Changes in T Lymphocytes and Cytokines After Anti-TNF Treatment in Pediatric Inflammatory Bowel Disease: Association with Response to Pharmacologic Therapy
Abstract
1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Effects of Anti-TNF Drugs on the T-Lymphocyte Profile After 6 Weeks of Treatment
2.3. T Lymphocytes as Cellular Markers of Primary Response to Anti-TNF Drugs
2.4. T Lymphocytes as Cellular Markers of Long-Term Response
2.5. Cytokine Profile Before and After 6 Weeks of Biological Therapy
2.6. Cytokines as Cellular Markers of Response to Anti-TNF Drugs in Pediatric IBD
2.7. Unsupervised Analysis of T-Cell Flow Cytometry Panel
3. Discussion
4. Materials and Methods
4.1. Study Design and Patient Characteristics
4.2. Samples and Cell Surface Marker Staining
4.3. Detection of Cytokine Levels in Plasma
4.4. Unsupervised Analysis of the Flow Cytometry Panel
4.5. Statistical Analysis
4.6. Ethical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019, 2019, 7247238. [Google Scholar] [CrossRef]
- Khakoo, N.S.; Beecham, A.H.; Lyu, J.; Quintero, M.A.; Gomez, L.; Abreu, M.T.; Deshpande, A.R.; Kerman, D.H.; McCauley, J.L.; Proksell, S.; et al. Early Life and Childhood Environmental Exposures, More Than Genetic Predisposition, Influence Age of Diagnosis in a Diverse Cohort of 2952 Patients with IBD. Clin. Gastroenterol. Hepatol. 2024, 22, 1462–1474.e5. [Google Scholar] [CrossRef]
- Hall, C.H.T.; de Zoeten, E.F. Understanding very early onset inflammatory bowel disease (VEOIBD) in relation to inborn errors of immunity. Immunol. Rev. 2024, 322, 329–338. [Google Scholar] [CrossRef]
- Gomez-Bris, R.; Saez, A.; Herrero-Fernandez, B.; Rius, C.; Sanchez-Martinez, H.; Gonzalez-Granado, J.M. CD4 T-Cell Subsets and the Pathophysiology of Inflammatory Bowel Disease. Int. J. Mol. Sci. 2023, 24, 2696. [Google Scholar] [CrossRef]
- Lv, J.; Ibrahim, Y.S.; Yumashev, A.; Hjazi, A.; Faraz, A.; Alnajar, M.J.; Qasim, M.T.; Ghildiyal, P.; Hussein Zwamel, A.; Fakri Mustafa, Y. A comprehensive immunobiology review of IBD: With a specific glance to Th22 lymphocytes development, biology, function, and role in IBD. Int. Immunopharmacol. 2024, 137, 112486. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, R.; Tang, S.; Chen, L.; Zhang, H. Metabolic regulation of the Th17/Treg balance in inflammatory bowel disease. Pharmacol. Res. 2024, 203, 107184. [Google Scholar] [CrossRef]
- Jaeger, N.; Gamini, R.; Cella, M.; Schettini, J.L.; Bugatti, M.; Zhao, S.; Rosadini, C.V.; Esaulova, E.; Di Luccia, B.; Kinnett, B.; et al. Single-cell analyses of Crohn’s disease tissues reveal intestinal intraepithelial T cells heterogeneity and altered subset distributions. Nat. Commun. 2021, 12, 2–13. [Google Scholar] [CrossRef]
- Fujino, S.; Andoh, A.; Bamba, S.; Ogawa, A.; Hata, K.; Araki, Y.; Bamba, T.; Fujiyama, Y. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003, 52, 65–70. [Google Scholar] [CrossRef]
