Cdkl5 Knockout Mice Recapitulate Sleep Phenotypes of CDKL5 Deficient Disorder
Abstract
1. Introduction
2. Results
2.1. Cdkl5 KO Mice Recapitulate Sleep Disturbances Observed in CDD Patients
2.2. Cdkl5 KO Mice Exhibit Altered Baseline EEG Activity
2.3. Loss of Cdkl5 Does Not Exacerbate the Rate of Age-Associated Changes in Sleep Behavior and EEG Spectra in Mice
2.4. Cdkl5 KO Mice Exhibited Normal Homeostatic Sleep Response and Circadian Rhythm
2.5. Selective Loss of Cdkl5 in Glutamatergic Neurons Results in Sleep Disturbances
3. Discussion
4. Materials and Methods
4.1. Mice
4.2. EEG/EMG Electrode Implantation
4.3. EEG/EMG Data Acquisition and Analysis
4.4. Assessment of Circadian Rhythms
4.5. Western Blot
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bahi-Buisson, N.; Bienvenu, T. CDKL5-Related Disorders: From Clinical Description to Molecular Genetics. Mol. Syndromol. 2012, 2, 137–152. [Google Scholar] [CrossRef]
- Demarest, S.; Pestana-Knight, E.M.; Olson, H.E.; Downs, J.; Marsh, E.D.; Kaufmann, W.E.; Partridge, C.A.; Leonard, H.; Gwadry-Sridhar, F.; Frame, K.E.; et al. Severity Assessment in CDKL5 Deficiency Disorder. Pediatr. Neurol. 2019, 97, 38–42. [Google Scholar] [CrossRef]
- Demarest, S.T.; Olson, H.E.; Moss, A.; Pestana-Knight, E.; Zhang, X.; Parikh, S.; Swanson, L.C.; Riley, K.D.; Bazin, G.A.; Angione, K.; et al. CDKL5 deficiency disorder: Relationship between genotype, epilepsy, cortical visual impairment, and development. Epilepsia 2019, 60, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Fehr, S.; Downs, J.; Ho, G.; de Klerk, N.; Forbes, D.; Christodoulou, J.; Williams, S.; Leonard, H. Functional abilities in children and adults with the CDKL5 disorder. Am. J. Med. Genet. A 2016, 170, 2860–2869. [Google Scholar] [CrossRef] [PubMed]
- Olson, H.E.; Demarest, S.T.; Pestana-Knight, E.M.; Swanson, L.C.; Iqbal, S.; Lal, D.; Leonard, H.; Cross, J.H.; Devinsky, O.; Benke, T.A. Cyclin-Dependent Kinase-Like 5 Deficiency Disorder: Clinical Review. Pediatr. Neurol. 2019, 97, 18–25. [Google Scholar] [CrossRef]
- Dell’Isola, G.B.; Fattorusso, A.; Pisani, F.; Mastrangelo, M.; Cordelli, D.M.; Pavone, P.; Parisi, P.; Ferretti, A.; Operto, F.F.; Elia, M.; et al. CDKL5 deficiency-related neurodevelopmental disorders: A multi-center cohort study in Italy. J. Neurol. 2024, 271, 5368–5377. [Google Scholar] [CrossRef] [PubMed]
- Mangatt, M.; Wong, K.; Anderson, B.; Epstein, A.; Hodgetts, S.; Leonard, H.; Downs, J. Prevalence and onset of comorbidities in the CDKL5 disorder differ from Rett syndrome. Orphanet J. Rare Dis. 2016, 11, 39. [Google Scholar] [CrossRef]
- Bahi-Buisson, N.; Nectoux, J.; Rosas-Vargas, H.; Milh, M.; Boddaert, N.; Girard, B.; Cances, C.; Ville, D.; Afenjar, A.; Rio, M.; et al. Key clinical features to identify girls with CDKL5 mutations. Brain 2008, 131, 2647–2661. [Google Scholar] [CrossRef]
- Fehr, S.; Wilson, M.; Downs, J.; Williams, S.; Murgia, A.; Sartori, S.; Vecchi, M.; Ho, G.; Polli, R.; Psoni, S.; et al. The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur. J. Hum. Genet. 2013, 21, 266–273. [Google Scholar] [CrossRef]
- Hagebeuk, E.E.; van den Bossche, R.A.; de Weerd, A.W. Respiratory and sleep disorders in female children with atypical Rett syndrome caused by mutations in the CDKL5 gene. Dev. Med. Child. Neurol. 2013, 55, 480–484. [Google Scholar] [CrossRef]
