Mitochondrial Oxidative Phosphorylation System Dysfunction in Schizophrenia
Abstract
:1. Introduction
2. Literature Selection and Scope
3. Key Findings and Insights
3.1. Postmortem Evidence of OXPHOS Alterations in Brains from Individuals with SCZ (mRNA, Proteins, Metabolites)
3.2. Central and Peripheral Systems
3.3. Alterations in Several Complexes
3.4. Energy Metabolism
3.5. Other Molecules Related to OXPHOS
3.6. Pharmacological Considerations
3.7. Common OXPHOS Alterations in SCZ and Other Brain Disorders
3.8. Mitochondrial Genome Alterations
3.9. Future Directions
4. Concluding Remarks
5. Highlights
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADP | Adenosine diphosphate |
ASD | Autism spectrum disorder |
ATP | Adenosine triphosphate |
Cho | Choline |
CNV | Copy number variants |
CoQ | Coenzyme Q |
Cr | Creatine |
CI | Complex I or NADH dehydrogenase |
CII | Complex II or succinate dehydrogenase |
CIII | Complex III or cytochrome reductase |
CIV | Complex IV or cytochrome c oxidase |
CV | Complex V or ATP synthase |
ETC | Electron transport chain |
GWAS | Genome-wide association studies |
iPSC | Induced pluripotent stem cells |
MRS | Magnetic resonance spectroscopy |
MtDNA | Mitochondrial DNA |
NAA | N-acetylaspartate |
NAD+ | Nicotinamide adenine dinucleotide |
NADH | Reduced form of nicotinamide adenine dinucleotide |
OXPHOSI | Oxidative phosphorylation system |
PBMC | Peripheral blood mononuclear cells |
RCV | Rare coding variants |
ROS | Reactive oxygen species |
SCZ | Schizophrenia |
References
- Scheffler, I.E. Mitochondria; Wiley-Liss: New York, NY, USA, 1999; ISBN 978-0-471-19422-4. [Google Scholar]
- Carpenter, W.T.; Buchanan, R.W. Schizophrenia. N. Engl. J. Med. 1994, 330, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Jauhar, S.; Johnstone, M.; McKenna, P.J. Schizophrenia. Lancet Lond. Engl. 2022, 399, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Clay, H.B.; Sillivan, S.; Konradi, C. Mitochondrial Dysfunction and Pathology in Bipolar Disorder and Schizophrenia. Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci. 2011, 29, 311–324. [Google Scholar] [CrossRef]
- Konradi, C.; Öngür, D. Role of Mitochondria and Energy Metabolism in Schizophrenia and Psychotic Disorders. Schizophr. Res. 2017, 187, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Dror, N.; Klein, E.; Karry, R.; Sheinkman, A.; Kirsh, Z.; Mazor, M.; Tzukerman, M.; Ben-Shachar, D. State-Dependent Alterations in Mitochondrial Complex I Activity in Platelets: A Potential Peripheral Marker for Schizophrenia. Mol. Psychiatry 2002, 7, 995–1001. [Google Scholar] [CrossRef]
- Whitehurst, T.; Howes, O. The Role of Mitochondria in the Pathophysiology of Schizophrenia: A Critical Review of the Evidence Focusing on Mitochondrial Complex One. Neurosci. Biobehav. Rev. 2022, 132, 449–464. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, L.; Song, W. Mitochondria Hyperactivity Contributes to Social Behavioral Impairments. Signal Transduct. Target. Ther. 2020, 5, 126. [Google Scholar] [CrossRef]
- Napoli, E.; Tassone, F.; Wong, S.; Angkustsiri, K.; Simon, T.J.; Song, G.; Giulivi, C. Mitochondrial Citrate Transporter-Dependent Metabolic Signature in the 22q11.2 Deletion Syndrome. J. Biol. Chem. 2015, 290, 23240–23253. [Google Scholar] [CrossRef]
- Bobba-Alves, N.; Sturm, G.; Lin, J.; Ware, S.A.; Karan, K.R.; Monzel, A.S.; Bris, C.; Procaccio, V.; Lenaers, G.; Higgins-Chen, A.; et al. Cellular Allostatic Load Is Linked to Increased Energy Expenditure and Accelerated Biological Aging. Psychoneuroendocrinology 2023, 155, 106322. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Cohen, B.M.; Chen, X.; Lukas, S.E.; Shinn, A.K.; Yuksel, A.C.; Li, T.; Du, F.; Öngür, D. Redox Dysregulation in Schizophrenia Revealed by in Vivo NAD+/NADH Measurement. Schizophr. Bull. 2017, 43, 197–204. [Google Scholar] [CrossRef]
- Landek-Salgado, M.A.; Faust, T.E.; Sawa, A. Molecular Substrates of Schizophrenia: Homeostatic Signaling to Connectivity. Mol. Psychiatry 2016, 21, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Bitanihirwe, B.K.Y.; Woo, T.-U.W. Oxidative Stress in Schizophrenia: An Integrated Approach. Neurosci. Biobehav. Rev. 2011, 35, 878–893. [Google Scholar] [CrossRef] [PubMed]