- Omenetti, S.; Pizarro, T.T. The Treg/Th17 axis: A dynamic balance regulated by the gut microbiome. Front. Immunol. 2015, 6, 639. [Google Scholar] [CrossRef]
- Li, Z.; Vermeire, S.; Bullens, D.; Ferrante, M.; Van Steen, K.; Noman, M.; Rutgeerts, P.; Ceuppens, J.L.; Van Assche, G. Restoration of Foxp3 + Regulatory T-cell Subsets and Foxp3-Type 1 Regulatory-like T Cells in Inflammatory Bowel Diseases during Anti-tumor Necrosis Factor Therapy. Inflamm. Bowel Dis. 2015, 21, 2418–2428. [Google Scholar] [CrossRef]
- Boschetti, G.; Nancey, S.; Sardi, F.; Roblin, X.; Flourié, B.; Kaiserlian, D. Therapy with anti-TNFα antibody enhances number and function of Foxp3(+) regulatory T cells in inflammatory bowel diseases. Inflamm. Bowel Dis. 2011, 17, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Mitomi, H.; Ohkura, Y.; Yokoyama, K.; Sada, M.; Kobayashi, K.; Tanabe, S.; Fukui, N.; Kanazawa, H.; Kishimoto, I.; Saigenji, K. Contribution of TIA-1+ and granzyme B+ cytotoxic T lymphocytes to cryptal apoptosis and ulceration in active inflammatory bowel disease. Pathol. Res. Pract. 2007, 203, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M.F. Strategies for targeting cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 2024, 24, 559–576. [Google Scholar] [CrossRef]
- Schett, G.; McInnes, I.B.; Neurath, M.F. Reframing Immune-Mediated Inflammatory Diseases through Signature Cytokine Hubs. N. Engl. J. Med. 2021, 385, 628–639. [Google Scholar] [CrossRef]
- El-Matary, W.; Carroll, M.W.; Deslandres, C.; Griffiths, A.M.; Kuenzig, M.E.; Mack, D.R.; Wine, E.; Weinstein, J.; Geist, R.; Davis, T.; et al. The 2023 Impact of Inflammatory Bowel Disease in Canada: Special Populations-Children and Adolescents with IBD. J. Can. Assoc. Gastroenterol. 2023, 6, S35–S44. [Google Scholar] [CrossRef]
- Dulic, S.; Toldi, G.; Sava, F.; Kovács, L.; Molnár, T.; Milassin, Á.; Farkas, K.; Rutka, M.; Balog, A. Specific T-Cell Subsets Can Predict the Efficacy of Anti-TNF Treatment in Inflammatory Bowel Diseases. Arch. Immunol. Ther. Exp. 2020, 68, 12. [Google Scholar] [CrossRef]
- van Deventer, S.J. Review article: Targeting TNF alpha as a key cytokine in the inflammatory processes of Crohn’s disease--the mechanisms of action of infliximab. Aliment. Pharmacol. Ther. 1999, 13 (Suppl. 4), 3–8, discussion 38. [Google Scholar] [CrossRef]
- Schnell, A.; Aicher, C.; Schnegelsberg, P.A.; Schwarz, B.; Schmidt, H.; Allabauer, I.; Rückel, A.; Regensburger, A.P.; Woelfle, J.; Hoerning, A. Exhausted Lag-3+ CD4+ T cells are increased in pediatric Inflammatory Bowel Disease. Clin. Exp. Immunol. 2024, 219, uxae066. [Google Scholar] [CrossRef]
- Salvador-Martín, S.; Zapata-Cobo, P.; Velasco, M.; Palomino, L.M.; Clemente, S.; Segarra, O.; Sánchez, C.; Tolín, M.; Moreno-Álvarez, A.; Fernández-Lorenzo, A.; et al. Association between HLA DNA Variants and Long-Term Response to Anti-TNF Drugs in a Spanish Pediatric Inflammatory Bowel Disease Cohort. Int. J. Mol. Sci. 2023, 24, 1797. [Google Scholar] [CrossRef]
