Coagulase-Negative Staphylococci Determined as Blood Culture Contamination Have High Virulence Characteristic Including Transfer of Antibiotic Resistance Determinants to Staphylococcus aureus and Escherichia coli
Abstract
1. Introduction
2. Results and Discussion
2.1. Identification of Blood Culture Contaminants
2.2. Biofilm Formation by CoNS Determined as Blood Culture Contamination
2.3. Susceptibility of CoNS to Antibiotics
2.4. Mobilization Potential of Antibiotic Resistance Determinants
2.5. Susceptibility of CoNS to Antiseptics
Strain | Description | Source |
---|---|---|
E. coli MG1655 | K-12 F- λ- ilvG-rfb-50 rph-1 | [51] |
E. coli MG1655 TcR | ortT::TetR | Unpublished a |
E. coli DH5α RifR | F− φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(rK− mK+) phoA supE44 thi-1 gyrA96 relA1 Rifr | [52] |
E. coli HB101 StrR | F− hsdS20(rB− mB−) recA13 ara-14 proA2 lacY1 galK2 rpsL20(StrR) xyl-5 mtl-1 supE44 λ− | [53] |
3. Conclusions
4. Materials and Methods
4.1. Strain Isolation and Identification
4.2. The Ability to Form Biofilms
4.3. Determination of Antibiotic Resistance
4.4. Mobilization Potential of Antibiotic Resistance Determinants
4.5. Activity of Antiseptics on Planktonic Cells
4.6. Activity of Antiseptics on Biofilms
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sacchetti, B.; Travis, J.; Steed, L.L.; Webb, G. Identification of the main contributors to blood culture contamination at a tertiary care academic medical center. Infect. Prev. Pract. 2022, 4, 100219. [Google Scholar] [CrossRef] [PubMed]
- Aiesh, B.M.; Daraghmeh, D.; Abu-Shamleh, N.; Joudallah, A.; Sabateen, A.; Al Ramahi, R. Blood culture contamination in a tertiary care hospital: A retrospective three-year study. BMC Infect. Dis. 2023, 23, 448. [Google Scholar] [CrossRef] [PubMed]
- Diekema, D.J.; Hsueh, P.-R.; Mendes, R.E.; Pfaller, M.A.; Rolston, K.V.; Sader, H.S.; Jones, R.N. The Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother. 2019, 63, e00355-19. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, F.; Sun, Z.; Fang, Y.; Zhu, H.; Zhang, D.; Zeng, X.; Liu, W.; Liu, T.; Liu, Y.; et al. Rapid and precise identification of bloodstream infections using a pre-treatment protocol combined with high-throughput multiplex genetic detection system. BMC Infect. Dis. 2022, 22, 823. [Google Scholar] [CrossRef]
- Garcia, R.A.; Spitzer, E.D.; Beaudry, J.; Beck, C.; Diblasi, R.; Gilleeny-Blabac, M.; Haugaard, C.; Heuschneider, S.; Kranz, B.P.; McLean, K.; et al. Multidisciplinary team review of best practices for collection and handling of blood cultures to determine effective interventions for increasing the yield of true-positive bacteremias, reducing contamination, and eliminating false-positive central line–associated bloodstream infections. Am. J. Infect. Control 2015, 43, 1222–1237. [Google Scholar] [CrossRef]
- Hall, K.K.; Lyman, J.A. Updated Review of Blood Culture Contamination. Clin. Microbiol. Rev. 2006, 19, 788–802. [Google Scholar] [CrossRef]
