Double Strike in Chronic Lymphocytic Leukemia—The Combination of BTK and BCL2 Inhibitors in Actual and Future Clinical Practice
Abstract
1. Introduction
2. Treatment
3. Bruton’s Tyrosine Kinase Inhibitors (BTKis)
3.1. Covalent BTKis
3.1.1. Ibrutinib
3.1.2. Acalabrutinib
3.1.3. Zanubrutinib
3.1.4. Orelabrutinib
3.1.5. Spebrutinib
3.1.6. Tirabrutinib
3.2. Non-Covalent BTKis
3.2.1. Pirtobrutinib
3.2.2. Nemtabrutinib
3.2.3. Vecabrutinib and Fenebrutinib
3.3. BTK Inhibitors Under Development
4. BCL2 Inhibitors
5. BTK Inhibitor and BCL2 Inhibitor Synergism
6. BTKi and BCL2i Combinations
6.1. Ibrutinib + Venetoclax
6.2. Acalabrutinib + Venetoclax
6.3. Zanubrutinib + Venetoclax
6.4. Orelabrutinib + Venetoclax
6.5. Pirtobrutinib + Venetoclax
6.6. Nemtabrutinib + Venetoclax
6.7. Sonrotoclax Combinations
6.8. Lisaftoclax Combinations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cronin, K.A.; Ries, L.A.; Edwards, B.K. The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Cancer 2014, 120 (Suppl. S23), 3755–3757. [Google Scholar]
- Molica, S. Sex differences in incidence and outcome of chronic lymphocytic leukemia patients. Leuk. Lymphoma 2006, 47, 1477–1480. [Google Scholar] [CrossRef]
- Mauro, F.R.; Foa, R.; Giannarelli, D.; Cordone, I.; Crescenzi, S.; Pescarmona, E.; Sala, R.; Cerretti, R.; Mandelli, F. Clinical characteristics and outcome of young chronic lymphocytic leukemia patients: A single institution study of 204 cases. Blood 1999, 94, 448–454. [Google Scholar]
- Eichhorst, B.; Robak, T.; Montserrat, E.; Ghia, P.; Niemann, C.U.; Kater, A.P.; Gregor, M.; Cymbalista, F.; Buske, C.; Hillmen, P.; et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 23–33. [Google Scholar]
- Eichhorst, B.; Ghia, P.; Niemann, C.U.; Kater, A.P.; Gregor, M.; Hallek, M.; Jerkeman, M.; Buske, C. ESMO Clinical Practice Guideline interim update on new targeted therapies in the first line and at relapse of chronic lymphocytic leukaemia. Ann. Oncol. 2024, 35, 762–768. [Google Scholar]
- BREYANZI (Lisocabtagene Maraleucel). Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/breyanzi-lisocabtagene-maraleucel (accessed on 24 March 2025).
- Telaraja, D.; Kasamon, Y.L.; Collazo, J.S.; Leong, R.; Wang, K.; Li, P.; Dahmane, E.; Yang, Y.; Earp, J.; Grimstein, M.; et al. FDA Approval Summary: Pirtobrutinib for Relapsed or Refractory Mantle Cell Lymphoma. Clin. Cancer Res. 2024, 30, 17–22. [Google Scholar]
- Mato, A.R.; Woyach, J.A.; Brown, J.R.; Ghia, P.; Patel, K.; Eyre, T.A.; Munir, T.; Lech-Maranda, E.; Lamanna, N.; Tam, C.S.; et al. Pirtobrutinib after a Covalent BTK Inhibitor in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 389, 33–44. [Google Scholar]
- Follows, G.; Burke, J.M.; Grosicki, S.; Chen, C.; Sanna, A.; Roeker, L.E.; Yi, S.; Munir, T.; de la Cruz, F.; Ferrant, E.; et al. BRUIN CLL-321: A phase 3 open-label, randomized study of pirtobrutinib versus investigator’s choice of idelalisib plus rituximab or bendamustine plus rituximab in BTK inhibitor pretreated chronic lymphocytic leukemia/small lymphocytic lymphoma. J. Clin. Oncol. 2023, 41 (Suppl. S16), TPS7582. [Google Scholar]