- Bosè, F.; Raeli, L.; Garutti, C.; Frigerio, E.; Cozzi, A.; Crimi, M.; Caprioli, F.; Scavelli, R.; Altomare, G.; Geginat, J.; et al. Dual role of anti-TNF therapy: Enhancement of TCR-mediated T cell activation in peripheral blood and inhibition of inflammation in target tissues. Clin. Immunol. 2011, 139, 164–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Maksimovic, J.; Huang, B.; De Souza, D.P.; Naselli, G.; Chen, H.; Zhang, L.; Weng, K.; Liang, H.; Xu, Y.; et al. Cord Blood CD8(+) T Cells Have a Natural Propensity to Express IL-4 in a Fatty Acid Metabolism and Caspase Activation-Dependent Manner. Front. Immunol. 2018, 9, 879. [Google Scholar] [CrossRef]
- Sznurkowska, K.; Luty, J.; Bryl, E.; Witkowski, J.M.; Hermann-Okoniewska, B.; Landowski, P.; Kosek, M.; Szlagatys-Sidorkiewicz, A. Enhancement of Circulating and Intestinal T Regulatory Cells and Their Expression of Helios and Neuropilin-1 in Children with Inflammatory Bowel Disease. J. Inflamm. Res. 2020, 13, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Shi, R.; Hazra, R.; Hu, X. Regulatory T lymphocytes in traumatic brain injury. Neurochem. Int. 2024, 173, 105660. [Google Scholar] [CrossRef]
- Ito, M.; Komai, K.; Mise-Omata, S.; Iizuka-Koga, M.; Noguchi, Y.; Kondo, T.; Sakai, R.; Matsuo, K.; Nakayama, T.; Yoshie, O.; et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 2019, 565, 246–250. [Google Scholar] [CrossRef]
- Nayer, B.; Tan, J.L.; Alshoubaki, Y.K.; Lu, Y.-Z.; Legrand, J.M.D.; Lau, S.; Hu, N.; Park, A.J.; Wang, X.-N.; Amann-Zalcenstein, D.; et al. Local administration of regulatory T cells promotes tissue healing. Nat. Commun. 2024, 15, 7863. [Google Scholar] [CrossRef]
- Loffredo, L.F.; Savage, T.M.; Ringham, O.R.; Arpaia, N. Treg-tissue cell interactions in repair and regeneration. J. Exp. Med. 2024, 221, e20231244. [Google Scholar] [CrossRef]
- Vignali, D.A.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol. 2008, 8, 523–532. [Google Scholar] [CrossRef]
- Ueno, A.; Jijon, H.; Chan, R.; Ford, K.; Hirota, C.; Kaplan, G.G.; Beck, P.L.; Iacucci, M.; Fort Gasia, M.; Barkema, H.W.; et al. Increased prevalence of circulating novel IL-17 secreting Foxp3 expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patient. Inflamm. Bowel Dis. 2013, 19, 2522–2534. [Google Scholar] [CrossRef]
- Jacobse, J.; Li, J.; Rings, E.H.H.M.; Samsom, J.N.; Goettel, J.A. Intestinal Regulatory T Cells as Specialized Tissue-Restricted Immune Cells in Intestinal Immune Homeostasis and Disease. Front. Immunol. 2021, 12, 716499. [Google Scholar] [CrossRef]
- Duclaux-Loras, R.; Boschetti, G.; Flourie, B.; Roblin, X.; Leluduec, J.-B.; Paul, S.; Almeras, T.; Ruel, K.; Buisson, A.; Bienvenu, J.; et al. Relationships of circulating CD4+ T cell subsets and cytokines with the risk of relapse in patients with Crohn’s disease. Front. Immunol. 2022, 13, 864353. [Google Scholar] [CrossRef]