- Hughes, J.A.; Cabilan, C.J.; Williams, J.; Ray, M.; Coyer, F. The effectiveness of interventions to reduce peripheral blood culture contamination in acute care: A systematic review protocol. Syst. Rev. 2018, 7, 216. [Google Scholar] [CrossRef]
- Sidhu, S.K.; Malhotra, S.; Devi, P.; Tuli, A.K. Significance of coagulase negative Staphylococcus from blood cultures: Persisting problems and partial progress in resource constrained settings. Iran. J. Microbiol. 2016, 8, 366–371. [Google Scholar]
- Papadimitriou-Olivgeri, I.; Giormezis, N.; Papadimitriou-Olivgeris, M.; Zotou, A.; Kolonitsiou, F.; Koutsileou, K.; Fligou, F.; Marangos, M.; Anastassiou, E.D.; Spiliopoulou, I. Number of positive blood cultures, biofilm formation, and adhesin genes in differentiating true coagulase-negative staphylococci bacteremia from contamination. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 57–66. [Google Scholar] [CrossRef]
- Osaki, S.; Kikuchi, K.; Moritoki, Y.; Motegi, C.; Ohyatsu, S.; Nariyama, T.; Matsumoto, K.; Tsunashima, H.; Kikuyama, T.; Kubota, J.; et al. Distinguishing coagulase-negative Staphylococcus bacteremia from contamination using blood-culture positive bottle detection pattern and time to positivity. J. Infect. Chemother. 2020, 26, 672–675. [Google Scholar] [CrossRef]
- Nwobodo, D.C.; Ugwu, M.C.; Anie, C.O.; Al-Ouqaili, M.T.S.; Ikem, J.C.; Chigozie, U.V.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef] [PubMed]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Chen, H.; Li, N.; Wang, T.; Liang, W. The Spread of Antibiotic Resistance Genes In Vivo Model. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 1–11. [Google Scholar] [CrossRef]
- Alderliesten, J.B.; Duxbury, S.J.N.; Zwart, M.P.; de Visser, J.A.G.M.; Stegeman, A.; Fischer, E.A.J. Effect of donor-recipient relatedness on the plasmid conjugation frequency: A meta-analysis. BMC Microbiol. 2020, 20, 135. [Google Scholar] [CrossRef] [PubMed]
- Robertson, P.; Russell, A.; Inverarity, D.J. The effect of a quality improvement programme reducing blood culture contamination on the detection of bloodstream infection in an emergency department. J. Infect. Prev. 2014, 16, 82–87. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcus colonization of the skin and antimicrobial peptides. Expert Rev. Dermatol. 2010, 5, 183–195. [Google Scholar] [CrossRef]
- Von Eiff, C.; Peters, G.; Heilmann, C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect. Dis. 2002, 2, 677–685. [Google Scholar] [CrossRef]
- Al-Bayati, M.; Samarasinghe, S. Biofilm and Gene Expression Characteristics of the Carbapenem-Resistant Enterobacterales, Escherichia coli IMP, and Klebsiella pneumoniae NDM-1 Associated with Common Bacterial Infections. Int. J. Environ. Res. Public Health 2022, 19, 4788. [Google Scholar] [CrossRef]
- Shresthar, L.B.; Bhattarai, N.R.; Khanal, B. Comparative evaluation of methods for the detection of biofilm formation in coagulase-negative staphylococci and correlation with antibiogram. Infect. Drug Resist. 2018, 11, 607–613. [Google Scholar] [CrossRef]