- Siddiqi, T.; Maloney, D.G.; Kenderian, S.S.; Brander, D.M.; Dorritie, K.; Soumerai, J.; Riedell, P.A.; Shah, N.N.; Nath, R.; Fakhri, B.; et al. Lisocabtagene maraleucel in chronic lymphocytic leukaemia and small lymphocytic lymphoma (TRANSCEND CLL 004): A multicentre, open-label, single-arm, phase 1-2 study. Lancet 2023, 402, 641–654. [Google Scholar]
- Zygmunciak, P.; Robak, T.; Puła, B. Treatment of Double-Refractory Chronic Lymphocytic Leukemia-An Unmet Clinical Need. Int. J. Mol. Sci. 2024, 25, 1589. [Google Scholar] [CrossRef]
- Wen, T.; Wang, J.; Shi, Y.; Qian, H.; Liu, P. Inhibitors targeting Bruton’s tyrosine kinase in cancers: Drug development advances. Leukemia 2021, 35, 312–332. [Google Scholar]
- Herman, S.E.; Gordon, A.L.; Hertlein, E.; Ramanunni, A.; Zhang, X.; Jaglowski, S.; Flynn, J.; Jones, J.; Blum, K.A.; Buggy, J.J.; et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011, 117, 6287–6296. [Google Scholar]
- Hallek, M.; Al-Sawaf, O. Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures. Am. J. Hematol. 2021, 96, 1679–1705. [Google Scholar] [CrossRef]
- Woyach, J.A.; Jones, D.; Jurczak, W.; Robak, T.; Illés, Á.; Kater, A.P.; Ghia, P.; Byrd, J.C.; Seymour, J.F.; Long, S.; et al. Mutational profile in previously treated patients with chronic lymphocytic leukemia progression on acalabrutinib or ibrutinib. Blood 2024, 144, 1061–1068. [Google Scholar]
- Shirley, M. Bruton Tyrosine Kinase Inhibitors in B-Cell Malignancies: Their Use and Differential Features. Target. Oncol. 2022, 17, 69–84. [Google Scholar]
- Ahn, I.E.; Brown, J.R. Targeting Bruton’s Tyrosine Kinase in CLL. Front. Immunol. 2021, 12, 687458. [Google Scholar]
- Montoya, S.; Thompson, M.C. Non-Covalent Bruton’s Tyrosine Kinase Inhibitors in the Treatment of Chronic Lymphocytic Leukemia. Cancers 2023, 15, 3648. [Google Scholar] [CrossRef]
- Advani, R.H.; Buggy, J.J.; Sharman, J.P.; Smith, S.M.; Boyd, T.E.; Grant, B.; Kolibaba, K.S.; Furman, R.R.; Rodriguez, S.; Chang, B.Y.; et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J. Clin. Oncol. 2013, 31, 88–94. [Google Scholar]
- Byrd, J.C.; Brown, J.R.; O’Brien, S.; Barrientos, J.C.; Kay, N.E.; Reddy, N.M.; Coutre, S.; Tam, C.S.; Mulligan, S.P.; Jaeger, U.; et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N. Engl. J. Med. 2014, 371, 213–223. [Google Scholar]
- Munir, T.; Brown, J.R.; O’Brien, S.; Barrientos, J.C.; Barr, P.M.; Reddy, N.M.; Coutre, S.; Tam, C.S.; Mulligan, S.P.; Jaeger, U.; et al. Final analysis from RESONATE: Up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am. J. Hematol. 2019, 94, 1353–1363. [Google Scholar]
- Burger, J.; Barr, P.; Robak, T.; Owen, C.; Tedeschi, A.; Sarma, A.; Patten, P.; Grosicki, S.; McCarthy, H.; Offner, F.; et al. Final Analysis of the RESONATE-2 Study: Up to 10 Years of Follow-Up of First-Line Ibrutinib Treatment in Patients with Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma. Clin. Lymphoma Myeloma Leuk. 2024, 24, S179. [Google Scholar] [CrossRef]
- Ahn, I.E.; Tian, X.; Wiestner, A. Ibrutinib for Chronic Lymphocytic Leukemia with TP53 Alterations. N. Engl. J. Med. 2020, 383, 498–500. [Google Scholar] [CrossRef]
- Leong, D.P.; Caron, F.; Hillis, C.; Duan, A.; Healey, J.S.; Fraser, G.; Siegal, D. The risk of atrial fibrillation with ibrutinib use: A systematic review and meta-analysis. Blood 2016, 128, 138–140. [Google Scholar] [CrossRef]