- Kryczek, I.; Wu, K.; Zhao, E.; Wei, S.; Vatan, L.; Szeliga, W.; Huang, E.; Greenson, J.; Chang, A.; Roliński, J.; et al. IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. J. Immunol. 2011, 186, 4388–4395. [Google Scholar] [CrossRef] [PubMed]
- Laukova, M.; Glatman Zaretsky, A. Regulatory T cells as a therapeutic approach for inflammatory bowel disease. Eur. J. Immunol. 2023, 53, e2250007. [Google Scholar] [CrossRef]
- Raphael, I.; Nalawade, S.; Eagar, T.N.; Forsthuber, T.G. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2014, 74, 5–17. [Google Scholar] [CrossRef]
- Dahlén, R.; Strid, H.; Lundgren, A.; Isaksson, S.; Raghavan, S.; Magnusson, M.K.; Simrén, M.; Sjövall, H.; Öhman, L. Infliximab inhibits activation and effector functions of peripheral blood T cells in vitro from patients with clinically active ulcerative colitis. Scand. J. Immunol. 2013, 78, 275–284. [Google Scholar] [CrossRef]
- Verstockt, S.; Ver Donck, F.; Verstockt, B.; Glorieus, E.; De Decker, M.; Ballet, V.; Van Assche, G.; Laukens, D.; Ferrante, M.; Mana, F.; et al. Up-regulation of IL17-related pathways in affected colon from ulcerative colitis compared with Crohn’s disease. J. Crohn’s Colitis 2019, 13, S537–S538. [Google Scholar] [CrossRef]
- Menesy, A.; Hammad, M.; Aref, S.; Abozeid, F.A.M. Level of interleukin 17 in inflammatory bowel disease and its relation with disease activity. BMC Gastroenterol. 2024, 24, 135. [Google Scholar] [CrossRef]
- Kobayashi, T.; Okamoto, S.; Hisamatsu, T.; Kamada, N.; Chinen, H.; Saito, R.; Kitazume, M.T.; Nakazawa, A.; Sugita, A.; Koganei, K.; et al. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease. Gut 2008, 57, 1682–1689. [Google Scholar] [CrossRef]
- Cui, G.; Fan, Q.; Li, Z.; Goll, R.; Florholmen, J. Evaluation of anti-TNF therapeutic response in patients with inflammatory bowel disease: Current and novel biomarkers. EBioMedicine 2021, 66, 103329. [Google Scholar] [CrossRef]
- Hovhannisyan, Z.; Treatman, J.; Littman, D.R.; Mayer, L. Characterization of interleukin-17-producing regulatory T cells in inflamed intestinal mucosa from patients with inflammatory bowel diseases. Gastroenterology 2011, 140, 957–965. [Google Scholar] [CrossRef]
- Sandy, N.S.; Marega, L.F.; Bechara, G.D.; Riccetto, A.G.L.; Bonfim, C.; Vilela, M.M.D.S.; Ribeiro, A.F.; Servidoni, M.D.F.; Lomazi, E.A. Elevated IgA and IL-10 levels in very-early-onset inflammatory bowel disease secondary to IL-10 receptor deficiency. Rev. Paul. Pediatr. 2021, 40, e2020434. [Google Scholar]
- Girardelli, M.; Basaldella, F.; Paolera, S.D.; Vuch, J.; Tommasini, A.; Martelossi, S.; Crovella, S.; Bianco, A.M. Genetic profile of patients with early onset inflammatory bowel disease. Gene 2018, 645, 18–29. [Google Scholar] [CrossRef] [PubMed]
- El-Hussuna, A.; Varghese, C.; Bhat, V.; Qvist, N. Inflammatory Response in Patients with Crohn’s Disease Compared with Ulcerative Colitis: Secondary Results of a Prospective Pilot Study. Crohn’s Colitis 360 2022, 4, otac047. [Google Scholar] [CrossRef]