- Onyango, L.A.; Dunstan, R.H.; Gottfries, J.; von Eiff, C.; Roberts, T.K. Effect of Low Temperature on Growth and Ultra-Structure of Staphylococcus spp. PLoS ONE 2012, 7, e29031. [Google Scholar] [CrossRef]
- Wojtyczka, R.D.; Orlewska, K.; Kępa, M.; Idzik, D.; Dziedzic, A.; Mularz, T.; Krawczyk, M.; Miklasińska, M.; Wąsik, T.J. Biofilm Formation and Antimicrobial Susceptibility of Staphylococcus epidermidis Strains from a Hospital Environment. Int. J. Environ. Res. Public Health 2014, 11, 4619–4633. [Google Scholar] [CrossRef] [PubMed]
- Menezes, R.D.P.; Marques, L.D.A.; Silva, F.F.; Silva, N.B.S.; Alves, P.G.V.; Bessa, M.A.D.S.; Araújo, L.B.D.; Penatti, M.P.A.; Pedroso, R.D.S.; Brito Röder, D.V.D.D. Inanimate Surfaces and Air Contamination with Multidrug Resistant Species of Staphylococcus in the Neonatal Intensive Care Unit Environment. Microorganisms 2022, 10, 567. [Google Scholar] [CrossRef] [PubMed]
- Firesbhat, A.; Tigabu, A.; Tegene, B.; Gelaw, B. Bacterial profile of high-touch surfaces, leftover drugs and antiseptics together with their antimicrobial susceptibility patterns at University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. BMC Microbiol. 2021, 21, 309. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.O.; Peixoto, L.d.P.; Barros, E.T.M.; Guimaraes, J.R.; Gontijo, B.C.; Almeida, J.L.; de Azevedo, L.G.; e Lima, J.C.O.; Camara, D.S. Epidemiology of Bacterial Contamination of Inert Hospital Surfaces and Equipment in Critical and Non-critical Care Units: A Brazilian Study. BioRxiv 2020. [Google Scholar] [CrossRef]
- Różańska, A.; Chmielarczyk, A.; Romaniszyn, D.; Bulanda, M.; Walkowicz, M.; Osuch, P.; Knych, T. Antibiotic resistance, ability to form biofilm and susceptibility to copper alloys of selected staphylococcal strains isolated from touch surfaces in Polish hospital wards. Antimicrob. Resist. Infect. Control 2017, 6, 80. [Google Scholar] [CrossRef]
- Bierman, W. The temperature of the skin surface. J. Am. Med. Assoc. 1936, 106, 1158–1162. [Google Scholar] [CrossRef]
- Costerton, W.; Veeh, R.; Shirtliff, M.; Pasmore, M.; Post, C.; Ehrlich, G. The application of biofilm science to the study and control of chronic bacterial infections. J. Clin. Investig. 2003, 112, 1466–1477. [Google Scholar] [CrossRef]
- De Vecchi, E.; George, D.A.; Romanò, C.L.; Pregliasco, F.E.; Mattina, R.; Drago, L. Antibiotic sensitivities of coagulase-negative staphylococci and Staphylococcus aureus in hip and knee periprosthetic joint infections: Does this differ if patients meet the International Consensus Meeting Criteria? Infect. Drug Resist. 2018, 11, 539–546. [Google Scholar] [CrossRef]
- Cui, J.; Liang, Z.; Mo, Z.; Zhang, J. The species distribution, antimicrobial resistance and risk factors for poor outcome of coagulase-negative staphylococci bacteraemia in China. Antimicrob. Resist. Infect. Control 2019, 8, 65. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical Breakpoints and Dosing of Antibiotics. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 12.0. 2022. Available online: http://www.eucast.org (accessed on 6 June 2023).