- Hagebeuk, E.E.O.; Smits, A.; de Weerd, A. Long time polysomnographic sleep and breathing evaluations in children with CDKL5 deficiency disorder. Sleep Med. 2023, 103, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Jaime, H.; Zeleke, H.; Rojas, A.; Espinosa-Garcia, C. Sleep Disruption Worsens Seizures: Neuroinflammation as a Potential Mechanistic Link. Int. J. Mol. Sci. 2021, 22, 12531. [Google Scholar] [CrossRef] [PubMed]
- Cellini, N. Memory consolidation in sleep disorders. Sleep Med. Rev. 2017, 35, 101–112. [Google Scholar] [CrossRef]
- McGregor, K.K.; Alper, R.M. Sleep Disorders as a Risk to Language Learning and Use. EBP Briefs 2015, 10, 1–21. [Google Scholar]
- Downs, J.; Jacoby, P.; Saldaris, J.; Leonard, H.; Benke, T.; Marsh, E.; Demarest, S. Negative impact of insomnia and daytime sleepiness on quality of life in individuals with the cyclin-dependent kinase-like 5 deficiency disorder. J. Sleep Res. 2022, 31, e13600. [Google Scholar] [CrossRef]
- Mori, Y.; Downs, J.; Wong, K.; Anderson, B.; Epstein, A.; Leonard, H. Impacts of caring for a child with the CDKL5 disorder on parental wellbeing and family quality of life. Orphanet J. Rare Dis. 2017, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Bahi-Buisson, N.; Kaminska, A.; Boddaert, N.; Rio, M.; Afenjar, A.; Gerard, M.; Giuliano, F.; Motte, J.; Heron, D.; Morel, M.A.; et al. The three stages of epilepsy in patients with CDKL5 mutations. Epilepsia 2008, 49, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Melani, F.; Mei, D.; Pisano, T.; Savasta, S.; Franzoni, E.; Ferrari, A.R.; Marini, C.; Guerrini, R. CDKL5 gene-related epileptic encephalopathy: Electroclinical findings in the first year of life. Dev. Med. Child Neurol. 2011, 53, 354–360. [Google Scholar] [CrossRef]
- Goodspeed, K.; Armstrong, D.; Dolce, A.; Evans, P.; Said, R.; Tsai, P.; Sirsi, D. Electroencephalographic (EEG) Biomarkers in Genetic Neurodevelopmental Disorders. J. Child Neurol. 2023, 38, 466–477. [Google Scholar] [CrossRef]
- Jeste, S.S.; Frohlich, J.; Loo, S.K. Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders. Curr. Opin. Neurol. 2015, 28, 110–116. [Google Scholar] [CrossRef]
- Saby, J.N.; Peters, S.U.; Roberts, T.P.L.; Nelson, C.A.; Marsh, E.D. Evoked Potentials and EEG Analysis in Rett Syndrome and Related Developmental Encephalopathies: Towards a Biomarker for Translational Research. Front. Integr. Neurosci. 2020, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Ammanuel, S.; Chan, W.C.; Adler, D.A.; Lakshamanan, B.M.; Gupta, S.S.; Ewen, J.B.; Johnston, M.V.; Marcus, C.L.; Naidu, S.; Kadam, S.D. Heightened Delta Power during Slow-Wave-Sleep in Patients with Rett Syndrome Associated with Poor Sleep Efficiency. PLoS ONE 2015, 10, e0138113. [Google Scholar] [CrossRef] [PubMed]
- Hipp, J.F.; Frohlich, J.; Keute, M.; Tan, W.H.; Bird, L.M. Electrophysiological Abnormalities in Angelman Syndrome Correlate with Symptom Severity. Biol. Psychiatry Glob. Open Sci. 2021, 1, 201–209. [Google Scholar] [CrossRef]
- Levin, Y.; Hosamane, N.S.; McNair, T.E.; Kunnam, S.S.; Philpot, B.D.; Fan, Z.; Sidorov, M.S. Evaluation of electroencephalography biomarkers for Angelman syndrome during overnight sleep. Autism Res. 2022, 15, 1031–1042. [Google Scholar] [CrossRef]
- Ostrowski, L.M.; Spencer, E.R.; Bird, L.M.; Thibert, R.; Komorowski, R.W.; Kramer, M.A.; Chu, C.J. Delta power robustly predicts cognitive function in Angelman syndrome. Ann. Clin. Transl. Neurol. 2021, 8, 1433–1445. [Google Scholar] [CrossRef]