- Sawa, A.; Seidman, L.J. Is Prophylactic Psychiatry around the Corner? Combating Adolescent Oxidative Stress for Adult Psychosis and Schizophrenia. Neuron 2014, 83, 991–993. [Google Scholar] [CrossRef] [PubMed]
- Parellada, E.; Gassó, P. Glutamate and Microglia Activation as a Driver of Dendritic Apoptosis: A Core Pathophysiological Mechanism to Understand Schizophrenia. Transl. Psychiatry 2021, 11, 271. [Google Scholar] [CrossRef]
- Trubetskoy, V.; Pardiñas, A.F.; Qi, T.; Panagiotaropoulou, G.; Awasthi, S.; Bigdeli, T.B.; Bryois, J.; Chen, C.-Y.; Dennison, C.A.; Hall, L.S.; et al. Mapping Genomic Loci Implicates Genes and Synaptic Biology in Schizophrenia. Nature 2022, 604, 502–508. [Google Scholar] [CrossRef]
- International Schizophrenia Consortium; Purcell, S.M.; Wray, N.R.; Stone, J.L.; Visscher, P.M.; O’Donovan, M.C.; Sullivan, P.F.; Sklar, P. Common Polygenic Variation Contributes to Risk of Schizophrenia and Bipolar Disorder. Nature 2009, 460, 748–752. [Google Scholar] [CrossRef]
- Liu, D.; Meyer, D.; Fennessy, B.; Feng, C.; Cheng, E.; Johnson, J.S.; Park, Y.J.; Rieder, M.-K.; Ascolillo, S.; de Pins, A.; et al. Schizophrenia Risk Conferred by Rare Protein-Truncating Variants Is Conserved across Diverse Human Populations. Nat. Genet. 2023, 55, 369–376. [Google Scholar] [CrossRef]
- Rees, E.; Han, J.; Morgan, J.; Carrera, N.; Escott-Price, V.; Pocklington, A.J.; Duffield, M.; Hall, L.S.; Legge, S.E.; Pardiñas, A.F.; et al. De Novo Mutations Identified by Exome Sequencing Implicate Rare Missense Variants in SLC6A1 in Schizophrenia. Nat. Neurosci. 2020, 23, 179–184. [Google Scholar] [CrossRef]
- Singh, T.; Walters, J.T.R.; Johnstone, M.; Curtis, D.; Suvisaari, J.; Torniainen, M.; Rees, E.; Iyegbe, C.; Blackwood, D.; McIntosh, A.M.; et al. The Contribution of Rare Variants to Risk of Schizophrenia in Individuals with and without Intellectual Disability. Nat. Genet. 2017, 49, 1167–1173. [Google Scholar] [CrossRef]
- Maynard, T.M.; Meechan, D.W.; Dudevoir, M.L.; Gopalakrishna, D.; Peters, A.Z.; Heindel, C.C.; Sugimoto, T.J.; Wu, Y.; Lieberman, J.A.; Lamantia, A.-S. Mitochondrial Localization and Function of a Subset of 22q11 Deletion Syndrome Candidate Genes. Mol. Cell. Neurosci. 2008, 39, 439–451. [Google Scholar] [CrossRef]
- Li, J.; Ryan, S.K.; Deboer, E.; Cook, K.; Fitzgerald, S.; Lachman, H.M.; Wallace, D.C.; Goldberg, E.M.; Anderson, S.A. Mitochondrial Deficits in Human iPSC-Derived Neurons from Patients with 22q11.2 Deletion Syndrome and Schizophrenia. Transl. Psychiatry 2019, 9, 302. [Google Scholar] [CrossRef] [PubMed]
- Purcell, R.H.; Sefik, E.; Werner, E.; King, A.T.; Mosley, T.J.; Merritt-Garza, M.E.; Chopra, P.; McEachin, Z.T.; Karne, S.; Raj, N.; et al. Cross-Species Analysis Identifies Mitochondrial Dysregulation as a Functional Consequence of the Schizophrenia-Associated 3q29 Deletion. Sci. Adv. 2023, 9, eadh0558. [Google Scholar] [CrossRef] [PubMed]
- Rollins, B.; Martin, M.V.; Sequeira, P.A.; Moon, E.A.; Morgan, L.Z.; Watson, S.J.; Schatzberg, A.; Akil, H.; Myers, R.M.; Jones, E.G.; et al. Mitochondrial Variants in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. PLoS ONE 2009, 4, e4913. [Google Scholar] [CrossRef] [PubMed]
- Verge, B.; Alonso, Y.; Valero, J.; Miralles, C.; Vilella, E.; Martorell, L. Mitochondrial DNA (mtDNA) and Schizophrenia. Eur. Psychiatry J. Assoc. Eur. Psychiatr. 2011, 26, 45–56. [Google Scholar] [CrossRef]
- Hwang, I.W.; Hong, J.H.; Kwon, B.N.; Kim, H.J.; Lee, N.R.; Lim, M.H.; Kwon, H.J.; Jin, H.J. Association of Mitochondrial DNA 10398 A/G Polymorphism with Attention Deficit and Hyperactivity Disorder in Korean Children. Gene 2017, 630, 8–12. [Google Scholar] [CrossRef]
- Jimoh, I.J.; Sebe, B.; Balicza, P.; Fedor, M.; Pataky, I.; Rudas, G.; Gal, A.; Inczedy-Farkas, G.; Nemeth, G.; Molnar, M.J. Wernicke-Korsakoff Syndrome Associated with mtDNA Disease. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420938972. [Google Scholar] [CrossRef]
- Głombik, K.; Detka, J.; Budziszewska, B. Hormonal Regulation of Oxidative Phosphorylation in the Brain in Health and Disease. Cells 2021, 10, 2937. [Google Scholar] [CrossRef]
- Brzezinski-Sinai, N.A.; Brzezinski, A. Schizophrenia and Sex Hormones: What Is the Link? Front. Psychiatry 2020, 11, 693. [Google Scholar] [CrossRef]