- Dickerson, T.; Wiczer, T.; Waller, A.; Philippon, J.; Porter, K.; Haddad, D.; Guha, A.; Rogers, K.A.; Bhat, S.; Byrd, J.C.; et al. Hypertension and incident cardiovascular events following ibrutinib initiation. Blood 2019, 134, 1919–1928. [Google Scholar] [CrossRef]
- Salem, J.E.; Manouchehri, A.; Bretagne, M.; Lebrun-Vignes, B.; Groarke, J.D.; Johnson, D.B.; Yang, T.; Reddy, N.M.; Funck-Brentano, C.; Brown, J.R.; et al. Cardiovascular Toxicities Associated with Ibrutinib. J. Am. Coll. Cardiol. 2019, 74, 1667–1678. [Google Scholar] [CrossRef]
- Puła, B.; Iskierka-Jażdżewska, E.; Jamroziak, K.; Giannopoulos, K.; Wróbel, T.; Robak, T.; Hus, I. Expert opinion on use of acalabrutinib for chronic lymphocytic leukemia treatment. Acta Haematol. Pol. 2024, 55, 130–136. [Google Scholar] [CrossRef]
- Byrd, J.C.; Harrington, B.; O’Brien, S.; Jones, J.A.; Schuh, A.; Devereux, S.; Chaves, J.; Wierda, W.G.; Awan, F.T.; Brown, J.R.; et al. Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2016, 374, 323–332. [Google Scholar]
- Byrd, J.C.; Wierda, W.G.; Schuh, A.; Devereux, S.; Chaves, J.M.; Brown, J.R.; Hillmen, P.; Martin, P.; Awan, F.T.; Stephens, D.M.; et al. Acalabrutinib monotherapy in patients with relapsed/refractory chronic lymphocytic leukemia: Updated phase 2 results. Blood 2020, 135, 1204–1213. [Google Scholar]
- Ezad, S.; Khan, A.A.; Cheema, H.; Ashraf, A.; Ngo, D.T.M.; Sverdlov, A.L.; Collins, N.J. Ibrutinib-related atrial fibrillation: A single center Australian experience. Asia Pac. J. Clin. Oncol. 2019, 15, e187–e190. [Google Scholar]
- Rogers, K.A.; Thompson, P.A.; Allan, J.N.; Coleman, M.; Sharman, J.P.; Cheson, B.D.; Jones, D.; Izumi, R.; Frigault, M.M.; Quah, C.; et al. Phase II study of acalabrutinib in ibrutinib-intolerant patients with relapsed/refractory chronic lymphocytic leukemia. Haematologica 2021, 106, 2364–2373. [Google Scholar]
- Seymour, J.F.; Byrd, J.C.; Ghia, P.; Kater, A.P.; Chanan-Khan, A.; Furman, R.R.; O’Brien, S.; Brown, J.R.; Munir, T.; Mato, A.; et al. Detailed safety profile of acalabrutinib vs ibrutinib in previously treated chronic lymphocytic leukemia in the ELEVATE-RR trial. Blood 2023, 142, 687–699. [Google Scholar]
- Majeranowski, A.; Lebiedziński, F.; Okrój, M.; Osowski, J.; Mital, A. Zanubrutinib: A novel therapeutic option for the treatment of B-cell neoplasms. Acta Haematol. Pol. 2023, 54, 53–64. [Google Scholar] [CrossRef]
- Xu, W.; Yang, S.; Zhou, K.; Pan, L.; Li, Z.; Zhou, J.; Gao, S.; Zhou, D.; Hu, J.; Feng, R.; et al. Treatment of relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma with the BTK inhibitor zanubrutinib: Phase 2, single-arm, multicenter study. J. Hematol. Oncol. 2020, 13, 48. [Google Scholar]
- Brown, J.R.; Eichhorst, B.; Hillmen, P.; Jurczak, W.; Kaźmierczak, M.; Lamanna, N.; O’Brien, S.M.; Tam, C.S.; Qiu, L.; Zhou, K.; et al. Zanubrutinib or Ibrutinib in Relapsed or Refractory Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 319–332. [Google Scholar]
- Robak, P.; Witkowska, M.; Wolska-Washer, A.; Robak, T. The preclinical discovery and development of orelabrutinib as a novel treatment option for B-cell lymphoid malignancies. Expert. Opin. Drug Discov. 2023, 18, 1065–1076. [Google Scholar]