- Ibrahim, S.K.; Flyyih, N.M. Staphylococcus epidermidis is the Main Causative Agent of Conjunctivitis. HIV Nurs. 2022, 22, 1644–1648. [Google Scholar]
- Jain, A.; Agarwal, J.; Bansal, S. Prevalence of methicillin-resistant, coagulase-negative staphylococci in neonatal intensive care units: Findings from a tertiary care hospital in India. J. Med. Microbiol. 2004, 53, 941–944. [Google Scholar] [CrossRef] [PubMed]
- Mermel, L.A.; Allon, M.; Bouza, E.; Craven, D.E.; Flynn, P.; O’Grady, N.P.; Raad, I.I.; Rijnders, B.J.A.; Sherertz, R.J.; Warren, D.K. Clinical Practice Guidelines for the Diagnosis and Management of Intravascular Catheter-Related Infection: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 49, 1–45. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, R.; Yousefimashouf, R.; Arabestani, M.R.; Sedighi, I.; Alikhani, M.Y. The issue beyond resistance: Methicillin-resistant Staphylococcus epidermidis biofilm formation is induced by subinhibitory concentrations of cloxacillin, cefazolin, and clindamycin. PLoS ONE 2022, 17, e0277287. [Google Scholar] [CrossRef] [PubMed]
- Zatyka, M.; Thomas, C.M. Control of genes for conjugative transfer of plasmids and other mobile elements. FEMS Microbiol. Rev. 1998, 21, 291–319. [Google Scholar] [CrossRef]
- Van Hung Le, V.; Gong, Z.; Maccario, L.; Bousquet, E.; Parra, B.; Dechesne, A.; Sørensen, S.J.; Nesme, J. Birmingham-Group IncP-1α Plasmids Revisited: RP4, RP1 and RK2 Are Identical and Their Remnants Can Be Detected in Environmental Isolates. Microb. Genom. 2025, 11, 001381. [Google Scholar] [CrossRef]
- Francia, M.V.; Varsaki, A.; Garcillán-Barcia, M.P.; Latorre, A.; Drainas, C.; de la Cruz, F. A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol. Rev. 2004, 28, 79–100. [Google Scholar] [CrossRef]
- Werbowy, O.; Kaczorowski, T. Plasmid pEC156, a Naturally Occurring Escherichia coli Genetic Element That Carries Genes of the EcoVIII Restriction-Modification System, Is Mobilizable among Enterobacteria. PLoS ONE 2016, 11, e0148355. [Google Scholar] [CrossRef]
- Ochman, H.; Lawrence, J.G.; Groisman, E.A. Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405, 299–304. [Google Scholar] [CrossRef]
- Garriss, G.; Waldor, M.K.; Burrus, V. Mobile Antibiotic Resistance Encoding Elements Promote Their Own Diversity. PLOS Genet. 2009, 5, e1000775. [Google Scholar] [CrossRef]
- Virolle, C.; Goldlust, K.; Djermoun, S.; Bigot, S.; Lesterlin, C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes 2020, 11, 1239. [Google Scholar] [CrossRef]
- Sen, D.; Van der Auwera, G.A.; Rogers, L.M.; Thomas, C.M.; Brown, C.J.; Top, E.M. Broad-Host-Range Plasmids from Agricultural Soils Have IncP-1 Backbones with Diverse Accessory Genes. Appl. Environ. Microbiol. 2011, 77, 7975–7983. [Google Scholar] [CrossRef] [PubMed]
- Manohar, P.; Shanthini, T.; Bozdogan, B.; Lundborg, C.S.; Tamhankar, A.J.; Palaniyar, N.; Ramesh, N. Transfer of Antibiotic Resistance Genes from Gram-positive Bacterium to Gram-negative Bacterium. BioRxiv 2020. [Google Scholar] [CrossRef]