- Keogh, C.; Pini, G.; Dyer, A.H.; Bigoni, S.; DiMarco, P.; Gemo, I.; Reilly, R.; Tropea, D. Clinical and genetic Rett syndrome variants are defined by stable electrophysiological profiles. BMC Pediatr. 2018, 18, 333. [Google Scholar] [CrossRef] [PubMed]
- Saby, J.N.; Mulcahey, P.J.; Zavez, A.E.; Peters, S.U.; Standridge, S.M.; Swanson, L.C.; Lieberman, D.N.; Olson, H.E.; Key, A.P.; Percy, A.K.; et al. Electrophysiological biomarkers of brain function in CDKL5 deficiency disorder. Brain Commun. 2022, 4, fcac197. [Google Scholar] [CrossRef]
- Carvalho, B.M.S.; Chaves, J.; da Silva, A.M. Effects of antiepileptic drugs on sleep architecture parameters in adults. Sleep Sci. 2022, 15, 224–244. [Google Scholar] [CrossRef]
- Lawthom, C.; Didelot, A.; Coppola, A.; Aledo-Serrano, A.; Fazekas, B.; Sainz-Fuertes, R.; Strzelczyk, A. The impact of epilepsy and antiseizure medications on sleep: Findings from a large European survey in adults with epilepsy and matched controls. Epilepsy Behav. 2023, 148, 109481. [Google Scholar] [CrossRef]
- Amendola, E.; Zhan, Y.; Mattucci, C.; Castroflorio, E.; Calcagno, E.; Fuchs, C.; Lonetti, G.; Silingardi, D.; Vyssotski, A.L.; Farley, D.; et al. Mapping pathological phenotypes in a mouse model of CDKL5 disorder. PLoS ONE 2014, 9, e91613. [Google Scholar] [CrossRef]
- Jhang, C.L.; Huang, T.N.; Hsueh, Y.P.; Liao, W. Mice lacking cyclin-dependent kinase-like 5 manifest autistic and ADHD-like behaviors. Hum. Mol. Genet. 2017, 26, 3922–3934. [Google Scholar] [CrossRef] [PubMed]
- Mazziotti, R.; Lupori, L.; Sagona, G.; Gennaro, M.; Della Sala, G.; Putignano, E.; Pizzorusso, T. Searching for biomarkers of CDKL5 disorder: Early-onset visual impairment in CDKL5 mutant mice. Hum. Mol. Genet. 2017, 26, 2290–2298. [Google Scholar] [CrossRef]
- Okuda, K.; Takao, K.; Watanabe, A.; Miyakawa, T.; Mizuguchi, M.; Tanaka, T. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory. PLoS ONE 2018, 13, e0196587. [Google Scholar] [CrossRef]
- Wang, I.T.; Allen, M.; Goffin, D.; Zhu, X.; Fairless, A.H.; Brodkin, E.S.; Siegel, S.J.; Marsh, E.D.; Blendy, J.A.; Zhou, Z. Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc. Natl. Acad. Sci. USA 2012, 109, 21516–21521. [Google Scholar] [CrossRef] [PubMed]
- Gennaccaro, L.; Fuchs, C.; Loi, M.; Pizzo, R.; Alvente, S.; Berteotti, C.; Lupori, L.; Sagona, G.; Galvani, G.; Gurgone, A.; et al. Age-Related Cognitive and Motor Decline in a Mouse Model of CDKL5 Deficiency Disorder is Associated with Increased Neuronal Senescence and Death. Aging Dis. 2021, 12, 764–785. [Google Scholar] [CrossRef]
- Huber, R.; Deboer, T.; Tobler, I. Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: Empirical data and simulations. Brain Res. 2000, 857, 8–19. [Google Scholar] [CrossRef]
- Kim, D.; Hwang, E.; Lee, M.; Sung, H.; Choi, J.H. Characterization of topographically specific sleep spindles in mice. Sleep 2015, 38, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Choi, Y. Depression diagnosis based on electroencephalography power ratios. Brain Behav. 2023, 13, e3173. [Google Scholar] [CrossRef]
- Li, J.; You, J.; Yin, G.; Xu, J.; Zhang, Y.; Yuan, X.; Chen, Q.; Ye, J. Electroencephalography Theta/Beta Ratio Decreases in Patients with Severe Obstructive Sleep Apnea. Nat. Sci. Sleep. 2022, 14, 1021–1030. [Google Scholar] [CrossRef]