- Toptygina, A.P.; Semikina, E.L.; Bobyleva, G.V.; Miroshkina, L.V.; Petrichuk, S.V. Cytokine profile in children with inflammatory bowel disease. Biochemistry 2014, 79, 1371–1375. [Google Scholar] [CrossRef] [PubMed]
- Jessen, B.; Rodriguez-Sillke, Y.; Sonnenberg, E.; Schumann, M.; Kruglov, A.; Freise, I.; Schmidt, F.; Maul, J.; Kühl, A.A.; Glauben, R.; et al. Level of Tumor Necrosis Factor Production by Stimulated Blood Mononuclear Cells Can Be Used to Predict Response of Patients with Inflammatory Bowel Diseases to Infliximab. Clin. Gastroenterol. Hepatol. 2021, 19, 721–731.e1. [Google Scholar] [CrossRef]
- Salvador-Martín, S.; López-Cauce, B.; Nuñez, O.; Laserna-Mendieta, E.J.; García, M.I.; Lobato, E.; Abarca-Zabalía, J.; Sanjurjo-Saez, M.; Lucendo, A.J.; Marín-Jiménez, I.; et al. Genetic predictors of long-term response and trough levels of infliximab in crohn’s disease. Pharmacol. Res. 2019, 149, 104478. [Google Scholar] [CrossRef]
Characteristics | Overall (n = 77) | Responders (n = 69) | Non-Responders (n = 7) | p Value |
---|---|---|---|---|
Sex | ||||
Male, n (%) | 40 (51.9%) | 37 (92.5%) | 2 (5%) | 0.256 |
Female, n (%) | 37 (48.1%) | 32 (86.5%) | 5 (13.5%) | |
Age (years) | ||||
At diagnosis, median (IQR, range) | 12.26 (4.48, 0.92–17.26) | 12.27 (4.60, 0.92–17.26) | 11.91 (4.98, 6.36–16.17) | 0.857 |
At start of treatment, median (IQR, range) | 12.70 (4.74, 1.35–17.42) | 12.84 (4.75, 1.36–17.42) | 12.52 (5.99, 8.33–16.28) | 0.921 |
Months from diagnosis to initiation of therapy, median (IQR, range) | 2.30 (6.99, 0–63.04) | 2.10 (6.70, 0–63.04) | 7.36 (23.55, 0.13–27.99) | 0.319 |
Type of IBD | ||||
CD, n (%) | 62 (80.5%) | 58 (93.5%) | 3 (4.8%) | 0.025 |
IFX, n (%) | 37 (59.7%) | 37 (100%) | 0 | |
ADL, n (%) | 25 (40.3%) | 21 (84%) | 3 (12%) | |
UC, n (%) | 15 (19.5%) | 11 (73.3%) | 4 (26.7%) | |
IFX, n (%) | 13 (86.7%) | 10 (76.9%) | 3 (23.1%) | |
ADL, n (%) | 2 (13.3%) | 1 | 1 | |
Anti-TNF drug | ||||
IFX, n (%) | 50 (64.9%) | 47 (94%) | 3 (6%) | 0.222 |
ADL, n (%) | 27 (35.1%) | 22 (81.5%) | 4 (14.8%) | |
PCDAI at start of treatment, median (IQR, range) (n = 62) | 27.50 (28.13, 0–175) | (n = 58) 28.75 (33.13, 0–175) | (n = 3) 5 (na, 5–20) | 0.102 |
PUCAI at start of treatment, median (IQR, range) (n = 15) | 55 (30, 5–85) | (n = 11) 50 (30, 5–70) | (n = 4) 65 (65, 5–85) | 0.358 |
CRP at start of treatment (mg/L), median (IQR, range) | 11 (35.38, 0.10–153.20) | 12.10 (35.25, 0.10–140) | 5 (86.92, 0.60–125) | 0.634 |
FC at start of treatment (µg/g), median (IQR, range) | 2000 (2220, 148–10,000) | 2000 (2151, 148–10,000) | 1235 (2378, 715–7595) | 0.760 |
Type of immunotherapy | ||||
Azathioprine, n (%) | 58 (75.3%) | 51 (87.9%) | 6 (10.3%) | 1 |
Mercaptopurine, n (%) | 0 | 0 | 0 | |
Methotrexate, n (%) | 1 (1.3%) | 1 (100%) | 0 | |
None, n (%) | 18 (23.4%) | 17 (94.4%) | 1 (5.6%) |
Characteristics | Overall (n = 49) | Responders (n = 45) | Non-Responders (n = 4) | p Value |
---|---|---|---|---|
Sex | ||||
Male, n (%) | 24 (49%) | 23 (95.8%) | 1 (4.2%) | 0.609 |
