Metabolomic Profiling of Pogostemon cablin Reveals Disruption of Secondary Metabolite Biosynthesis Induced by Corynespora cassiicola Infection
Abstract
1. Introduction
2. Results
2.1. CLSD Significantly Reduced Patchouli Alcohol Content in Leaves
2.2. CLSD Significantly Reduced the Expression Level of Patchouli Alcohol Biosynthesis Pathway Genes
2.3. Non-Targeted Metabolome Analysis of Volatile Compounds in LD-TJ and CK Leaves
2.4. Non-Targeted Metabolome Analysis of Non-Volatile Compounds in LD-TJ and CK Leaves
3. Discussion
4. Materials and Methods
4.1. Fungal Infection Assay
4.2. Quantitative Analysis of Patchouli Alcohol by GC-MS
4.3. RNA Extraction and Quantitative Real-Time PCR (qPCR) Assays
4.4. Non-Targeted Metabolome Analysis of Volatile Compounds by HS-SPME-GC-MS
4.5. Non-Targeted Metabolome Analysis of Non-Volatile Compounds by LC-MS/MS
4.6. Statistical Treatment of Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef] [PubMed]
- Strange, R.N.; Scott, P.R. Plant disease: A threat to global food security. Annu. Rev. Phytopathol. 2005, 43, 83–116. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Newton, A.C. Climate change, plant diseases and food security: An overview. Plant Pathol. 2011, 60, 2–14. [Google Scholar] [CrossRef]
- Dixon, L.J.; Schlub, R.L.; Pernezny, K.; Datnoff, L.E. Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology 2009, 99, 1015–1027. [Google Scholar] [CrossRef] [PubMed]
- Déon, M.; Bourré, Y.; Gimenez, S.; Berger, A.; Bieysse, D.; de Lamotte, F.; Poncet, J.; Roussel, V.; Bonnot, F.; Oliver, G.; et al. Characterization of a cassiicolin-encoding gene from Corynespora cassiicola, pathogen of rubber tree (Hevea brasiliensis). Plant Sci. Int. J. Exp. Plant Biol. 2012, 185–186, 227–237. [Google Scholar] [CrossRef]
- Schlub, R.; Smith, L.; Datnoff, L.; Pernezny, K. An overview of target spot of tomato caused by Corynespora cassiicola. In II International Symposium on Tomato Diseases; International Society for Horticultural Science: Leuven, Belgium, 2007; pp. 25–28. [Google Scholar]
- Rondon, M.N.; Lawrence, K. The fungal pathogen Corynespora cassiicola: A review and insights for target spot management on cotton and Soya bean. J. Phytopathol. 2021, 169, 329–338. [Google Scholar] [CrossRef]
- Déon, M.; Fumanal, B.; Gimenez, S.; Bieysse, D.; Oliveira, R.R.; Shuib, S.S.; Breton, F.; Elumalai, S.; Vida, J.B.; Seguin, M.; et al. Diversity of the cassiicolin gene in Corynespora cassiicola and relation with the pathogenicity in Hevea brasiliensis. Fungal Biol. 2014, 118, 32–47. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics--the link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef]
- Manickam, S.; Rajagopalan, V.R.; Kambale, R.; Rajasekaran, R.; Kanagarajan, S.; Muthurajan, R. Plant Metabolomics: Current Initiatives and Future Prospects. Curr. Issues Mol. Biol. 2023, 45, 8894–8906. [Google Scholar] [CrossRef]
- Allwood, J.W.; Williams, A.; Uthe, H.; van Dam, N.M.; Mur, L.A.J.; Grant, M.R.; Pétriacq, P. Unravelling Plant Responses to Stress-The Importance of Targeted and Untargeted Metabolomics. Metabolites 2021, 11, 558. [Google Scholar] [CrossRef]
- Šimura, J.; Antoniadi, I.; Široká, J.; Tarkowská, D.; Strnad, M.; Ljung, K.; Novák, O. Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. Plant Physiol. 2018, 177, 476–489. [Google Scholar] [CrossRef]
- David, L.; Kang, J.; Chen, S. Untargeted Metabolomics of Arabidopsis Stomatal Immunity. Methods Mol. Biol. 2021, 2200, 413–424. [Google Scholar] [PubMed]