- Soltani, S.; Chauvette, S.; Bukhtiyarova, O.; Lina, J.M.; Dube, J.; Seigneur, J.; Carrier, J.; Timofeev, I. Sleep-Wake Cycle in Young and Older Mice. Front. Syst. Neurosci. 2019, 13, 51. [Google Scholar] [CrossRef]
- Wimmer, M.E.; Rising, J.; Galante, R.J.; Wyner, A.; Pack, A.I.; Abel, T. Aging in mice reduces the ability to sustain sleep/wake states. PLoS ONE 2013, 8, e81880. [Google Scholar] [CrossRef]
- Panagiotou, M.; Vyazovskiy, V.V.; Meijer, J.H.; Deboer, T. Differences in electroencephalographic non-rapid-eye movement sleep slow-wave characteristics between young and old mice. Sci. Rep. 2017, 7, 43656. [Google Scholar] [CrossRef] [PubMed]
- Borbély, A.A. A two process model of sleep regulation. Hum. Neurobiol. 1982, 1, 195–204. [Google Scholar] [PubMed]
- Daan, S.; Beersma, D.G.; Borbely, A.A. Timing of human sleep: Recovery process gated by a circadian pacemaker. Am. J. Physiol. 1984, 246, R161–R183. [Google Scholar] [CrossRef]
- Tang, S.; Terzic, B.; Wang, I.J.; Sarmiento, N.; Sizov, K.; Cui, Y.; Takano, H.; Marsh, E.D.; Zhou, Z.; Coulter, D.A. Altered NMDAR signaling underlies autistic-like features in mouse models of CDKL5 deficiency disorder. Nat. Commun. 2019, 10, 2655. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Wang, I.J.; Yue, C.; Takano, H.; Terzic, B.; Pance, K.; Lee, J.Y.; Cui, Y.; Coulter, D.A.; Zhou, Z. Loss of CDKL5 in Glutamatergic Neurons Disrupts Hippocampal Microcircuitry and Leads to Memory Impairment in Mice. J. Neurosci. 2017, 37, 7420–7437. [Google Scholar] [CrossRef]
- Richdale, A.L.; Schreck, K.A. Sleep problems in autism spectrum disorders: Prevalence, nature, & possible biopsychosocial aetiologies. Sleep Med. Rev. 2009, 13, 403–411. [Google Scholar]
- Al-Abri, M.A. Sleep Deprivation and Depression: A bi-directional association. Sultan Qaboos Univ. Med. J. 2015, 15, e4–e6. [Google Scholar] [CrossRef]
- Conklin, A.I.; Yao, C.A.; Richardson, C.G. Chronic sleep deprivation and gender-specific risk of depression in adolescents: A prospective population-based study. BMC Public Health 2018, 18, 724. [Google Scholar] [CrossRef]
- Palagini, L.; Baglioni, C.; Ciapparelli, A.; Gemignani, A.; Riemann, D. REM sleep dysregulation in depression: State of the art. Sleep Med. Rev. 2013, 17, 377–390. [Google Scholar] [CrossRef]
- Bazil, C.W.; Castro, L.H.; Walczak, T.S. Reduction of rapid eye movement sleep by diurnal and nocturnal seizures in temporal lobe epilepsy. Arch. Neurol. 2000, 57, 363–368. [Google Scholar] [CrossRef]
- Cohen, H.B.; Dement, W.C. Sleep: Suppression of rapid eye movement phase in the cat after electroconvulsive shock. Science 1966, 154, 396–398. [Google Scholar] [CrossRef]
- Raol, Y.H.; Meti, B.L. Sleep-wakefulness alterations in amygdala-kindled rats. Epilepsia 1998, 39, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Sadak, U.; Honrath, P.; Ermis, U.; Heckelmann, J.; Meyer, T.; Weber, Y.; Wolking, S. Reduced REM sleep: A potential biomarker for epilepsy—A retrospective case-control study. Seizure 2022, 98, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Brodovskaya, A.; Hudson, J.L.; Kapur, J. Connectivity and Neuronal Synchrony during Seizures. J. Neurosci. 2021, 41, 7623–7635. [Google Scholar] [CrossRef]