Female, n (%) | 25 (51%) | 22 (88%) | 3 (12%) | |
Age (years) | ||||
At diagnosis, median (IQR, range) | 12.21 (4.66, 0.92–17.26) | 12.27 (4.66, 0.92–17.26) | 10.99 (6.96, 6.36–14.97) | 0.622 |
At start of treatment, median (IQR, range) | 12.84 (4.88, 1.36–17.27) | 12.85 (4.71, 1.36–17.27) | 11.09 (6.41, 8.33–16.28) | 0.609 |
Months from diagnosis to initiation of therapy, median (IQR, range) | 3.35 (8.28, 0.0–63.04) | 3.35 (7.29, 0–63.04) | 9.08 (20.98, 0.13–23.69) | 0.476 |
Type of IBD | ||||
CD, n (%) | 39 (79.60%) | 38 (97.4%) | 1 (2.6%) | 0.023 |
IFX, n (%) | 27 (69.2%) | 27 (100%) | 0 | |
ADL, n (%) | 12 (30.8%) | 11 (91.7%) | 1 (8.3%) | |
UC, n (%) | 10 (20.4%) | 7 (70%) | 3 (30%) | |
IFX, n (%) | 8 (80%) | 6 (75%) | 2 (25%) | |
ADL, n (%) | 2 (20%) | 1 (50%) | 1 (50%) | |
Anti-TNF drug | ||||
IFX, n (%) | 35 (71.4%) | 33 (94.3%) | 2 (5.7%) | 0.568 |
ADL, n (%) | 14 (28.6%) | 12 (85.7%) | 2 (14.3%) | |
PCDAI at start of treatment, median (IQR, range) (n = 39) | 30 (32.5, 0–175) | n = 38 31.25 (33.13, 0–175) | n = 1 20 (0, 0–20) | 0.624 |
PUCAI at start of treatment, median (IQR, range) (n = 10) | 52.50 (52.50, 5–75) | n = 7 50 (50, 5–65) | n = 3 55 (na, 5–75) | 0.730 |
CRP at start of treatment (mg/L), median (IQR, range) | 14.20 (30.60, 0.10–130.30) | 14.2 (34.95, 0.10–130.30) | 8 (67.22, 0.60–88.22) | 0.535 |
FC at start of treatment (µg/g), median (IQR, range) | 2000 (1996.5, 148–7595) | 1685 (1868.5, 148–6000) | 2930 (5393, 715–7595) | 0.182 |
Type of immunotherapy | ||||
Azathioprine, n (%) | 40 (81.6%) | 36 (90%) | 4 (10%) | 1 |
Mercaptopurine, n (%) | 0 | 0 | 0 | |
Methotrexate, n (%) | 0 | 0 | 0 | |
None, n (%) | 9 (18.4%) | 9 (100%) | 0 |
T Cell Population | Cell Surface Markers |
---|---|
Lymphocytes | FSC/SSC CD45+ |
CD3 | CD3+ |
CD4 | CD3+ CD4+ |
naïve CD4 | CD3+ CD4+ CD45RA+ CD27+ |
CM CD4 (Central memory) | CD3+ CD4+ CD45RA- CD27+ |
EM CD4 (Effector memory) | CD3+ CD4+ CD45RA- CD27- |
TemRA CD4 (Terminal effector memory) | CD3+ CD4+ CD45RA+ CD27- |
CD4 Act (Activated) | CD3+ CD4+ CD45RA- HLADR+ |
CD4 RTE (Recent thymic emigrants) | CD3+ CD4+ CD45RA+ CD31+ |
Th0 | CD3+ CD4+ CXCR3- CCR4- CCR6- CCR10- |
Th1 | CD3+ CD4+ CXCR3+ CCR4- CCR6- CCR10- |
Th2 | CD3+ CD4+ CXCR3- CCR4+ CCR6- CCR10- |
Th9 | CD3+ CD4+ CCR4- CCR6+ |
Th17 | CD3+ CD4+ CXCR3- CCR4+ CCR6+ CCR10- |
Th1/Th17 | CD3+ CD4+ CXCR3+ CCR4- CCR6+ CCR10- |
Th22 | CD3+ CD4+ CCR4+ CCR6+ CXCR3- CCR10+ |
Treg | CD3+ CD4+ CD25+ CD27low |
naïve Treg | CD3+ CD4+ CD25+ CD127low CD45RA+ CD27+ |
CM Treg (Central memory) | CD3+ CD4+ CD25+ CD127low CD45RA- CD27+ |
EM Treg (Effector memory) | CD3+ CD4+ CD25+ CD127low CD45RA- CD27- |
TemRA Treg (Terminal effector memory RA) | CD3+ CD4+ CD25+ CD127low CD45RA+ CD27- |
Act Treg (Activated) | CD3+ CD4+ CD25+ CD127low CD45RA- HLADR+ |
RTE Treg (Recent thymic emigrants) | CD3+ CD4+ CD25+ CD127low CD45RA+ CD31+ |
CD8 | CD3+ CD8+ |
naïve CD8 | CD3+ CD8+ CD45RA+ CD27+ |
CM CD8 (Central memory) | CD3+ CD8+ CD45RA- CD27+ |