- Xu, W.; Zhou, K.; Wang, T.; Yang, S.; Liu, L.; Hu, Y.; Zhang, W.; Ding, K.; Zhou, J.; Gao, S.; et al. Orelabrutinib in relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma patients: Multi-center, single-arm, open-label, phase 2 study. Am. J. Hematol. 2023, 98, 571–579. [Google Scholar]
- Brown, J.R.; Harb, W.A.; Hill, B.T.; Gabrilove, J.; Sharman, J.P.; Schreeder, M.T.; Barr, P.M.; Foran, J.M.; Miller, T.P.; Burger, J.A.; et al. Phase I study of single-agent CC-292, a highly selective Bruton’s tyrosine kinase inhibitor, in relapsed/refractory chronic lymphocytic leukemia. Haematologica 2016, 101, e295–e298. [Google Scholar]
- Walter, H.S.; Rule, S.A.; Dyer, M.J.; Karlin, L.; Jones, C.; Cazin, B.; Quittet, P.; Shah, N.; Hutchinson, C.V.; Honda, H.; et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood 2016, 127, 411–419. [Google Scholar] [CrossRef]
- Munakata, W.; Ando, K.; Yokoyama, M.; Fukuhara, N.; Yamamoto, K.; Fukuhara, S.; Ohmachi, K.; Mishima, Y.; Ichikawa, S.; Ogiya, D.; et al. Long-term safety profile of tirabrutinib: Final results of a Japanese Phase I study in patients with relapsed or refractory B-cell malignancies. Int. J. Hematol. 2023, 117, 553–562. [Google Scholar]
- Mato, A.R.; Shah, N.N.; Jurczak, W.; Cheah, C.Y.; Pagel, J.M.; Woyach, J.A.; Fakhri, B.; Eyre, T.A.; Lamanna, N.; Patel, M.R.; et al. Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): A phase 1/2 study. Lancet 2021, 397, 892–901. [Google Scholar]
- Naeem, A.; Utro, F.; Wang, Q.; Cha, J.; Vihinen, M.; Martindale, S.; Zhou, Y.; Ren, Y.; Tyekucheva, S.; Kim, A.S.; et al. Pirtobrutinib targets BTK C481S in ibrutinib-resistant CLL but second-site BTK mutations lead to resistance. Blood Adv. 2023, 7, 1929–1943. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Wang, M.; Roeker, L.E.; Patel, K.; Woyach, J.A.; Wierda, W.G.; Ujjani, C.S.; Eyre, T.A.; Zinzani, P.L.; Alencar, A.J.; et al. Pirtobrutinib monotherapy in Bruton tyrosine kinase inhibitor-intolerant patients with B-cell malignancies: Results of the phase I/II BRUIN trial. Haematologica 2025, 110, 92–102. [Google Scholar] [PubMed]
- Woyach, J.; Flinn, I.W.; Awan, F.T.; Eradat, H.; Brander, D.; Tees, M.; Parikh, S.A.; Phillips, T.; Wang, W.; Reddy, N.M.; et al. P682: Nemtabrutinib (MK-1026), A Non-Covalent Inhibitor of Wild-Type and C481S Mutated Bruton Tyrosine Kinase for B-Cell Malignancies: Efficacy and Safety of the Phase 2 Dose-Expansion Bellwave-001 Study. HemaSphere 2022, 6, 578–579. [Google Scholar]
- Woyach, J.A.; Stephens, D.M.; Flinn, I.W.; Bhat, S.A.; Savage, R.E.; Chai, F.; Eathiraj, S.; Reiff, S.D.; Muhowski, E.M.; Granlund, L.; et al. First-in-Human Study of the Reversible BTK Inhibitor Nemtabrutinib in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia and B-Cell Non-Hodgkin Lymphoma. Cancer Discov. 2024, 14, 66–75. [Google Scholar]
- Tadmor, T.; Eyre, T.A.; Benjamini, O.; Chaudhry, A.; Shen, J.; Leng, S.; Farooqui MZ, H.; Lavie, D. Nemtabrutinib Versus Ibrutinib or Acalabrutinib for Untreated Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: The Phase 3, Open-Label, Randomized Bellwave-011 Study. Blood 2024, 144, 1875.2. [Google Scholar]