- Toth, K.; Hofer, K.T.; Kandracs, A.; Entz, L.; Bago, A.; Eross, L.; Jordan, Z.; Nagy, G.; Solyom, A.; Fabo, D.; et al. Hyperexcitability of the network contributes to synchronization processes in the human epileptic neocortex. J. Physiol. 2018, 596, 317–342. [Google Scholar] [CrossRef] [PubMed]
- Mulcahey, P.J.; Tang, S.; Takano, H.; White, A.; Davila Portillo, D.R.; Kane, O.M.; Marsh, E.D.; Zhou, Z.; Coulter, D.A. Aged heterozygous Cdkl5 mutant mice exhibit spontaneous epileptic spasms. Exp. Neurol. 2020, 332, 113388. [Google Scholar] [CrossRef]
- Okuda, K.; Kobayashi, S.; Fukaya, M.; Watanabe, A.; Murakami, T.; Hagiwara, M.; Sato, T.; Ueno, H.; Ogonuki, N.; Komano-Inoue, S.; et al. CDKL5 controls postsynaptic localization of GluN2B-containing NMDA receptors in the hippocampus and regulates seizure susceptibility. Neurobiol. Dis. 2017, 106, 158–170. [Google Scholar] [CrossRef]
- Terzic, B.; Cui, Y.; Edmondson, A.C.; Tang, S.; Sarmiento, N.; Zaitseva, D.; Marsh, E.D.; Coulter, D.A.; Zhou, Z. X-linked cellular mosaicism underlies age-dependent occurrence of seizure-like events in mouse models of CDKL5 deficiency disorder. Neurobiol. Dis. 2021, 148, 105176. [Google Scholar] [CrossRef]
- Hutchison, I.C.; Rathore, S. The role of REM sleep theta activity in emotional memory. Front. Psychol. 2015, 6, 1439. [Google Scholar] [CrossRef]
- Schreiner, T.; Doeller, C.F.; Jensen, O.; Rasch, B.; Staudigl, T. Theta Phase-Coordinated Memory Reactivation Reoccurs in a Slow-Oscillatory Rhythm during NREM Sleep. Cell Rep. 2018, 25, 296–301. [Google Scholar] [CrossRef]
- Cantero, J.L.; Atienza, M. Alpha burst activity during human REM sleep: Descriptive study and functional hypotheses. Clin. Neurophysiol. 2000, 111, 909–915. [Google Scholar] [CrossRef]
- Shi, Y.; Ren, R.; Lei, F.; Zhang, Y.; Vitiello, M.V.; Tang, X. Elevated beta activity in the nighttime sleep and multiple sleep latency electroencephalograms of chronic insomnia patients. Front. Neurosci. 2022, 16, 1045934. [Google Scholar] [CrossRef] [PubMed]
- Crowley, K. Sleep and sleep disorders in older adults. Neuropsychol. Rev. 2011, 21, 41–53. [Google Scholar] [CrossRef]
- Wang, H.T.; Zhu, Z.A.; Li, Y.Y.; Lou, S.S.; Yang, G.; Feng, X.; Xu, W.; Huang, Z.L.; Cheng, X.; Xiong, Z.Q. CDKL5 deficiency in forebrain glutamatergic neurons results in recurrent spontaneous seizures. Epilepsia 2021, 62, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Trazzi, S.; Fuchs, C.; Viggiano, R.; De Franceschi, M.; Valli, E.; Jedynak, P.; Hansen, F.K.; Perini, G.; Rimondini, R.; Kurz, T.; et al. HDAC4: A key factor underlying brain developmental alterations in CDKL5 disorder. Hum. Mol. Genet. 2016, 25, 3887–3907. [Google Scholar] [CrossRef]
- Kim, S.J.; Hotta-Hirashima, N.; Asano, F.; Kitazono, T.; Iwasaki, K.; Nakata, S.; Komiya, H.; Asama, N.; Matsuoka, T.; Fujiyama, T.; et al. Kinase signalling in excitatory neurons regulates sleep quantity and depth. Nature 2022, 612, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Wang, G.; Li, Q.; Meng, F.; Liu, C.; Gan, R.; Ju, D.; Liao, M.; Xu, J.; Sang, D.; et al. A signalling pathway for transcriptional regulation of sleep amount in mice. Nature 2022, 612, 519–527. [Google Scholar] [CrossRef]
- Rusconi, L.; Salvatoni, L.; Giudici, L.; Bertani, I.; Kilstrup-Nielsen, C.; Broccoli, V.; Landsberger, N. CDKL5 expression is modulated during neuronal development and its subcellular distribution is tightly regulated by the C-terminal tail. J. Biol. Chem. 2008, 283, 30101–30111. [Google Scholar] [CrossRef]