- Emiliani, F.E.; Sedlak, T.W.; Sawa, A. Oxidative Stress and Schizophrenia: Recent Breakthroughs from an Old Story. Curr. Opin. Psychiatry 2014, 27, 185–190. [Google Scholar] [CrossRef]
- Potanin, S.S.; Morozova, M.A. Oxidative stress in schizophrenia as a promising target for psychopharmacotherapy. Zhurnal Nevrol. I Psikhiatrii Im. SS Korsakova 2021, 121, 131–138. [Google Scholar] [CrossRef]
- García-Bueno, B.; Bioque, M.; MacDowell, K.S.; Santabárbara, J.; Martínez-Cengotitabengoa, M.; Moreno, C.; Sáiz, P.A.; Berrocoso, E.; Gassó, P.; Fe Barcones, M.; et al. Pro-/Antiinflammatory Dysregulation in Early Psychosis: Results from a 1-Year Follow-Up Study. Int. J. Neuropsychopharmacol. 2015, 18, pyu037. [Google Scholar] [CrossRef]
- Govorin, N.V.; Govorin, A.V.; Skazhutin, S.A. Significance of disorders of the processes of lipid peroxidation in patients with persistent paranoid schizophrenia resistant to the treatment. Zhurnal Nevropatol. I Psikhiatrii Im. SS Korsakova 1991, 91, 121–124. [Google Scholar]
- Prilipko, L.L.; Erin, A.N.; Beliaev, B.S.; Piatnitskiĭ, A.N.; Siuniakov, S.A. Activation of lipid peroxidation in the bodies of schizophrenic and manic-depressive patients. Zhurnal Nevropatol. I Psikhiatrii Im. SS Korsakova 1952 1987, 87, 100–103. [Google Scholar]
- Akyol, O.; Herken, H.; Uz, E.; Fadillioğlu, E.; Unal, S.; Söğüt, S.; Ozyurt, H.; Savaş, H.A. The Indices of Endogenous Oxidative and Antioxidative Processes in Plasma from Schizophrenic Patients. The Possible Role of Oxidant/Antioxidant Imbalance. Prog. Neuropsychopharmacol. Biol. Psychiatry 2002, 26, 995–1005. [Google Scholar] [CrossRef]
- Tateishi, N.; Shimoda, T.; Yada, N.; Shinagawa, R.; Kagamiishi, Y. S100B: Astrocyte specific protein. Nihon Shinkei Seishin Yakurigaku Zasshi 2006, 26, 11–16. [Google Scholar]
- Monteiro, J.; Assis-de-Lemos, G.; de-Souza-Ferreira, E.; Marques, A.M.; Neves, G.A.; Silveira, M.S.; Galina, A. Energization by Multiple Substrates and Calcium Challenge Reveal Dysfunctions in Brain Mitochondria in a Model Related to Acute Psychosis. J. Bioenerg. Biomembr. 2020, 52, 1–15. [Google Scholar] [CrossRef]
- Shoshan-Barmatz, V.; Krelin, Y.; Shteinfer-Kuzmine, A. VDAC1 Functions in Ca2+ Homeostasis and Cell Life and Death in Health and Disease. Cell Calcium 2018, 69, 81–100. [Google Scholar] [CrossRef]
- Nascimento-dos-Santos, G.; de-Souza-Ferreira, E.; Linden, R.; Galina, A.; Petrs-Silva, H. Mitotherapy: Unraveling a Promising Treatment for Disorders of the Central Nervous System and Other Systemic Conditions. Cells 2021, 10, 1827. [Google Scholar] [CrossRef]
- Robicsek, O.; Ene, H.M.; Karry, R.; Ytzhaki, O.; Asor, E.; McPhie, D.; Cohen, B.M.; Ben-Yehuda, R.; Weiner, I.; Ben-Shachar, D. Isolated Mitochondria Transfer Improves Neuronal Differentiation of Schizophrenia-Derived Induced Pluripotent Stem Cells and Rescues Deficits in a Rat Model of the Disorder. Schizophr. Bull. 2018, 44, 432–442. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Beeraka, N.M.; Avila-Rodriguez, M.F.; Aliev, G. Recent Reports on Redox Stress-Induced Mitochondrial DNA Variations, Neuroglial Interactions, and NMDA Receptor System in Pathophysiology of Schizophrenia. Mol. Neurobiol. 2022, 59, 2472–2496. [Google Scholar] [CrossRef]
- Jiang, J.; Peng, C.; Sun, L.; Li, J.; Qing, Y.; Hu, X.; Yang, X.; Li, Y.; Xu, C.; Zhang, J.; et al. Leukocyte Proteomic Profiling in First-Episode Schizophrenia Patients: Does Oxidative Stress Play Central Roles in the Pathophysiology Network of Schizophrenia? Antioxid. Redox Signal. 2019, 31, 579–588. [Google Scholar] [CrossRef]
- Berry, T.; Abohamza, E.; Moustafa, A.A. Treatment-Resistant Schizophrenia: Focus on the Transsulfuration Pathway. Rev. Neurosci. 2020, 31, 219–232. [Google Scholar] [CrossRef]
- Ben-Shachar, D. The Interplay between Mitochondrial Complex I, Dopamine and Sp1 in Schizophrenia. J. Neural Transm. 2009, 116, 1383–1396. [Google Scholar] [CrossRef]
- Karry, R.; Klein, E.; Ben Shachar, D. Mitochondrial Complex I Subunits Expression Is Altered in Schizophrenia: A Postmortem Study. Biol. Psychiatry 2004, 55, 676–684. [Google Scholar] [CrossRef]
- Sun, L.; Min, L.; Li, M.; Shao, F. Juvenile Social Isolation Leads to Schizophrenia-like Behaviors via Excess Lactate Production by Astrocytes. Brain Res. Bull. 2021, 174, 240–249. [Google Scholar] [CrossRef]
