Ionic and Non-Ionic Counterparts Based on Bis(Uracilyl)Alkane Moiety with Highest Selectivity Towards Acetylcholinesterase for Protection Against Organophosphate Poisoning and Treating Alzheimer’s Disease
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Bisuracils 2 and 3
2.2. Inhibitory Effects on Cholinesterases of Counterparts 2 and 3 In Vitro
2.3. In Vivo Biological Assays
2.3.1. Acute Toxicity
2.3.2. Pre-Treatment of Poisoning with OPs
2.3.3. Inhibition of Brain AChE
2.3.4. Behavioural Test
2.3.5. Effect on the Level of Locomotor Activity in Mice
2.4. Computational Modelling
2.4.1. Molecular Docking and Molecular Dynamics
2.4.2. ADMET Prediction
3. Materials and Methods
3.1. Chemistry
3.1.1. General Information
3.1.2. Synthesis of Charged Bisuracils with Nitrile Substituent
General Procedure to Obtain Bisuracils 2a–d
3.1.3. Synthesis of Non-Ionic Bisuracils with Nitrile Substituent
General Procedure to Replace Atom of Br in Bromides 4a–d with Ethylamino-Group
Synthesis of Non-Ionic Cholinesterase Inhibitors Based on Bisuracils 3a–d: General Procedure
3.2. Biological Studies
3.2.1. General Information
3.2.2. Cholinesterases Inhibition Assay
In Vitro Cholinesterase Inhibition
In Vivo Cholinesterase Inhibition
3.2.3. Protection Against POX Toxicity
3.2.4. Novel Object Recognition Test
3.2.5. Effect on Motor Function
3.2.6. Statistics
3.3. Molecular Modelling
3.3.1. Molecular Docking
3.3.2. Molecular Dynamics Simulation
3.3.3. ADMET Predictions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Abbreviations
AChE | Acetylcholinesterase |
ACh | Acetylcholine |
ATCHh | Acetylthiocholine iodide |
BBB | Blood–brain barrier |
BuChE | Butyrylcholinesterase |
BuTCh | Butyrylthiocholine iodide |
CAS | Catalytic active site |
DNTB | 5,5′–Dithiobis–(2–nitrobenzoic) acid |
MD | Molecular dynamics |
OPs | Organophosphate and organophosphorus compounds |
PAS | Peripheral anionic site |
RRD | Relative risk of death |
POX | Paraoxon |
RMSD | Root-mean-square deviation |
References
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase Inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.Y.; Al Jerdi, S.; MacDonald, R.; Triggle, C.R. Alzheimer’s disease and its treatment–yesterday, today, and tomorrow. Front. Pharmacol. 2024, 15, 1399121. [Google Scholar] [CrossRef]
- Masson, P. Evolution of and perspectives on therapeutic approaches to nerve agent poisoning. Toxicol. Lett. 2011, 206, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Eddleston, M.; Buckley, N.A.; Eyer, P.; Dawson, A.H. Management of acute organophosphorus pesticide poisoning. Lancet 2008, 371, 597–607. [Google Scholar] [CrossRef]
- Lorke, D.E.; Petroianu, G.A. Reversible cholinesterase inhibitors as pretreatment for exposure to organophosphates. A review. J. Appl. Toxicol. 2019, 39, 101–116. [Google Scholar] [CrossRef]
- Namulanda, G.; Monti, M.M.; Mulay, P.; Higgins, S.; Lackovic, M.; Schwartz, A.; Prado, J.B.; Waltz, J.; Mitchell, Y.; Calvert, G.M. Acute nonoccupational pesticide-related illness and injury—United States, 2007–2011. MMWR Morb. Mortal. Wkly. Rep. 2016, 63, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.; Wang, S.; Li, X.; Li, W.; Gao, N.; Pang, L.; Xing, J. Prognostic nomogram for the severity of acute organophosphate insecticide self-poisoning: A retrospective observational cohort study. BMJ Open 2021, 11, e042765. [Google Scholar] [CrossRef]
- Ramadori, G.P. Organophosphorus poisoning: Acute respiratory distress syndrome (ARDS) and cardiac failure as cause of death in hospitalized patients. Int. J. Mol. Sci. 2023, 24, 6658. [Google Scholar] [CrossRef]