- Allan, J.N.; Pinilla-Ibarz, J.; Gladstone, D.E.; Patel, K.; Sharman, J.P.; Wierda, W.G.; Choi, M.Y.; O’Brien, S.M.; Shadman, M.; Davids, M.S.; et al. Phase Ib dose-escalation study of the selective, non-covalent, reversible Bruton’s tyrosine kinase inhibitor vecabrutinib in B-cell malignancies. Haematologica 2022, 107, 984–987. [Google Scholar]
- Byrd, J.C.; Smith, S.; Wagner-Johnston, N.; Sharman, J.; Chen, A.I.; Advani, R.; Augustson, B.; Marlton, P.; Renee Commerford, S.; Okrah, K.; et al. First-in-human phase 1 study of the BTK inhibitor GDC-0853 in relapsed or refractory B-cell NHL and CLL. Oncotarget 2018, 9, 13023–13035. [Google Scholar]
- Huntington, S.F.; Schuster, S.J.; Ding, W.; Koehler, A.B.; Brander, D.M.; Rosenthal, A.C.; Leis, J.F.; Tun, H.W.; Moustafa, M.A.; Iqbal, M.; et al. DTRMWXHS-12, a novel Bruton tyrosine kinase inhibitor, in combination with everolimus and pomalidomide in patients with relapsed/refractory lymphomas: An open-label, multicenter, phase 1a/1b study. Am. J. Hematol. 2023, 98, 739–749. [Google Scholar]
- Goldberg, A.D.; Samaniego, F.; Ohanian, M.; Koller, P.B.; Chandhok, N.S.; Sadiq, A.A.; Mahadevan, D.; Cherry, M.A.; Altman, J.K.; Burke, J.M.; et al. A Phase 1a/b Trial of Luxeptinib (CG-806) in Patients with Relapsed/Refractory B-Cell Malignancies or Acute Myeloid Leukemia and Evaluation of New G3 Formulation. Blood 2023, 142 (Suppl. S1), 5953. [Google Scholar]
- Llambi, F.; Wang, Y.M.; Victor, B.; Yang, M.; Schneider, D.M.; Gingras, S.; Parsons, M.J.; Zheng, J.H.; Brown, S.A.; Pelletier, S.; et al. BOK Is a Non-canonical BCL-2 Family Effector of Apoptosis Regulated by ER-Associated Degradation. Cell 2016, 165, 421–433. [Google Scholar]
- Lasica, M.; Anderson, M.A. Review of Venetoclax in CLL, AML and Multiple Myeloma. J. Pers. Med. 2021, 11, 463. [Google Scholar] [CrossRef]
- Cimmino, A.; Calin, G.A.; Fabbri, M.; Iorio, M.V.; Ferracin, M.; Shimizu, M.; Wojcik, S.E.; Aqeilan, R.I.; Zupo, S.; Dono, M.; et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 2005, 102, 13944–13949. [Google Scholar]
- Cory, S.; Roberts, A.W.; Colman, P.M.; Adams, J.M. Targeting BCL-2-like Proteins to Kill Cancer Cells. Trends Cancer 2016, 2, 443–460. [Google Scholar]
- Wilson, W.H.; O’Connor, O.A.; Czuczman, M.S.; LaCasce, A.S.; Gerecitano, J.F.; Leonard, J.P.; Tulpule, A.; Dunleavy, K.; Xiong, H.; Chiu, Y.L.; et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: A phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010, 11, 1149–1159. [Google Scholar]
- Josefsson, E.C.; Vainchenker, W.; James, C. Regulation of Platelet Production and Life Span: Role of Bcl-xL and Potential Implications for Human Platelet Diseases. Int. J. Mol. Sci. 2020, 21, 7591. [Google Scholar] [CrossRef]
- Roberts, A.W.; Davids, M.S.; Pagel, J.M.; Kahl, B.S.; Puvvada, S.D.; Gerecitano, J.F.; Kipps, T.J.; Anderson, M.A.; Brown, J.R.; Gressick, L.; et al. Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2016, 374, 311–322. [Google Scholar] [CrossRef]
- Choudhary, G.S.; Al-Harbi, S.; Mazumder, S.; Hill, B.T.; Smith, M.R.; Bodo, J.; Hsi, E.D.; Almasan, A. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis. 2015, 6, e1593. [Google Scholar] [CrossRef]
- Sośnia, O.; Puła, B. Chronic lymphocytic leukemia following venetoclax treatment failure. Acta Haematol. Pol. 2022, 53, 94–103. [Google Scholar] [CrossRef]