- Ben-Shachar, D.; Zuk, R.; Gazawi, H.; Ljubuncic, P. Dopamine Toxicity Involves Mitochondrial Complex I Inhibition: Implications to Dopamine-Related Neuropsychiatric Disorders. Biochem. Pharmacol. 2004, 67, 1965–1974. [Google Scholar] [CrossRef]
- Piñero-Martos, E.; Ortega-Vila, B.; Pol-Fuster, J.; Cisneros-Barroso, E.; Ruiz-Guerra, L.; Medina-Dols, A.; Heine-Suñer, D.; Lladó, J.; Olmos, G.; Vives-Bauzà, C. Disrupted in Schizophrenia 1 (DISC1) Is a Constituent of the Mammalian Mitochondrial Contact Site and Cristae Organizing System (MICOS) Complex, and Is Essential for Oxidative Phosphorylation. Hum. Mol. Genet. 2016, 25, 4157–4169. [Google Scholar] [CrossRef]
- Ben-Shachar, D. Mitochondrial Dysfunction in Schizophrenia: A Possible Linkage to Dopamine. J. Neurochem. 2002, 83, 1241–1251. [Google Scholar] [CrossRef]
- Ben-Shachar, D.; Laifenfeld, D. Mitochondria, Synaptic Plasticity, and Schizophrenia. Int. Rev. Neurobiol. 2004, 59, 273–296. [Google Scholar] [CrossRef]
- Saia-Cereda, V.M.; Cassoli, J.S.; Martins-de-Souza, D.; Nascimento, J.M. Psychiatric Disorders Biochemical Pathways Unraveled by Human Brain Proteomics. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Henkel, N.D.; Wu, X.; O’Donovan, S.M.; Devine, E.A.; Jiron, J.M.; Rowland, L.M.; Sarnyai, Z.; Ramsey, A.J.; Wen, Z.; Hahn, M.K.; et al. Schizophrenia: A Disorder of Broken Brain Bioenergetics. Mol. Psychiatry 2022, 27, 2393–2404. [Google Scholar] [CrossRef] [PubMed]
- Holper, L.; Ben-Shachar, D.; Mann, J.J. Multivariate Meta-Analyses of Mitochondrial Complex I and IV in Major Depressive Disorder, Bipolar Disorder, Schizophrenia, Alzheimer Disease, and Parkinson Disease. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2019, 44, 837–849. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.C. Postmortem Studies on Mitochondria in Schizophrenia. Schizophr. Res. 2017, 187, 17–25. [Google Scholar] [CrossRef]
- Gandal, M.J.; Haney, J.R.; Parikshak, N.N.; Leppa, V.; Ramaswami, G.; Hartl, C.; Schork, A.J.; Appadurai, V.; Buil, A.; Werge, T.M.; et al. Shared Molecular Neuropathology across Major Psychiatric Disorders Parallels Polygenic Overlap. Science 2018, 359, 693–697. [Google Scholar] [CrossRef]
- Arion, D.; Corradi, J.P.; Tang, S.; Datta, D.; Boothe, F.; He, A.; Cacace, A.M.; Zaczek, R.; Albright, C.F.; Tseng, G.; et al. Distinctive Transcriptome Alterations of Prefrontal Pyramidal Neurons in Schizophrenia and Schizoaffective Disorder. Mol. Psychiatry 2015, 20, 1397–1405. [Google Scholar] [CrossRef]
- Enwright, J.F.; Huo, Z.; Arion, D.; Corradi, J.P.; Tseng, G.; Lewis, D.A. Transcriptome Alterations of Prefrontal Cortical Parvalbumin Neurons in Schizophrenia. Mol. Psychiatry 2018, 23, 1606–1613. [Google Scholar] [CrossRef]
- Prabakaran, S.; Swatton, J.E.; Ryan, M.M.; Huffaker, S.J.; Huang, J.T.-J.; Griffin, J.L.; Wayland, M.; Freeman, T.; Dudbridge, F.; Lilley, K.S.; et al. Mitochondrial Dysfunction in Schizophrenia: Evidence for Compromised Brain Metabolism and Oxidative Stress. Mol. Psychiatry 2004, 9, 684–697, 643. [Google Scholar] [CrossRef]
- Ni, P.; Noh, H.; Park, G.-H.; Shao, Z.; Guan, Y.; Park, J.M.; Yu, S.; Park, J.S.; Coyle, J.T.; Weinberger, D.R.; et al. iPSC-Derived Homogeneous Populations of Developing Schizophrenia Cortical Interneurons Have Compromised Mitochondrial Function. Mol. Psychiatry 2020, 25, 2873–2888. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, Z.; Yang, Y.; Zhao, Y.; Zhang, B.; Fang, J. The Correlation-Base-Selection Algorithm for Diagnostic Schizophrenia Based on Blood-Based Gene Expression Signatures. BioMed Res. Int. 2017, 2017, 7860506. [Google Scholar] [CrossRef]
- Kimoto, S.; Hashimoto, T.; Berry, K.J.; Tsubomoto, M.; Yamaguchi, Y.; Enwright, J.F.; Chen, K.; Kawabata, R.; Kikuchi, M.; Kishimoto, T.; et al. Expression of Actin- and Oxidative Phosphorylation-Related Transcripts across the Cortical Visuospatial Working Memory Network in Unaffected Comparison and Schizophrenia Subjects. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2022, 47, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shachar, D.; Nadri, C.; Karry, R.; Agam, G. Mitochondrial Complex I Subunits Are Altered in Rats with Neonatal Ventral Hippocampal Damage but Not in Rats Exposed to Oxygen Restriction at Neonatal Age. J. Mol. Neurosci. MN 2009, 38, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Ravula, A.R.; Teegala, S.B.; Kalakotla, S.; Pasangulapati, J.P.; Perumal, V.; Boyina, H.K. Fisetin, Potential Flavonoid with Multifarious Targets for Treating Neurological Disorders: An Updated Review. Eur. J. Pharmacol. 2021, 910, 174492. [Google Scholar] [CrossRef] [PubMed]