- Aracava, Y.; Pereira, E.F.R.; Akkerman, M.; Adler, M.; Albuquerque, E.X. Effectiveness of donepezil, rivastigmine, and (±)huperzine a in counteracting the acute toxicity of organophosphorus nerve agents: Comparison with galantamine. J. Pharmacol. Exp. Ther. 2009, 331, 1014–1024. [Google Scholar] [CrossRef]
- Tahami Monfared, A.A.; Byrnes, M.J.; White, L.A.; Zhang, Q. Alzheimer’s disease: Epidemiology and clinical progression. Neurol. Ther. 2022, 11, 553–569. [Google Scholar] [CrossRef]
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; Van Der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef]
- Walczak-Nowicka, Ł.J.; Herbet, M. Acetylcholinesterase Inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis. Int. J. Mol. Sci. 2021, 22, 9290. [Google Scholar] [CrossRef]
- Inestrosa, N.C.; Dinamarca, M.C.; Alvarez, A. Amyloid-cholinesterase interactions. Implications for Alzheimer’s disease. FEBS J. 2008, 275, 625–632. [Google Scholar] [CrossRef]
- Cortés-Gómez, M.Á.; Llorens-Álvarez, E.; Alom, J.; Del Ser, T.; Avila, J.; Sáez-Valero, J.; García-Ayllón, M.S. Tau phosphorylation by glycogen synthase kinase 3β modulates enzyme acetylcholinesterase expression. J. Neurochem. 2021, 157, 2091–2105. [Google Scholar] [CrossRef] [PubMed]
- García-Ayllón, M.S.; Small, D.H.; Avila, J.; Sáez-Valero, J. Revisiting the role of acetylcholinesterase in Alzheimer’s disease: Cross-talk with p-tau and β-amyloid. Front. Mol. Neurosci. 2011, 4, 22. [Google Scholar] [CrossRef]
- Soreq, H.; Seidman, S. Acetylcholinesterase—New roles for an old actor. Nat. Rev. Neurosci. 2001, 2, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Perry, E.; Perry, R.; Blessed, G.; Tomlinson, B. Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1977, 309, 189. [Google Scholar] [CrossRef] [PubMed]
- Bowen, D.M.; Smith, C.B.; White, P.; Davison, A.N. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 1976, 99, 459–496. [Google Scholar] [CrossRef]
- Davies, P. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976, 308, 1403. [Google Scholar] [CrossRef]
- Saifina, L.F.; Abdalla, M.; Gubaidullina, L.M.; Zueva, I.V.; Eltayb, W.A.; El-Arabey, A.A.; Kharlamova, A.D.; Lenina, O.A.; Semenov, V.E.; Petrov, K.A. Novel slow-binding reversible acetylcholinesterase inhibitors based on uracil moieties for possible treatment of myasthenia gravis and protection from organophosphate poisoning. Eur. J. Med. Chem. 2023, 246, 114949. [Google Scholar] [CrossRef]
- Fleming, F.F.; Yao, L.; Ravikumar, P.C.; Funk, L.; Shook, B.C. Nitrile-containing pharmaceuticals: Efficacious roles of the nitrile pharmacophore. J. Med. Chem. 2010, 53, 7902–7917. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Li, X.; Yu, Z.; Song, C.; Du, Y. Nitrile-containing pharmaceuticals: Target, mechanism of action, and their SAR studies. RSC Med. Chem. 2021, 12, 1650–1671. [Google Scholar] [CrossRef]
- Semenov, V.E.; Zueva, I.V.; Mukhamedyarov, M.A.; Lushchekina, S.V.; Petukhova, E.O.; Gubaidullina, L.M.; Krylova, E.S.; Saifina, L.F.; Lenina, O.A.; Petrov, K.A. Novel acetylcholinesterase inhibitors based on uracil moiety for possible treatment of Alzheimer disease. Molecules 2020, 25, 4191. [Google Scholar] [CrossRef]
- Harvey, A.L. The pharmacology of galanthamine and its analogues. Pharmacol. Ther. 1995, 68, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Kandiah, N.; Pai, M.C.; Senanarong, V.; Looi, I.; Ampil, E.; Park, K.W.; Karanam, A.K.; Christopher, S. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging 2017, 12, 697–707. [Google Scholar] [CrossRef]