- Castro-Moretti, F.R.; Gentzel, I.N.; Mackey, D.; Alonso, A.P. Metabolomics as an Emerging Tool for the Study of Plant-Pathogen Interactions. Metabolites 2020, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Molina, A.; Pastor, V. Systemic analysis of metabolome reconfiguration in Arabidopsis after abiotic stressors uncovers metabolites that modulate defense against pathogens. Plant Commun. 2024, 5, 100645. [Google Scholar] [CrossRef]
- Silva, E.; Perez da Graça, J.; Porto, C.; Martin do Prado, R.; Nunes, E.; Corrêa Marcelino-Guimarães, F.; Conrado Meyer, M.; Jorge Pilau, E. Untargeted Metabolomics Analysis by UHPLC-MS/MS of Soybean Plant in a Compatible Response to Phakopsora pachyrhizi Infection. Metabolites 2021, 11, 179. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Xing, S.; Wang, Y.; Yang, X.; Sun, R.; Feng, L.; Wang, J.; Sun, T.; Lian, W.; Zhao, Y. Metabolomic profiling of Panax ginseng in response to Fusarium solani infection. Physiol. Mol. Plant Pathol. 2023, 127, 102110. [Google Scholar] [CrossRef]
- Swamy, M.K.; Sinniah, U.R. Patchouli (Pogostemon cablin Benth.): Botany, agrotechnology and biotechnological aspects. Ind. Crops Prod. 2016, 87, 161–176. [Google Scholar] [CrossRef]
- Hu, L.F.; Li, S.P.; Cao, H.; Liu, J.J.; Gao, J.L.; Yang, F.Q.; Wang, Y.T. GC-MS fingerprint of Pogostemon cablin in China. J. Pharm. Biomed. Anal. 2006, 42, 200–206. [Google Scholar] [CrossRef]
- Yu, Z.X.; Wang, L.J.; Zhao, B.; Shan, C.M.; Zhang, Y.H.; Chen, D.F.; Chen, X.Y. Progressive Regulation of Sesquiterpene Biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-Targeted SPL Transcription Factors. Mol. Plant 2014, 8, 98–110. [Google Scholar] [CrossRef]
- Swamy, M.K.; Sinniah, U.R. A Comprehensive Review on the Phytochemical Constituents and Pharmacological Activities of Pogostemon cablin Benth.: An Aromatic Medicinal Plant of Industrial Importance. Molecules 2015, 20, 8521–8547. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhong, L.; Zou, X.; Gong, L.; Zhuang, J.; Zhang, D.; Zheng, H.; Wang, X.; Wu, D.; Zhan, R.; et al. GC-MS and UHPLC-QTOFMS-assisted identification of the differential metabolites and metabolic pathways in key tissues of Pogostemon cablin. Front. Plant Sci. 2023, 14, 1098280. [Google Scholar] [CrossRef] [PubMed]
- Junren, C.; Xiaofang, X.; Mengting, L.; Qiuyun, X.; Gangmin, L.; Huiqiong, Z.; Guanru, C.; Xin, X.; Yanpeng, Y.; Fu, P.; et al. Pharmacological activities and mechanisms of action of Pogostemon cablin Benth: A review. Chin. Med. 2021, 16, 5. [Google Scholar] [CrossRef]
- Pandey, S.K.; Gogoi, R.; Bhandari, S.; Sarma, N.; Begum, T.; Munda, S.; Lal, M. A comparative study on chemical composition, pharmacological potential and toxicity of Pogostemon cablin Linn., (Patchouli) flower and leaf essential oil. J. Essent. Oil Bear. Plants 2022, 25, 160–179. [Google Scholar] [CrossRef]
- Commission, C.P. Pharmacopoeia of the People’s Republic of China: 2020; China Medical Science Press: Beijing, China, 2020. [Google Scholar]
- Tang, Y.; Zhong, L.; Wang, X.; Zheng, H.; Chen, L. Molecular identification and expression of sesquiterpene pathway genes responsible for patchoulol biosynthesis and regulation in Pogostemon cablin. Bot. Stud. 2019, 60, 11. [Google Scholar] [CrossRef]