- Tahir, S.K.; Smith, M.L.; Hessler, P.; Rapp, L.R.; Idler, K.B.; Park, C.H.; Leverson, J.D.; Lam, L.T. Potential mechanisms of resistance to venetoclax and strategies to circumvent it. BMC Cancer 2017, 17, 399. [Google Scholar] [CrossRef]
- Anderson, M.A.; Tam, C.; Lew, T.E.; Juneja, S.; Juneja, M.; Westerman, D.; Wall, M.; Lade, S.; Gorelik, A.; Huang, D.C.S.; et al. Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood 2017, 129, 3362–3370. [Google Scholar] [CrossRef]
- Blombery, P.; Anderson, M.A.; Gong, J.N.; Thijssen, R.; Birkinshaw, R.W.; Thompson, E.R.; Teh, C.E.; Nguyen, T.; Xu, Z.; Flensburg, C.; et al. Acquisition of the Recurrent Gly101Val Mutation in BCL2 Confers Resistance to Venetoclax in Patients with Progressive Chronic Lymphocytic Leukemia. Cancer Discov. 2019, 9, 342–353. [Google Scholar]
- Guo, Y.; Xue, H.; Hu, N.; Liu, Y.; Sun, H.; Yu, D.; Qin, L.; Shi, G.; Wang, F.; Xin, L.; et al. Discovery of the Clinical Candidate Sonrotoclax (BGB-11417), a Highly Potent and Selective Inhibitor for Both WT and G101V Mutant Bcl-2. J. Med. Chem. 2024, 67, 7836–7858. [Google Scholar]
- Liu, J.; Li, S.; Wang, Q.; Feng, Y.; Xing, H.; Yang, X.; Guo, Y.; Guo, Y.; Sun, H.; Liu, X.; et al. Sonrotoclax overcomes BCL2 G101V mutation-induced venetoclax resistance in preclinical models of hematologic malignancy. Blood 2024, 143, 1825–1836. [Google Scholar]
- Deng, J.; Paulus, A.; Fang, D.D.; Manna, A.; Wang, G.; Wang, H.; Zhu, S.; Chen, J.; Min, P.; Yin, Y.; et al. Lisaftoclax (APG-2575) Is a Novel BCL-2 Inhibitor with Robust Antitumor Activity in Preclinical Models of Hematologic Malignancy. Clin. Cancer Res. 2022, 28, 5455–5468. [Google Scholar]
- Ailawadhi, S.; Chen, Z.; Huang, B.; Paulus, A.; Collins, M.C.; Fu, L.T.; Li, M.; Ahmad, M.; Men, L.; Wang, H.; et al. Novel BCL-2 Inhibitor Lisaftoclax in Relapsed or Refractory Chronic Lymphocytic Leukemia and Other Hematologic Malignancies: First-in-Human Open-Label Trial. Clin. Cancer Res. 2023, 29, 2385–2393. [Google Scholar]
- Kwiatek, M.; Subramanian Guru Murthy, G.; Hoffmann, M.; Roeker, L.; Tessoulin, B.; Danilov, A.; Alencar, A.J.; Shah, N.N.; Ghesquieres, H.; Le Gouill, S.; et al. P636: A First-in-Human Phase 1 Study of Oral Loxo-338, A Selective BCL2 Inhibitor, in Patients with Advanced Hematologic Malignancies. HemaSphere 2023, 7 (Suppl. S3), e216785f. [Google Scholar]
- Lukas, M.; Velten, B.; Sellner, L.; Tomska, K.; Hüellein, J.; Walther, T.; Wagner, L.; Muley, C.; Wu, B.; Oleś, M.; et al. Survey of ex vivo drug combination effects in chronic lymphocytic leukemia reveals synergistic drug effects and genetic dependencies. Leukemia 2020, 34, 2934–2950. [Google Scholar]
- Wiśniewski, K.; Puła, B. A Review of Resistance Mechanisms to Bruton’s Kinase Inhibitors in Chronic Lymphocytic Leukemia. Int. J. Mol. Sci. 2024, 25, 5246. [Google Scholar] [CrossRef]
- Deng, J.; Isik, E.; Fernandes, S.M.; Brown, J.R.; Letai, A.; Davids, M.S. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia. Leukemia 2017, 31, 2075–2084. [Google Scholar]