- Cavelier, L.; Jazin, E.E.; Eriksson, I.; Prince, J.; Båve, U.; Oreland, L.; Gyllensten, U. Decreased Cytochrome-c Oxidase Activity and Lack of Age-Related Accumulation of Mitochondrial DNA Deletions in the Brains of Schizophrenics. Genomics 1995, 29, 217–224. [Google Scholar] [CrossRef]
- Gubert, C.; Stertz, L.; Pfaffenseller, B.; Panizzutti, B.S.; Rezin, G.T.; Massuda, R.; Streck, E.L.; Gama, C.S.; Kapczinski, F.; Kunz, M. Mitochondrial Activity and Oxidative Stress Markers in Peripheral Blood Mononuclear Cells of Patients with Bipolar Disorder, Schizophrenia, and Healthy Subjects. J. Psychiatr. Res. 2013, 47, 1396–1402. [Google Scholar] [CrossRef]
- Maurer, I.; Zierz, S.; Möller, H. Evidence for a Mitochondrial Oxidative Phosphorylation Defect in Brains from Patients with Schizophrenia. Schizophr. Res. 2001, 48, 125–136. [Google Scholar] [CrossRef]
- Volz, H.R.; Riehemann, S.; Maurer, I.; Smesny, S.; Sommer, M.; Rzanny, R.; Holstein, W.; Czekalla, J.; Sauer, H. Reduced Phosphodiesters and High-Energy Phosphates in the Frontal Lobe of Schizophrenic Patients: A (31)P Chemical Shift Spectroscopic-Imaging Study. Biol. Psychiatry 2000, 47, 954–961. [Google Scholar] [CrossRef]
- Kraguljac, N.V.; Reid, M.; White, D.; Jones, R.; den Hollander, J.; Lowman, D.; Lahti, A.C. Neurometabolites in Schizophrenia and Bipolar Disorder—A Systematic Review and Meta-Analysis. Psychiatry Res. 2012, 203, 111–125. [Google Scholar] [CrossRef]
- Hidalgo-Figueroa, M.; Salazar, A.; Romero-López-Alberca, C.; MacDowell, K.S.; García-Bueno, B.; Bioque, M.; Bernardo, M.; Parellada, M.; González-Pinto, A.; García-Portilla, M.P.; et al. Association of Prolactin, Oxytocin, and Homocysteine with the Clinical and Cognitive Features of a First Episode of Psychosis Over a 1-Year Follow-Up. Int. J. Neuropsychopharmacol. 2023, 26, 796–807. [Google Scholar] [CrossRef]
- Valiente-Pallejà, A.; Torrell, H.; Alonso, Y.; Vilella, E.; Muntané, G.; Martorell, L. Increased Blood Lactate Levels during Exercise and Mitochondrial DNA Alterations Converge on Mitochondrial Dysfunction in Schizophrenia. Schizophr. Res. 2020, 220, 61–68. [Google Scholar] [CrossRef]
- Matthysse, S. Antipsychotic Drug Actions: A Clue to the Neuropathology of Schizophrenia? Fed. Proc. 1973, 32, 200–205. [Google Scholar] [PubMed]
- Ji, B.; La, Y.; Gao, L.; Zhu, H.; Tian, N.; Zhang, M.; Yang, Y.; Zhao, X.; Tang, R.; Ma, G.; et al. A Comparative Proteomics Analysis of Rat Mitochondria from the Cerebral Cortex and Hippocampus in Response to Antipsychotic Medications. J. Proteome Res. 2009, 8, 3633–3641. [Google Scholar] [CrossRef] [PubMed]
- Takesian, A.E.; Hensch, T.K. Balancing Plasticity/Stability across Brain Development. Prog. Brain Res. 2013, 207, 3–34. [Google Scholar] [CrossRef] [PubMed]
- Bulduk, B.K.; Tortajada, J.; Valiente-Pallejà, A.; Callado, L.F.; Torrell, H.; Vilella, E.; Meana, J.J.; Muntané, G.; Martorell, L. High Number of Mitochondrial DNA Alterations in Postmortem Brain Tissue of Patients with Schizophrenia Compared to Healthy Controls. Psychiatry Res. 2024, 337, 115928. [Google Scholar] [CrossRef]
Title | Reference | Aim of the Study | Oucomes and Remarks | Type/Model |
---|---|---|---|---|
Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine | [50] | To review several independent lines of evidence suggesting the involvement of mitochondrial dysfunction in SCZ | Provides evidence that impaired brain energy metabolism, developmental abnormalities, abnormal neurotransmission, and neuronal connectivity may account for the pattern of multifactorial inheritance in SCZ | H (brain) |
Mitochondria, synaptic plasticity, and schizophrenia | [51] | To propose that mitochondrial dysfunction in SCZ may cause, or result from, abnormalities in the processes of plasticity in this disorder | Data from biochemical and genetic analysis of SCZ patients showed mitochondrial dysfunction, including mitochondrial hypoplasia, OXPHOS alterations, and altered mitochondrial-related gene expression. | H (brain) |