- Shen, Y.; Li, W.; Zeng, Y.; Li, Z.; Chen, Y.; Zhang, J.; Zhao, H.; Feng, L.; Ma, D.; Mo, X.; et al. Chromosome-level and haplotype-resolved genome provides insight into the tetraploid hybrid origin of patchouli. Nat. Commun. 2022, 13, 3511. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Liu, Y.; Wu, D.; Huang, H.; Zhan, R.; Chen, W.; Chen, L. PatSWC4, a methyl jasmonate-responsive MYB (v-myb avian myeloblastosis viral oncogene homolog)-related transcription factor, positively regulates patchoulol biosynthesis in Pogostemon cablin. Ind. Crops Prod. 2020, 154, 112672. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Wu, D.; Li, J.; Huang, H.; Wang, X.; Zhan, R.; Chen, L. PatDREB Transcription Factor Activates Patchoulol Synthase Gene Promoter and Positively Regulates Jasmonate-Induced Patchoulol Biosynthesis. J. Agric. Food Chem. 2022, 70, 7188–7201. [Google Scholar] [CrossRef]
- Huang, H.; Wu, D.; Guo, T.; Zhang, D.; Wang, X.; Zhuang, J.; Zou, X.; Gong, L.; Zhan, R.; Chen, L. The PcbZIP44 transcription factor inhibits patchoulol synthase gene expression and negatively regulates patchoulol biosynthesis in Pogostemon cablin. Ind. Crops Prod. 2022, 188, 115561. [Google Scholar] [CrossRef]
- Wu, D.; Chen, L.; Zhong, B.; Zhang, Z.; Huang, H.; Gong, L.; Zou, X.; Zhan, R.; Chen, L. PcENO3 interacts with patchoulol synthase to positively affect the enzymatic activity and patchoulol biosynthesis in Pogostemon cablin. Physiol. Plant. 2023, 175, e14055. [Google Scholar] [CrossRef]
- Chen, X.Y.; Sui, C.; Gan, B.C.; Wei, J.H.; Zhou, Y.K. First Report of Corynespora Leaf Spot on Patchouli Caused by Corynespora cassiicola in China. Plant Dis. 2010, 94, 1508. [Google Scholar] [CrossRef] [PubMed]
- Liao, R.; Chen, Y.; Li, L.; Zhan, R.; Chen, Y. First Report of Leaf Spot Caused by Corynespora cassiicola on Pogostemon cablin in Guangdong, China. Plant Dis. 2024, 109, 233. [Google Scholar] [CrossRef]
- Berger, S.; Sinha, A.K.; Roitsch, T. Plant physiology meets phytopathology: Plant primary metabolism and plant–pathogen interactions. J. Exp. Bot. 2007, 58, 4019–4026. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Gupta, R.; Saikia, S.K.; Pant, A.; Pandey, R. Diseases of medicinal and aromatic plants, their biological impact and management. Plant Genet. Resour. 2016, 14, 370–383. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, M.; Teixeira da Silva, J.A.; Zhang, Y.; Yuan, Y.; Jia, Y.; Xiao, Y.; Li, Y.; Fang, L.; Zeng, S.; et al. Identification and functional characterization of three new terpene synthase genes involved in chemical defense and abiotic stresses in Santalum album. BMC Plant Biol. 2019, 19, 115. [Google Scholar] [CrossRef]
- Samad, A.F.A.; Rahnamaie-Tajadod, R.; Sajad, M.; Jani, J.; Murad, A.M.A.; Noor, N.M.; Ismail, I. Regulation of terpenoid biosynthesis by miRNA in Persicaria minor induced by Fusarium oxysporum. BMC Genom. 2019, 20, 586. [Google Scholar]
- Ding, Y.; Weckwerth, P.R.; Poretsky, E.; Murphy, K.M.; Sims, J.; Saldivar, E.; Christensen, S.A.; Char, S.N.; Yang, B.; Tong, A.D.; et al. Genetic elucidation of interconnected antibiotic pathways mediating maize innate immunity. Nat. Plants 2020, 6, 1375–1388. [Google Scholar] [CrossRef]
- Kim, S.; Kim, C.Y.; Park, S.Y.; Kim, K.T.; Jeon, J.; Chung, H.; Choi, G.; Kwon, S.; Choi, J.; Jeon, J.; et al. Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nat. Commun. 2020, 11, 5845. [Google Scholar] [CrossRef]
- Kazan, K.; Lyons, R. Intervention of Phytohormone Pathways by Pathogen Effectors. Plant Cell 2014, 26, 2285–2309. [Google Scholar] [CrossRef]
- Tsuda, K.; Somssich, I.E. Transcriptional networks in plant immunity. New Phytol. 2015, 206, 932–947. [Google Scholar] [CrossRef]
- Wu, M.; Northen, T.R.; Ding, Y. Stressing the importance of plant specialized metabolites: Omics-based approaches for discovering specialized metabolism in plant stress responses. Front. Plant Sci. 2023, 14, 1272363. [Google Scholar] [CrossRef] [PubMed]