- Bes, T.M.; Nagano, D.S.; Marchi, A.P.; Camilo, G.; Perdigão-Neto, L.V.; Martins, R.R.; Levin, A.S.; Costa, S.F. Conjugative transfer of plasmid p_8N_qac(MN687830.1) carrying qacA gene from Staphylococcus aureus to Escherichia coli C600: Potential mechanism for spreading chlorhexidine resistance. Rev. Inst. Med. Trop. São Paulo 2021, 63, e82. [Google Scholar] [CrossRef]
- Muleba, L.; Van Wyk, R.; Pienaar, J.; Ratshikhopha, E.; Singh, T. Assessment of Anti-Bacterial Effectiveness of Hand Sanitizers Commonly Used in South Africa. Int. J. Environ. Res. Public Health 2022, 19, 9245. [Google Scholar] [CrossRef]
- Man, A.; Gâz, A.Ş.; Mare, A.D.; Berţa, L. Effects of low-molecular weight alcohols on bacterial viability. Rom. Rev. Lab. Med. 2017, 25, 335–343. [Google Scholar] [CrossRef]
- Hefzy, E.M.; Radwan, T.E.E.; Hozayen, B.M.M.; Mahmoud, E.E.; Khalil, M.A.F. Antiseptics and mupirocin resistance in clinical, environmental, and colonizing coagulase negative Staphylococcus isolates. Antimicrob. Resist. Infect. Control 2023, 12, 110. [Google Scholar] [CrossRef]
- Ota, K.; Oba, K.; Fukui, K.; Ito, Y.; Hamada, E.; Mori, N.; Oka, M.; Ota, K.; Shibata, Y.; Takasu, A. Sites of blood collection and topical antiseptics associated with contaminated cultures: Prospective observational study. Sci. Rep. 2021, 11, 6211. [Google Scholar] [CrossRef]
- Garrido-Benedicto, P.; Cueto-Quintana, P.; Farré-Termens, E.; Mariné-Cabré, M.; Riba-Reig, J.; Molina-Chueca, R. Effect of daily cleaning with chlorhexidine on the incidence of contamination of blood cultures in the critical patient. Enfermería Intensiv. 2017, 28, 97–104. [Google Scholar] [CrossRef]
- Caldeira, D.; David, C.; Sampaio, C. Skin antiseptics in venous puncture-site disinfection for prevention of blood culture contamination: Systematic review with meta-analysis. J. Hosp. Infect. 2011, 77, 223–232. [Google Scholar] [CrossRef]
- Blattner, F.R.; Plunkett, G., III; Bloch, C.A.; Perna, N.T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J.D.; Rode, C.K.; Mayhew, G.F.; et al. The Complete Genome Sequence of Escherichia coli K-12. Science 1997, 277, 1453–1462. [Google Scholar] [CrossRef]
- Campbell, E.A.; Korzheva, N.; Mustaev, A.; Murakami, K.; Nair, S.; Goldfarb, A.; Darst, S.A. Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase. Cell 2001, 104, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.N.; Chang, A.C.Y.; Boyer, H.W.; Helling, R.B. Construction of Biologically Functional Bacterial Plasmids In Vitro. Proc. Natl. Acad. Sci. USA 1973, 70, 3240–3244. [Google Scholar] [CrossRef] [PubMed]
- EN 13727:2012+A2; Chemical Disinfectants and Antiseptics—Quantitative Suspension Test for the Evaluation of Bactericidal Activity in the Medical Area—Test Method and Requirements (Phase 2, Step 1). British Standards Institution: London, UK, 2012.
Number | ID | CoNS |
---|---|---|
UCC group | ||
1 | 3404 | S. epidermidis |
2 | 3405 | S. epidermidis |
3 | 3406 | S. epidermidis |
4 | 3812 | S. epidermidis |
5 | 3433 | S. haemolyticus |
6 | 3819 | S. epidermidis |
7 | 3346 | S. saprophiticus |
8 | 3340 | S. epidermidis |
9 | 3409 | S. epidermidis |