- Petroianu, G.A.; Nurulain, S.M.; Shafiullah, M.; Hasan, M.Y.; Kuča, K.; Lorke, D.E. Usefulness of administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: Assessment using paraoxon. J. Appl. Toxicol. 2013, 33, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.R. Regression models and life-tables. J. R. Stat. Soc. Ser. B Methodol. 1972, 34, 187–202. [Google Scholar] [CrossRef]
- Woolson, R.F. Rank Tests and a One-Sample Logrank Test for Comparing Observed Survival Data to a Standard Population. Biometrics 1981, 37, 687. [Google Scholar] [CrossRef]
- Leger, M.; Quiedeville, A.; Bouet, V.; Haelewyn, B.; Boulouard, M.; Schumann-Bard, P.; Freret, T. Object recognition test in mice. Nat. Protoc. 2013, 8, 2531–2537. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, Z.; Zuo, J.; Wu, C.; Zha, L.; Xu, Y.; Wang, S.; Shi, J.; Liu, X.-H.; Zhang, J.; et al. Novel cannabidiol−carbamate hybrids as selective BuChE inhibitors: Docking-based fragment reassembly for the development of potential therapeutic agents against Alzheimer’s disease. Eur. J. Med. Chem. 2021, 223, 113735. [Google Scholar] [CrossRef]
- Rehman, M.T.; AlAjmi, M.F.; Hussain, A.; Rather, G.M.; Khan, M.A. High-throughput virtual screening, molecular dynamics simulation, and enzyme kinetics Identified ZINC84525623 as a potential inhibitor of NDM-1. Int. J. Mol. Sci. 2019, 20, 819. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Cornish-Bowden, A. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. (Short Commun.) Biochem. J. 1974, 137, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.S. An abridged table of probits for use in the graphic solution of the dosage—Effect curve. Am. J. Public Health Nations Health 1948, 38, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Dingova, D.; Leroy, J.; Check, A.; Garaj, V.; Krejci, E.; Hrabovska, A. Optimal detection of cholinesterase activity in biological samples: Modifications to the standard Ellman’s assay. Anal. Biochem. 2014, 462, 67–75. [Google Scholar] [CrossRef]
- Kielkopf, C.L.; Bauer, W.; Urbatsch, I.L. Bradford assay for determining protein concentration. Cold Spring Harb. Protoc. 2020, 2020, 102269. [Google Scholar] [CrossRef]
- Lenina, O.A.; Zueva, I.V.; Zobov, V.V.; Semenov, V.E.; Masson, P.; Petrov, K.A. Slow-binding reversible inhibitor of acetylcholinesterase with long-lasting action for prophylaxis of organophosphate poisoning. Sci. Rep. 2020, 10, 16611. [Google Scholar] [CrossRef]
- Shiotsuki, H.; Yoshimi, K.; Shimo, Y.; Funayama, M.; Takamatsu, Y.; Ikeda, K.; Takahashi, R.; Kitazawa, S.; Hattori, N. A rotarod test for evaluation of motor skill learning. J. Neurosci. Methods 2010, 189, 180–185. [Google Scholar] [CrossRef]
- Tatem, K.S.; Quinn, J.L.; Phadke, A.; Yu, Q.; Gordish-Dressman, H.; Nagaraju, K. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases. J. Vis. Exp. 2014, 91, 51785. [Google Scholar]
Compound | IC50 [nM] | AChE Selectivity 1 | |
---|---|---|---|
AChE | BuChE | ||
1a 2 | 0.4 ± 0.03 | 40,000 ± 380 | 112,676 |
1b 2 | 0.1 ± 0.01 | 6000 ± 430 | 60,000 |
1c 2 | 2.0 ± 0.2 | 440,000 ± 10,000 | 220,000 |
1d 2 | 1.0 ± 0.1 | 200,000 ± 1500 | 200,000 |
1e 2 | 0.5 ± 0.03 | 60,000 ± 1470 | 120,000 |
1f 2 | 0.2 ± 0.01 | 40,000 ± 1600 | 200,000 |
2a | 0.3 ± 0.03 | 370,000 ± 27,000 | 1,258,503 |
2b | 0.06 ± 0.003 | 210,00 ± 50,000 | 3,374,422 |
2c | 0.2 ± 0.06 | 70,000 ± 100 | 388,888 |
2d | 0.5 ± 0.16 | 30,000 ± 500 | 57,034 |
pyridostigmine bromide | 350 ± 20 | 1000 ± 130 | 2.9 |
Compound | IC50 [nM] | AChE Selectivity 1 | |
---|---|---|---|
AChE | BuChE | ||
3a | 6.1 ± 0.7 | 69,100 ± 1000 | 11,290 |
3b | 7.9 ± 0.25 | 48,300 ± 3000 | 6090 |
3c | 2.8 ± 0.5 | 28,000 ± 1000 | 10,071 |
3d | 5.4 ± 0.7 | 95,000 ± 1100 | 17,639 |
Donepezil | 11.3 ± 0.1 | 5260 ± 270 | 465.5 |