Psychiatric disorder biochemical pathways unraveled by human brain proteomics | [52] | To collect and analyze data on differentially expressed proteins found in postmortem brain studies of SCZ, bipolar disorder, and major depressive disorder | Different psychiatric disorders including bipolar, depression, and SCZ share about 21% of proteins affected, and though most are related to energy metabolism pathways deregulation and mitochondrial function (OXPHOS mainly found in depression). | H (brain) |
Schizophrenia: a disorder of broken brain bioenergetics | [53] | To explore bioenergetic dysfunction in SCZ, summarizing evidence on metabolic impairments in insulin signaling, glycolysis, the pentose-phosphate pathway, the TCA cycle, and OXPHOS | Reduced CI and CIV activity and decreased mitochondrial gene expression in the dorsolateral prefrontal cortex. Deficits in CI activity and altered ATP production in the anterior cingulate cortex; reduced CIV activity and decreased bioenergetic efficiency in the hippocampus. Reduced CI activity and altered redox homeostasis in the striatum (caudate nucleus and putamen). Downregulation of OXPHOS-related mitochondrial genes in the thalamus. | H (brain) |
Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study | [46] | To analyze three subunits of mitochondrial CI at the mRNA and protein levels in postmortem brain samples from the prefrontal and the ventral parietooccipital cortex of patients with SCZ, major depression, bipolar disorder, and control subjects | Both mRNA and protein levels of the 24-kDa and 51-kDa subunits of CI were significantly decreased in the PFC, but increased in the ventral parietooccipital cortices of SCZ patients. In the latter region, protein levels of both subunits were also increased in bipolar patients as well, consistent with the significant overlap in clinical symptoms between SCZ and bipolar patients. | H (brain) |
Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer’s disease, and Parkinson’s disease | [54] | To evaluate mitochondrial CI and CIV dysfunction across major psychiatric disorders (SCZ, bipolar disorder, major depressive disorder) and neurodegenerative diseases (Alzheimer’s and Parkinson’s). The study aims to identify shared and distinct patterns of mitochondrial impairment. |
CI: reduced subunit expression in the striatum and frontal cortex, suggesting mitochondrial dysfunction in these regions. CIV: decreased enzymatic activity in the frontal cortex, but increased activity in the basal ganglia (nucleus accumbens, globus pallidus, and putamen). Conclusion in SZ: findings indicate region-specific and heterogeneous alterations in CI and CIV. | H (brain) |
Postmortem studies on mitochondria in schizophrenia | [55] | To examine mitochondrial abnormalities in postmortem brains of individuals with SCZ, focusing on ultrastructural changes, enzyme activity, and regional differences | Reduced mitochondrial density in the anterior cingulate cortex and striatum, with region-specific alterations in OXPHOS complexes. Findings suggest mitochondrial dysfunction varies by brain region, cell type, treatment response, and symptom profile, reinforcing its role in SCZ pathophysiology. | H (brain) |
Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap | [56] | To investigate shared and distinct gene expression patterns across major psychiatric disorders (SCZ, bipolar disorder, autism, depression, and alcoholism) using transcriptomic profiling of postmortem brain tissue | Overlapping transcriptional dysregulation, particularly in synaptic and mitochondrial-related genes, across SCZ, bipolar disorder, and autism. | H (brain) |
Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder | [57] | To investigate cell type-specific gene expression in pyramidal neurons from the dorsolateral PFC in SCZ and schizoaffective disorder, focusing on mitochondrial and ubiquitin–proteasome system pathways | Deficits in mitochondrial gene expression were observed in pyramidal neurons of the dorsolateral prefrontal cortex in SCZ. These alterations were more prominent in layer 3, where reductions in the expression of key OXPHOS system genes were found. Deficits in the expression of CI genes and other ATP production-related genes suggest a hypometabolic state in pyramidal neurons of this region. | H (brain) |