10 | 3450 | S. epidermidis |
11 | 3434 | S. haemolyticus |
12 | 3448 | S. epidermidis |
13 | 3821 | S. hominis |
14 | 3437 | S. epidermidis |
15 | 3436 | S. epidermidis |
16 | 3342 | S. epidermidis |
17 | 3407 | S. epidermidis |
CED group | ||
18 | 3212 | S. epidermidis |
19 | 3171 | S. hominis |
20 | 3173 | S. epidermidis |
21 | 3184 | S. epidermidis |
22 | 3187 | S. epidermidis |
23 | 3217 | S. epidermidis |
24 | 3209 | S. epidermidis |
25 | 3210 | S. epidermidis |
26 | 3188 | S. epidermidis |
27 | 3211 | S. epidermidis |
28 | 3213 | S. epidermidis |
29 | 3215 | S. epidermidis |
30 | 3170 | S. epidermidis |
31 | 3216 | S. capitis |
32 | 3214 | S. epidermidis |
33 | 3189 | S. capitis |
34 | 2121261/2 | S. simulans |
35 | 3702 | S. epidermidis |
36 | 3449 | S. epidermidis |
Source | Frequency | Percentage (%) | |
---|---|---|---|
S. epidermidis | UCC | 13 | 76.47 |
CED | 15 | 78.95 | |
Total | 28 | 77.78 | |
S. haemolyticus | UCC | 2 | 11.76 |
CED | 0 | 0 | |
Total | 2 | 5.56 | |
S. saprophiticus | UCC | 1 | 5.88 |
CED | 0 | 0 | |
Total | 1 | 2.78 | |
S. hominis | UCC | 1 | 5.88 |
CED | 1 | 5.26 | |
Total | 2 | 5.56 | |
S. capitis | UCC | 0 | 0 |
CED | 2 | 10.52 | |
Total | 2 | 5.56 | |
S. simulans | UCC | 0 | 0 |
CED | 1 | 5.26 | |
Total | 1 | 2.78 |
Antibiotic Resistance | Strain with Identifier | Checking Mobility Resistance—Recipient: S.aureus 8324-5 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMP | KAN | CM | CIP | GEN | STR | ID | Strain | AMP | KAN | CM | CIP | GEN | |
UCC | S | S | S | S | S | S | 3404 | S. epidermidis | |||||
S | R | S | R | R | S | 3405 | S. epidermidis | 1.3 ± 0.9 × 10−2 | no | 1.3 ± 1.2 × 10−3 | |||
S | R | R | R | R | S | 3406 | S. epidermidis | 2.2 ± 1.8 × 10−6 | no | no | no | ||
R | R | S | R | R | S | 3812 | S. epidermidis | no | 5.7 ± 4.0 × 10−3 | 3.7 ± 1.4 × 10−4 | 4.8 ± 1.0 × 10−3 | ||
R | R | S | R | R | R | 3433 | S. haemolyticus | ||||||
S | R | S | R | R | S | 3819 | S. epidermidis | 9.5 ± 4.8 × 10−3 | 1.1 ± 1.0 × 10−4 | 1.8 ± 0.6 × 10−3 | |||
S | S | S | S | S | S | 3346 | S. saprophyticus | ||||||
S | S | S | S | S | S | 3340 | S. epidermidis | ||||||
R | S | R | S | S | R | 3409 | S. epidermidis | ||||||
S | R | R | S | R | S | 3450 | S. epidermidis | 5.5 ± 4.9 × 10−4 | 9.7 ± 6.3 × 10−4 | no | |||
R | R | R | R | R | R | 3434 | S. haemolyticus | ||||||
S | R | R | S | R | S | 3448 | S. epidermidis | no | no | no | |||
S | R | R | R | R | S | 3821 | S. hominis | 7.9 ± 4.2 × 10−3 | 2.0 ± 3.1 × 10−3 | 5.7 ± 3.2 × 10−3 | no | ||
S | R | S | R | R | S | 3437 | S. epidermidis | 3.5 ± 2.7 × 10−1 | 2.7 ± 2.5 × 10−4 | 1.6 ± 1.3 × 10−1 | |||
R | R | R | S | R | R | 3436 | S. epidermidis | ||||||
S | S | S | S | S | S | 3342 | S. epidermidis | ||||||
R | R | R | S | S | R | 3407 | S. epidermidis | ||||||
CED | S | R | R | S | S | S | 3212 | S. epidermidis | 4.6 ± 3.8 × 10−2 | 1.7 ± 1.5 × 10−4 | |||
S | S | S | S | S | S | 3171 | S. hominis | ||||||
S | S | S | S | S | S | 3173 | S. epidermidis | ||||||
S | S | S | S | S | S | 3184 | S. epidermidis | ||||||
R | R | R | S | S | R | 3187 | S. epidermidis | ||||||
