Chem. Lett. 2023, 14, 396–404. [Google Scholar] [CrossRef]
- Boers, R.B.; Randulfe, Y.P.; Van Der Haas, H.N.S.; Van Rossum-Baan, M.; Lugtenburg, J. Synthesis and Spectroscopic Characterization of 1-13C- and 4-13C-Plastoquinone-9. Eur. J. Org. Chem. 2002, 2002, 2094–2108. [Google Scholar] [CrossRef]
- El-Batta, A.; Jiang, C.; Zhao, W.; Anness, R.; Cooksy, A.L.; Bergdahl, M. Wittig Reactions in Water Media Employing Stabilized Ylides with Aldehydes. Synthesis of α,β-Unsaturated Esters from Mixing Aldehydes, α-Bromoesters, and Ph3P in Aqueous NaHCO3. J. Org. Chem. 2007, 72, 5244–5259. [Google Scholar] [CrossRef]
Target | R2 (Self) | Q2 | R2 (CV5) | R2 (CV10) | y-Rand | Features |
---|---|---|---|---|---|---|
FGFR2 | 0.946 | 0.733 | 0.698 | 0.720 | −0.285 | 69 |
IGF1R | 0.925 | 0.739 | 0.695 | 0.710 | −0.352 | 51 |
Starting Database | SAReport | Simplification | |
---|---|---|---|
C2 substituents | 30 | 20 | 5 |
C4 substituents | 14 | 9 | 4 |
C5 substituents | 12 | 10 | 5 |
C6 substituents | 27 | 25 | 7 |
N8 substituents | 5 | 5 | 4 |
TOTAL | 680,400 | 4000 | 94 |
Name | IGF1R | FGFR2 | Mean | Pareto Value | Rank Combinatorial |
---|---|---|---|---|---|
IQS227 | 7.81 | 7.08 | 7.44 | 92 | 1978 |
IQS228 | 7.55 | 6.96 | 7.25 | 71 | 5479 |
IQS229 | 7.53 | 6.95 | 7.24 | 68 | 5943 |
IQS236 | 7.11 | 6.95 | 7.03 | 63 | 22,997 |
IQS222 | 6.12 | 7.11 | 6.61 | 59 | 214,246 |
IQS226 | 6.46 | 6.84 | 6.65 | 48 | 110,333 |
IQS231 | 6.82 | 6.76 | 6.79 | 40 | 49,587 |
IQS232 | 6.02 | 6.86 | 6.44 | 39 | 258,649 |
IQS230 | 6.40 | 6.77 | 6.58 | 37 | 125,595 |
IQS240 | 6.01 | 6.83 | 6.42 | 36 | 263,397 |
IQS237 | 6.23 | 6.78 | 6.51 | 34 | 174,159 |
IQS224 | 7.48 | 6.66 | 7.07 | 30 | 6987 |
IQS235 | 6.94 | 6.66 | 6.80 | 27 | 36,502 |
IQS233 | 6.25 | 6.69 | 6.47 | 26 | 168,728 |
IQS223 | 6.49 | 6.58 | 6.49 | 21 | 104,524 |
IQS234 | 6.38 | 6.49 | 6.43 | 13 | 128,756 |
Name | IGF1R | FGFR2 | Mean | Rank Combinatorial |
---|---|---|---|---|
IQS238 | 8.79 | 7.23 | 8.01 | 1 |
IQS239 | 8.82 | 7.17 | 8.00 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Urtizberea, E.; Borrell, J.I.; Puig de la Bellacasa, R.; Estrada-Tejedor, R. Rational Method for Structural Simplification as Key Step in Hit Discovery: The Case of FGFR2 and IGF1R Dual Inhibitors. Int. J. Mol. Sci. 2025, 26, 4457. https://doi.org/10.3390/ijms26094457
Torres-Urtizberea E, Borrell JI, Puig de la Bellacasa R, Estrada-Tejedor R. Rational Method for Structural Simplification as Key Step in Hit Discovery: The Case of FGFR2 and IGF1R Dual Inhibitors. International Journal of Molecular Sciences. 2025; 26(9):4457. https://doi.org/10.3390/ijms26094457
Chicago/Turabian StyleTorres-Urtizberea, Endika, José I. Borrell, Raimon Puig de la Bellacasa, and Roger Estrada-Tejedor. 2025. "Rational Method for Structural Simplification as Key Step in Hit Discovery: The Case of FGFR2 and IGF1R Dual Inhibitors" International Journal of Molecular Sciences 26, no. 9: 4457. https://doi.org/10.3390/ijms26094457
APA StyleTorres-Urtizberea, E., Borrell, J. I., Puig de la Bellacasa, R., & Estrada-Tejedor, R. (2025). Rational Method for Structural Simplification as Key Step in Hit Discovery: The Case of FGFR2 and IGF1R Dual Inhibitors. International Journal of Molecular Sciences, 26(9), 4457. https://doi.org/10.3390/ijms26094457