Transcriptome alterations of prefrontal cortical parvalbumin neurons in schizophrenia | [58] | To examine transcriptomic alterations in parvalbumin interneurons from the dorsolateral PFC in SCZ using laser microdissection and microarray analysis | Mitochondrial dysfunction and OXPHOS deficits in parvalbumin neurons, with >85% of OXPHOS-related genes showing reduced expression. These alterations, distinct from pyramidal neurons, suggest cell-type-specific bioenergetic impairments contributing to SCZ pathology. | H (brain) |
Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress | [59] | To investigate mitochondrial dysfunction and oxidative stress in postmortem PFC tissue from individuals with SCZ | Significant downregulation of OxPhos-related genes and proteins, particularly in CI, CIII, and CIV, alongside elevated oxidative stress markers. These alterations suggest impaired energy metabolism and increased oxidative stress as key contributors to SCZ pathophysiology. | H (brain) |
The interplay between mitochondrial complex I, dopamine, and Sp1 in schizophrenia | [45] | To review the evidence supporting mitochondrial dysfunction in SCZ | The study provides evidence of abnormalities in mitochondrial CI, which plays an important role in controlling OXPHOS activity. | H (brain and blood) |
Mitochondrial citrate transporter-dependent metabolic signature in the 22q11.2 deletion syndrome | [9] | To investigate whether mitochondrial outcomes and metabolites of 22qDS children segregate with the altered dosage of one or more of these mitochondrial genes that contribute to 22qDS etiology and/or morbidity | Metabolite differences between 22qDS children and controls reflected a shift from oxidative phosphorylation to glycolysis (higher lactate/pyruvate ratio) accompanied by an increase in reductive carboxylation of -ketoglutarate (increased levels of 2-hydroxyglutaric acid, cholesterol, and fatty acids). Altered metabolism in 22qDS reflected a critical role in the haploinsufficiency of the mitochondrial citrate transporter SLC25A1, which was further enhanced by HIF-1, MYC, and metabolite controls. | H (blood, PBMC) |
Disrupted in schizophrenia 1 (DISC1) is a constituent of the mammalian mitochondrial contact site and cristae organizing system (MICOS) complex, and is essential for oxidative phosphorylation | [49] | To elucidate the role of DISC1 in OXPHOS function in DISC1 knockdown SHSY5Y nb cells | OXPHOS complexes and supercomplexes are partially disassembled in nb cells that exhibit impaired oxygen consumption, ATP synthesis, and mitochondrial membrane potential. Transfection of recombinant full-length human DISC1 restores MICOS complex assembly and rescues OXPHOS function. | Hc (nb) and M |
iPSC-derived homogeneous populations of developing schizophrenia cortical interneurons have compromised mitochondrial function | [60] | To generate homogeneous populations of developing cortical interneurons from human SCZ and control iPSC lines | SCZ cortical interneurons, but not SCZ glutamatergic neurons, show dysregulated OXPHOS-related gene expression accompanied by impaired mitochondrial function. | H (iPSC-n) |
Mitochondrial deficits in human iPSC-derived neurons from patients with 22q11.2 deletion syndrome and schizophrenia | [22] | To investigate mitochondrial dysfunction in neurons derived from iPSCs from patients with 22q11.2 deletion syndrome and SCZ. The authors examine ATP production, oxidative phosphorylation complex activity, and mitochondrial protein expression to explore their role in neuronal dysfunction | Significant reductions in ATP levels and oxidative phosphorylation CI and IV activity in patient-derived neurons. These deficits were linked to decreased mitochondrial-encoded protein expression, partially attributed to MRPL40 haploinsufficiency. | H (iPSC-n) |
The correlation-base-selection algorithm for diagnostic schizophrenia based on blood-based gene expression signatures | [61] | To improve clinical diagnosis of SCZ by collecting whole blood gene expression data | The study reports that the analysis of gene expression in whole blood by their proposed model could be a useful tool for diagnosing SCZ. Samples were divided into 10 groups, and cross-validation showed that the model we constructed achieved nearly 100% classification accuracy. Characterized genes enriched in OXPHOS, among others, were identified. | H (blood) |