S | S | S | S | S | S | 3217 | S. epidermidis | ||||||
S | R | S | R | R | S | 3209 | S. epidermidis | 3.6 ± 2.4 × 10−4 | no | no | |||
R | R | S | S | S | R | 3210 | S. epidermidis | ||||||
R | R | S | S | R | R | 3188 | S. epidermidis | ||||||
S | S | S | R | S | S | 3211 | S. epidermidis | 1.3 ± 0.5 × 10−5 | |||||
S | S | R | S | S | S | 3213 | S. epidermidis | 5.9 ± 4.2 × 10−4 | |||||
S | R | S | S | S | S | 3215 | S. epidermidis | 5.4 ± 2.9 × 10−4 | |||||
S | S | S | S | S | S | 3170 | S. epidermidis | ||||||
R | R | S | S | R | S | 3216 | S. capitis | 2.1 ± 2.0 × 10−2 | 1.6 ± 1.4 × 10−2 | 6.7 ± 2.8 × 10−2 | |||
R | S | S | R | S | S | 3214 | S. epidermidis | 1.6 ± 1.4 × 10−3 | 4.6 ± 3.0 × 10−4 | ||||
S | S | S | S | S | S | 3189 | S. capitis | ||||||
S | R | S | S | S | S | 2121261 | S. simulans | 3.6 ± 2.7 × 10−3 | |||||
R | R | R | S | S | S | 3702 | S. epidermidis | 3.9 ± 2.4 × 10−2 | 3.2 ± 2.0 × 10−3 | 8.0 ± 3.5 × 10−3 | |||
S | S | S | S | S | S | 3449 | S. epidermidis |
Antibiotic Resistance | Strain with Identifier | Checking Mobility Resistance—Recipnemt: E. coli | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMP | KAN | CM | RIF | CIP | GEN | STR | TET | ID | Strain | AMP | KAN | CM | CIP | GEN | STR | TET | |
UCC | S | S | S | R | S | S | S | S | 3404 | S. epidermidis | |||||||
S | R | S | S | R | R | S | S | 3405 | S. epidermidis | no | no | no | |||||
S | R | R | R | R | R | S | S | 3406 | S. epidermidis | no | no | no | no | ||||
R | R | S | R | R | R | S | S | 3812 | S. epidermidis | no | no | no | no | ||||
R | R | S | R | R | R | R | S | 3433 | S. haemolyticus | no | 1.7 ± 1.2 × 10−4 | no | no | 7.4 ± 5.49 × 10−5 | |||
S | R | S | S | R | R | S | S | 3819 | S. epidermidis | no | no | no | |||||
S | S | S | S | S | S | S | S | 3346 | S. saprophyticus | ||||||||
S | S | S | S | S | S | S | S | 3340 | S. epidermidis | ||||||||
R | S | R | S | S | S | R | S | 3409 | S. epidermidis | no | no | no | |||||
S | R | R | S | S | R | S | S | 3450 | S. epidermidis | 4.3 ± 3.2 × 10−3 | 6.4 ± 1.9 × 10−3 | no | |||||
R | R | R | S | R | R | R | R | 3434 | S. haemolyticus | no | 6.0 ± 3.9 × 10−4 | no | no | no | no | no | |
S | R | R | R | S | R | S | S | 3448 | S. epidermidis | no | no | no | |||||
S | R | R | S | R | R | S | S | 3821 | S. hominis | no | no | no | no | ||||
S | R | S | S | R | R | S | S | 3437 | S. epidermidis | 8.93 ± 0.55 × 10−3 | no | 2.3 ± 0.7 × 10−3 | |||||
R | R | R | R | S | R | R | S | 3436 | S. epidermidis | no | no | no | no | no | |||
S | S | S | S | S | S | S | S | 3342 | S. epidermidis | ||||||||
R | R | R | S | S | S | R | S | 3407 | S. epidermidis | no | no | no | no | ||||
CED | S | R | R | S | S | S | S | S | 3212 | S. epidermidis | no | no | |||||
S | S | S | S | S | S | S | S | 3171 | S. hominis | ||||||||
S | S | S | S | S | S | S | S | 3173 | S. epidermidis | ||||||||
S | S | S | S | S | S | S | S | 3184 | S. epidermidis | ||||||||
R | R | R | S | S | S | R | S | 3187 | S. epidermidis | 5.4 ± 1.9 × 10−4 | no | 2.9 ± 2.4 × 10−4 | no | ||||