- Ma, A.; Qi, X. Mining plant metabolomes: Methods, applications, and perspectives. Plant Commun. 2021, 2, 100238. [Google Scholar] [CrossRef]
- Deguerry, F.; Pastore, L.; Wu, S.; Clark, A.; Chappell, J.; Schalk, M. The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases. Arch. Biochem. Biophys. 2006, 454, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Cutro, A.C.; Castelli, M.V.; López, S.N.; Rosales, M.A.; Hollmann, A.; Rodriguez, S.A. Chemical composition of Schinus areira essential oil and antimicrobial action against Staphylococcus aureus. Nat. Prod. Res. 2021, 35, 2931–2936. [Google Scholar] [CrossRef]
- El Hachlafi, N.; Benkhaira, N.; Mssillou, I.; Touhtouh, J.; Aanniz, T.; Chamkhi, I.; El Omari, N.; Khalid, A.; Abdalla, A.N.; Aboulagras, S. Natural sources and pharmacological properties of santalenes and santalols. Ind. Crops Prod. 2024, 214, 118567. [Google Scholar] [CrossRef]
- Singh, D.P.; Maurya, S.; Yerasu, S.R.; Bisen, M.S.; Farag, M.A.; Prabha, R.; Shukla, R.; Chaturvedi, K.K.; Farooqi, M.S.; Srivastava, S.; et al. Metabolomics of early blight (Alternaria solani) susceptible tomato (Solanum lycopersicum) unfolds key biomarker metabolites and involved metabolic pathways. Sci. Rep. 2023, 13, 21023. [Google Scholar] [CrossRef]
- van der Rest, B.; Boisson, A.-M.; Gout, E.; Bligny, R.; Douce, R. Glycerophosphocholine metabolism in higher plant cells. Evidence of a new glyceryl-phosphodiester phosphodiesterase. Plant Physiol. 2002, 130, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Schelbert, S.; Aubry, S.; Burla, B.; Agne, B.; Kessler, F.; Krupinska, K.; Hörtensteiner, S. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 2009, 21, 767–785. [Google Scholar] [CrossRef]
- Kubo, I.; Taniguchi, M. Polygodial, an antifungal potentiator. J. Nat. Prod. 1988, 51, 22–29. [Google Scholar] [CrossRef]
- Oney-Birol, S. Exogenous L-carnitine promotes plant growth and cell division by mitigating genotoxic damage of salt stress. Sci. Rep. 2019, 9, 17229. [Google Scholar] [CrossRef]
- Saccenti, E.; Hoefsloot, H.C.J.; Smilde, A.K.; Westerhuis, J.A.; Hendriks, M.M.W.B. Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 2013, 10, 361–374. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, R.-X.; Chen, Y.-Y.; Li, L.-M.; Zhan, R.-T.; Chen, Y.-F. Metabolomic Profiling of Pogostemon cablin Reveals Disruption of Secondary Metabolite Biosynthesis Induced by Corynespora cassiicola Infection. Int. J. Mol. Sci. 2025, 26, 3680. https://doi.org/10.3390/ijms26083680
Liao R-X, Chen Y-Y, Li L-M, Zhan R-T, Chen Y-F. Metabolomic Profiling of Pogostemon cablin Reveals Disruption of Secondary Metabolite Biosynthesis Induced by Corynespora cassiicola Infection. International Journal of Molecular Sciences. 2025; 26(8):3680. https://doi.org/10.3390/ijms26083680
Chicago/Turabian StyleLiao, Ru-Xing, Yang-Yang Chen, Li-Min Li, Ruo-Ting Zhan, and Yu-Fan Chen. 2025. "Metabolomic Profiling of Pogostemon cablin Reveals Disruption of Secondary Metabolite Biosynthesis Induced by Corynespora cassiicola Infection" International Journal of Molecular Sciences 26, no. 8: 3680. https://doi.org/10.3390/ijms26083680
APA StyleLiao, R.-X., Chen, Y.-Y., Li, L.-M., Zhan, R.-T., & Chen, Y.-F. (2025). Metabolomic Profiling of Pogostemon cablin Reveals Disruption of Secondary Metabolite Biosynthesis Induced by Corynespora cassiicola Infection. International Journal of Molecular Sciences, 26(8), 3680. https://doi.org/10.3390/ijms26083680