Group | n/N * |
---|---|
POX | 0/12 |
POX + Atropine | 6/12 |
Bisuracil 2b - 1 mg/kg + POX + Atropine | 4/12 |
Bisuracil 2b - 0.5 mg/kg + POX + Atropine | 4/12 |
Bisuracil 2b - 0.1 mg/kg + POX + Atropine | 5/12 |
Bisuracil 2b - 0.05 mg/kg + POX + Atropine | 7/12 |
Bisuracil 2b - 0.01 mg/kg + POX + Atropine | 10/12 |
Bisuracil 2b - 0.005 mg/kg + POX + Atropine | 8/12 |
Compound | AChE (PDB: 7E3H) | BuChE (PDB: 6ESY) |
---|---|---|
Donepezil | −8.2999 | −5.8870 |
2b | −10.5200 | −6.5570 |
3c | −10.0700 | −7.1540 |
Compound | Interactions | hAChE Residues | Distance (Å) | E (kcal/mol) |
---|---|---|---|---|
H-donor | Ser 293 | 3.40 | −0.4 | |
H-acceptor | Val 294 | 3.30 | −0.3 | |
H-acceptor | Phe 295 | 3.08 | −2.4 | |
H-pi | Trp 286 | 3.94 | −0.2 | |
H-pi | Trp 286 | 3.69 | −0.3 | |
H-pi | Tyr 341 | 3.93 | −0.5 | |
H-pi | Tyr 337 | 4.27 | −0.2 | |
pi-H | Tyr 341 | 3.92 | −0.2 | |
pi-H | His 447 | 3.46 | −0.5 | |
H-donor | Asp 74 | 3.38 | −0.7 | |
H-acceptor | Tyr 133 | 2.79 | −2.1 | |
H-pi | Tyr 337 | 4.29 | −0.2 | |
H-pi | Tyr 337 | 4.78 | −0.2 | |
H-pi | Trp 286 | 3.95 | −0.3 | |
pi-H | Trp 86 | 4.12 | −0.5 | |
pi-H | Trp 86 | 3.73 | −0.2 | |
pi-pi | Tyr 341 | 3.48 | 0 |
Compd. | logP a | Solubility b | pKa c | BBB d | T1/2 e | Acute Oral Toxicity on Rodents f |
---|---|---|---|---|---|---|
2a | 2.37 | −4.15 | 8.80 | 0.59 | 0.12 | 0.26 |
2b | 2.76 | −4.41 | 8.82 | 0.59 | 0.11 | 0.32 |
2c | 3.15 | −4.67 | 8.84 | 0.59 | 0.11 | 0.35 |
2d | 3.54 | −4.93 | 8.84 | 0.59 | 0.11 | 0.34 |
3a | 1.83 | −3.71 | 7.77 | 0.72 | 0.32 | 0.14 |
3b | 2.22 | −3.97 | 7.71 | 0.72 | 0.34 | 0.17 |
3c | 2.61 | −4.23 | 7.59 | 0.72 | 0.37 | 0.21 |
3d | 3.00 | −4.49 | 7.47 | 0.72 | 0.40 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zueva, I.V.; Saifina, L.F.; Gubaidullina, L.M.; Shulaeva, M.M.; Kharlamova, A.D.; Lenina, O.A.; Belyaev, G.P.; Ziganshina, A.Y.; Gao, S.; Tang, W.; et al. Ionic and Non-Ionic Counterparts Based on Bis(Uracilyl)Alkane Moiety with Highest Selectivity Towards Acetylcholinesterase for Protection Against Organophosphate Poisoning and Treating Alzheimer’s Disease. Int. J. Mol. Sci. 2025, 26, 3759. https://doi.org/10.3390/ijms26083759
Zueva IV, Saifina LF, Gubaidullina LM, Shulaeva MM, Kharlamova AD, Lenina OA, Belyaev GP, Ziganshina AY, Gao S, Tang W, et al. Ionic and Non-Ionic Counterparts Based on Bis(Uracilyl)Alkane Moiety with Highest Selectivity Towards Acetylcholinesterase for Protection Against Organophosphate Poisoning and Treating Alzheimer’s Disease. International Journal of Molecular Sciences. 2025; 26(8):3759. https://doi.org/10.3390/ijms26083759
Chicago/Turabian StyleZueva, Irina V., Liliya F. Saifina, Liliya M. Gubaidullina, Marina M. Shulaeva, Alexandra D. Kharlamova, Oksana A. Lenina, Grigory P. Belyaev, Albina Y. Ziganshina, Shan Gao, Wenjian Tang, and et al. 2025. "Ionic and Non-Ionic Counterparts Based on Bis(Uracilyl)Alkane Moiety with Highest Selectivity Towards Acetylcholinesterase for Protection Against Organophosphate Poisoning and Treating Alzheimer’s Disease" International Journal of Molecular Sciences 26, no. 8: 3759. https://doi.org/10.3390/ijms26083759
APA StyleZueva, I. V., Saifina, L. F., Gubaidullina, L. M., Shulaeva, M. M., Kharlamova, A. D., Lenina, O. A., Belyaev, G. P., Ziganshina, A. Y., Gao, S., Tang, W., Semenov, V. E., & Petrov, K. A. (2025). Ionic and Non-Ionic Counterparts Based on Bis(Uracilyl)Alkane Moiety with Highest Selectivity Towards Acetylcholinesterase for Protection Against Organophosphate Poisoning and Treating Alzheimer’s Disease. International Journal of Molecular Sciences, 26(8), 3759. https://doi.org/10.3390/ijms26083759