Expression of actin- and oxidative phosphorylation-related transcripts across the cortical visuospatial working memory network in unaffected comparison and schizophrenia subjects | [62] | To understand the relationship between the dorsolateral prefrontal cortex, altered expression of transcripts for actin assembly, and mitochondrial OXPHOS in the context of visuospatial working memory in SCZ patients | All OXPHOS transcripts showed −15 to −22% lower levels in RNAseq from SCZ subjects. | H |
Mitochondrial complex I subunits are altered in rats with neonatal ventral hippocampal damage but not in rats exposed to oxygen restriction at neonatal age | [63] | To decipher whether mitochondrial CI abnormalities in SCZ are a core pathophysiological process or drug-induced | Hippocampal lesion induced a significant prepubertal increase and postpubertal decrease in all three subunits of CI as compared to sham-treated rats, whereas no change was observed in the cingulate cortex. Neonatal exposure to hypoxia did not affect protein levels of any of the three subunits in the PFC. | Rat |
Juvenile social isolation leads to schizophrenia-like behaviors via excess lactate production by astrocytes | [47] | To further explore the balance of glucose metabolism based on previous transcriptomic analysis in a rat model of social isolation | Compared to the social rearing group, rats in the isolated rearing group showed impaired prepulse inhibition and increased lactate levels in the PFC. | Rat |
Energization by multiple substrates and calcium challenge reveal dysfunctions in brain mitochondria in a model related to acute psychosis | [37] | To analyze mitochondrial function under conditions of isolated or multiple respiratory substrates using brain mitochondria isolated from MK-801-exposed mice | Mitochondria may compensate for deficiencies in a single mitochondrial complex when oxidizing multiple substrates simultaneously; Ca2+ handling is compromised in MK-801-exposed mice, resulting in a loss of phosphorylative capacity and an increase in H2O2 production. | M |
Cross-species analysis identifies mitochondrial dysregulation as a functional consequence of the schizophrenia-associated 3q29 deletion | [23] | To profile the transcriptomes of isogenic cortical organoids from the 3q29Del aged for 2 and 12 months, as well as perinatal mouse isocortex, all at single-cell resolution | Systematic pathway analysis suggested dysregulation of mitochondrial function and energy metabolism. Lack of metabolic flexibility and a contribution of the 3q29 gene PAK2. | M |
Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: an updated review | [64] | To evaluate the potential mechanisms and pharmacological effects of fisetin in the treatment of several neurological diseases, including SCZ | Fisetin promotes the elevation of Acetyl CoA and has been reported to improve cognitive function by promoting synaptic plasticity. | Rat |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morén, C.; Olivares-Berjaga, D.; Martínez-Pinteño, A.; Bioque, M.; Rodríguez, N.; Gassó, P.; Martorell, L.; Parellada, E. Mitochondrial Oxidative Phosphorylation System Dysfunction in Schizophrenia. Int. J. Mol. Sci. 2025, 26, 4415. https://doi.org/10.3390/ijms26094415
Morén C, Olivares-Berjaga D, Martínez-Pinteño A, Bioque M, Rodríguez N, Gassó P, Martorell L, Parellada E. Mitochondrial Oxidative Phosphorylation System Dysfunction in Schizophrenia. International Journal of Molecular Sciences. 2025; 26(9):4415. https://doi.org/10.3390/ijms26094415
Chicago/Turabian StyleMorén, Constanza, David Olivares-Berjaga, Albert Martínez-Pinteño, Miquel Bioque, Natàlia Rodríguez, Patricia Gassó, Lourdes Martorell, and Eduard Parellada. 2025. "Mitochondrial Oxidative Phosphorylation System Dysfunction in Schizophrenia" International Journal of Molecular Sciences 26, no. 9: 4415. https://doi.org/10.3390/ijms26094415
APA StyleMorén, C., Olivares-Berjaga, D., Martínez-Pinteño, A., Bioque, M., Rodríguez, N., Gassó, P., Martorell, L., & Parellada, E. (2025). Mitochondrial Oxidative Phosphorylation System Dysfunction in Schizophrenia. International Journal of Molecular Sciences, 26(9), 4415. https://doi.org/10.3390/ijms26094415