- Markovic, A.; Achermann, P.; Rusterholz, T.; Tarokh, L. Heritability of Sleep EEG Topography in Adolescence: Results from a Longitudinal Twin Study. Sci. Rep. 2018, 8, 7334. [Google Scholar] [CrossRef]
- Chan, S.Y. Sleep architecture and homeostasis in children with epilepsy: A neurodevelopmental perspective. Dev. Med. Child Neurol. 2020, 62, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Lehner, J.; Frueh, J.S.; Datta, A.N. Sleep quality and architecture in Idiopathic generalized epilepsy: A systematic review and meta-analysis. Sleep Med. Rev. 2022, 65, 101689. [Google Scholar] [CrossRef] [PubMed]
- Angelakos, C.C.; Watson, A.J.; O’Brien, W.T.; Krainock, K.S.; Nickl-Jockschat, T.; Abel, T. Hyperactivity and male-specific sleep deficits in the 16p11.2 deletion mouse model of autism. Autism Res. 2017, 10, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Mannino, G.S.; Green, T.R.F.; Murphy, S.M.; Donohue, K.D.; Opp, M.R.; Rowe, R.K. The importance of including both sexes in preclinical sleep studies and analyses. Sci. Rep. 2024, 14, 23622. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P. Men and mice: Relating their ages. Life Sci. 2016, 152, 244–248. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Miyoshi, C.; Li, Y.; Sato, M.; Ogawa, Y.; Lou, T.; Ma, C.; Gao, X.; Lee, C.; et al. Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 2018, 558, 435–439. [Google Scholar] [CrossRef]
- Funato, H.; Miyoshi, C.; Fujiyama, T.; Kanda, T.; Sato, M.; Wang, Z.; Ma, J.; Nakane, S.; Tomita, J.; Ikkyu, A.; et al. Forward-genetics analysis of sleep in randomly mutagenized mice. Nature 2016, 539, 378–383. [Google Scholar] [CrossRef]
- Lou, T.; Ma, J.; Wang, Z.; Terakoshi, Y.; Lee, C.Y.; Asher, G.; Cao, L.; Chen, Z.; Sakurai, K.; Liu, Q. Hyper-Activation of mPFC Underlies Specific Traumatic Stress-Induced Sleep-Wake EEG Disturbances. Front. Neurosci. 2020, 14, 883. [Google Scholar] [CrossRef]
- Mang, G.M.; La Spada, F.; Emmenegger, Y.; Chappuis, S.; Ripperger, J.A.; Albrecht, U.; Franken, P. Altered Sleep Homeostasis in Rev-erbalpha Knockout Mice. Sleep 2016, 39, 589–601. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Zhang, X.; Lou, T.; Ma, J.; Wang, Z.; Kim, S.J.; Vogt, K.; Hirano, A.; Tanaka, T.; Kikkawa, Y.; et al. Cdkl5 Knockout Mice Recapitulate Sleep Phenotypes of CDKL5 Deficient Disorder. Int. J. Mol. Sci. 2025, 26, 3754. https://doi.org/10.3390/ijms26083754
Cao L, Zhang X, Lou T, Ma J, Wang Z, Kim SJ, Vogt K, Hirano A, Tanaka T, Kikkawa Y, et al. Cdkl5 Knockout Mice Recapitulate Sleep Phenotypes of CDKL5 Deficient Disorder. International Journal of Molecular Sciences. 2025; 26(8):3754. https://doi.org/10.3390/ijms26083754
Chicago/Turabian StyleCao, Liqin, Xin Zhang, Tingting Lou, Jing Ma, Zhiqiang Wang, Staci J. Kim, Kaspar Vogt, Arisa Hirano, Teruyuki Tanaka, Yoshiaki Kikkawa, and et al. 2025. "Cdkl5 Knockout Mice Recapitulate Sleep Phenotypes of CDKL5 Deficient Disorder" International Journal of Molecular Sciences 26, no. 8: 3754. https://doi.org/10.3390/ijms26083754
APA StyleCao, L., Zhang, X., Lou, T., Ma, J., Wang, Z., Kim, S. J., Vogt, K., Hirano, A., Tanaka, T., Kikkawa, Y., Yanagisawa, M., & Liu, Q. (2025). Cdkl5 Knockout Mice Recapitulate Sleep Phenotypes of CDKL5 Deficient Disorder. International Journal of Molecular Sciences, 26(8), 3754. https://doi.org/10.3390/ijms26083754