EM CD8 (Effector memory) | CD3+ CD8+ CD45RA- CD27- |
TemRA CD8 (Terminal effector memory RA) | CD3+ CD8+ CD45RA+ CD27- |
Act CD8 (Activated) | CD3+ CD8+ CD45RA- HLADR+ |
RTE CD8 (Recent thymic emigrants) | CD3+ CD8+ CD45RA+ CD31+ |
Double positive CD4 D8 (DP) | CD4+ CD8+ |
Cytokines | Week 0 (n = 74) | Week 6 (n = 69) | ||||
---|---|---|---|---|---|---|
R (n = 66) | NR (n = 7) | p Value | R (n = 61) | NR (n = 7) | p Value | |
IFNγ, median (IQR, range) | 3.65 (5.62; 0.37–21.90) | 0.70 (4.91; 0.35–10.90) | 0.10 | 1.63 (1.83; 0.15–10.30) | 1.96 (3.08; 0.36–5.62) | 0.77 |
IL-10, median (IQR, range) | 3.36 (2.02; 1.47–34.10) | 2.89 (4.59; 2.23–17.90) | 0.79 | 3.51 (1.69; 1.54–86.00) | 3.70 (1.60; 2.48–6.30) | 0.33 |
IL-17A, median (IQR, range) | 2.20 (1.92; 0–13.30) | 3.03 (4.91; 1.02–13.90) | 0.27 | 2.27 (1.40; 0.68–7.63) | 2.31 (3.38; 1.10–40.40) | 0.41 |
IL-4, median (IQR, range) | 0.09 (0.09; 0–2.03) | 0.08 (0.09; 0.01–0.50) | 0.54 | 0.08 (0.08; 0.01–1.49) | 0.09 (0.09; 0.03–0.52) | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapata-Cobo, P.; Salvador-Martín, S.; Gil-Manso, S.; Rodríguez-Belvís, M.V.; Palomino, L.M.; Moreno-Álvarez, A.; Pérez-Moneo, B.; García-Romero, R.; Fobelo, M.J.; García-Tirado, D.; et al. Changes in T Lymphocytes and Cytokines After Anti-TNF Treatment in Pediatric Inflammatory Bowel Disease: Association with Response to Pharmacologic Therapy. Int. J. Mol. Sci. 2025, 26, 3323. https://doi.org/10.3390/ijms26073323
Zapata-Cobo P, Salvador-Martín S, Gil-Manso S, Rodríguez-Belvís MV, Palomino LM, Moreno-Álvarez A, Pérez-Moneo B, García-Romero R, Fobelo MJ, García-Tirado D, et al. Changes in T Lymphocytes and Cytokines After Anti-TNF Treatment in Pediatric Inflammatory Bowel Disease: Association with Response to Pharmacologic Therapy. International Journal of Molecular Sciences. 2025; 26(7):3323. https://doi.org/10.3390/ijms26073323
Chicago/Turabian StyleZapata-Cobo, Paula, Sara Salvador-Martín, Sergio Gil-Manso, Marta Velasco Rodríguez-Belvís, Laura M. Palomino, Ana Moreno-Álvarez, Begoña Pérez-Moneo, Ruth García-Romero, María J. Fobelo, Diana García-Tirado, and et al. 2025. "Changes in T Lymphocytes and Cytokines After Anti-TNF Treatment in Pediatric Inflammatory Bowel Disease: Association with Response to Pharmacologic Therapy" International Journal of Molecular Sciences 26, no. 7: 3323. https://doi.org/10.3390/ijms26073323
APA StyleZapata-Cobo, P., Salvador-Martín, S., Gil-Manso, S., Rodríguez-Belvís, M. V., Palomino, L. M., Moreno-Álvarez, A., Pérez-Moneo, B., García-Romero, R., Fobelo, M. J., García-Tirado, D., Sánchez, C., Pujol-Muncunill, G., Segarra, O., Montraveta, M., Magallares, L., Correa-Rocha, R., Sanjurjo-Sáez, M., Pion, M., & López-Fernández, L. A. (2025). Changes in T Lymphocytes and Cytokines After Anti-TNF Treatment in Pediatric Inflammatory Bowel Disease: Association with Response to Pharmacologic Therapy. International Journal of Molecular Sciences, 26(7), 3323. https://doi.org/10.3390/ijms26073323