S | S | S | S | S | S | S | S | 3217 | S. epidermidis | ||||||||
S | R | S | R | R | R | S | S | 3209 | S. epidermidis | no | no | no | |||||
R | R | S | S | S | S | R | S | 3210 | S. epidermidis | ||||||||
R | R | S | S | S | R | R | S | 3188 | S. epidermidis | no | no | no | no | ||||
S | S | S | S | R | S | S | S | 3211 | S. epidermidis | no | |||||||
S | S | R | S | S | S | S | S | 3213 | S. epidermidis | no | |||||||
S | R | S | S | S | S | S | S | 3215 | S. epidermidis | no | |||||||
S | S | S | S | S | S | S | S | 3170 | S. epidermidis | ||||||||
R | R | S | S | S | R | S | S | 3216 | S. capitis | 2.7 ± 2.2 × 10−3 | 1.2 ± 1.1 × 10−3 | 1.8 ± 1.2 × 10−3 | |||||
R | S | S | S | R | S | S | S | 3214 | S. epidermidis | no | no | ||||||
S | S | S | S | S | S | S | S | 3189 | S. capitis | ||||||||
S | R | S | S | S | S | S | S | 2121261 | S. simulans | 1.8 ± 0.9 × 10−3 | |||||||
R | R | R | S | S | S | S | S | 3702 | S. epidermidis | 2.3 ± 1.6 × 10−4 | 1.3 ± 1.0 × 10−4 | no | |||||
S | S | S | S | S | S | S | S | 3449 | S. epidermidis |
Antiseptic | Time (s) | Group | Live Cells (log CFU/mL) |
---|---|---|---|
Kodan | 10 | UCC | 0 |
CED | 0 | ||
60 | UCC | 0 | |
CED | 0 | ||
Betadine 10% | 10 | UCC | 0 |
CED | 0 | ||
60 | UCC | 0 | |
CED | 0 | ||
Rivanol 0.1% | 10 | UCC | 0 |
CED | 0 | ||
60 | UCC | 0 | |
CED | 0 | ||
CITROclorex 2% | 10 | UCC | 0 |
CED | 0 | ||
60 | UCC | 0 | |
CED | 0 | ||
Octenidyne | 10 | UCC | 0 |
CED | 0 | ||
60 | UCC | 0 | |
CED | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybak, B.; Werbowy, O.; Debowski, K.; Plotka, M.; Kocot, A.M. Coagulase-Negative Staphylococci Determined as Blood Culture Contamination Have High Virulence Characteristic Including Transfer of Antibiotic Resistance Determinants to Staphylococcus aureus and Escherichia coli. Int. J. Mol. Sci. 2025, 26, 4424. https://doi.org/10.3390/ijms26094424
Rybak B, Werbowy O, Debowski K, Plotka M, Kocot AM. Coagulase-Negative Staphylococci Determined as Blood Culture Contamination Have High Virulence Characteristic Including Transfer of Antibiotic Resistance Determinants to Staphylococcus aureus and Escherichia coli. International Journal of Molecular Sciences. 2025; 26(9):4424. https://doi.org/10.3390/ijms26094424
Chicago/Turabian StyleRybak, Bartosz, Olesia Werbowy, Karol Debowski, Magdalena Plotka, and Aleksandra Maria Kocot. 2025. "Coagulase-Negative Staphylococci Determined as Blood Culture Contamination Have High Virulence Characteristic Including Transfer of Antibiotic Resistance Determinants to Staphylococcus aureus and Escherichia coli" International Journal of Molecular Sciences 26, no. 9: 4424. https://doi.org/10.3390/ijms26094424
APA StyleRybak, B., Werbowy, O., Debowski, K., Plotka, M., & Kocot, A. M. (2025). Coagulase-Negative Staphylococci Determined as Blood Culture Contamination Have High Virulence Characteristic Including Transfer of Antibiotic Resistance Determinants to Staphylococcus aureus and Escherichia coli. International Journal of Molecular Sciences, 26(9), 4424. https://doi.org/10.3390/ijms26094424