- Cervantes-Gomez, F.; Lamothe, B.; Woyach, J.A.; Wierda, W.G.; Keating, M.J.; Balakrishnan, K.; Gandhi, V. Pharmacological and Protein Profiling Suggests Venetoclax (ABT-199) as Optimal Partner with Ibrutinib in Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2015, 21, 3705–3715. [Google Scholar]
- Lu, P.; Wang, S.; Franzen, C.A.; Venkataraman, G.; McClure, R.; Li, L.; Wu, W.; Niu, N.; Sukhanova, M.; Pei, J.; et al. Ibrutinib and venetoclax target distinct subpopulations of CLL cells: Implication for residual disease eradication. Blood Cancer J. 2021, 11, 39. [Google Scholar]
- Ponader, S.; Chen, S.S.; Buggy, J.J.; Balakrishnan, K.; Gandhi, V.; Wierda, W.G.; Keating, M.J.; O’Brien, S.; Chiorazzi, N.; Burger, J.A. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 2012, 119, 1182–1189. [Google Scholar]
- Herman, S.E.; Mustafa, R.Z.; Gyamfi, J.A.; Pittaluga, S.; Chang, S.; Chang, B.; Farooqui, M.; Wiestner, A. Ibrutinib inhibits BCR and NF-κB signaling and reduces tumor proliferation in tissue-resident cells of patients with CLL. Blood 2014, 123, 3286–3295. [Google Scholar]
- Haselager, M.; Thijssen, R.; West, C.; Young, L.; Van Kampen, R.; Willmore, E.; Mackay, S.; Kater, A.; Eldering, E. Regulation of Bcl-XL by non-canonical NF-κB in the context of CD40-induced drug resistance in CLL. Cell Death Differ. 2021, 28, 1658–1668. [Google Scholar]
- Kielbassa, K.; Haselager, M.V.; Bax, D.J.C.; van Driel, B.F.; Dubois, J.; Levin, M.D.; Kersting, S.; Svanberg, R.; Niemann, C.U.; Kater, A.P.; et al. Ibrutinib sensitizes CLL cells to venetoclax by interrupting TLR9-induced CD40 upregulation and protein translation. Leukemia 2023, 37, 1268–1276. [Google Scholar]
- Zhao, X.; Bodo, J.; Sun, D.; Durkin, L.; Lin, J.; Smith, M.R.; Hsi, E.D. Combination of ibrutinib with ABT-199: Synergistic effects on proliferation inhibition and apoptosis in mantle cell lymphoma cells through perturbation of BTK, AKT and BCL2 pathways. Br. J. Haematol. 2015, 168, 765–768. [Google Scholar]
- Jain, N.; Keating, M.; Thompson, P.; Burger, J.; Ferrajoli, A.; Estrov, Z.; Borthakur, G.; Takahashi, K.; Bose, P.; Fowler, N.; et al. Combined Ibrutinib and Venetoclax in Patients with Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia (CLL). Blood 2019, 134, 359. [Google Scholar]
- Jain, N.; Keating, M.; Thompson, P.; Ferrajoli, A.; Burger, J.A.; Borthakur, G.; Takahashi, K.; Estrov, Z.; Sasaki, K.; Fowler, N.; et al. Ibrutinib Plus Venetoclax for First-line Treatment of Chronic Lymphocytic Leukemia: A Nonrandomized Phase 2 Trial. JAMA Oncol. 2021, 7, 1213–1219. [Google Scholar]
- Jain, N.; Keating, M.J.; Thompson, P.A.; Ferrajoli, A.; Senapati, J.; Burger, J.A.; Borthakur, G.; Swaminathan, M.; Takahashi, K.; Estrov, Z.; et al. Combined Ibrutinib and Venetoclax for First-Line Treatment of Patients with Chronic Lymphocytic Leukemia (CLL): 5-Year Follow-up Data. Blood 2023, 142, 4635. [Google Scholar]
- Wierda, W.G.; Allan, J.N.; Siddiqi, T.; Kipps, T.J.; Opat, S.; Tedeschi, A.; Badoux, X.C.; Kuss, B.J.; Jackson, S.; Moreno, C.; et al. Ibrutinib Plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: Primary Analysis Results From the Minimal Residual Disease Cohort of the Randomized Phase II CAPTIVATE Study. J. Clin. Oncol. 2021, 39, 3853–3865. [Google Scholar]
- Tam, C.S.; Allan, J.N.; Siddiqi, T.; Kipps, T.J.; Jacobs, R.; Opat, S.; Barr, P.M.; Tedeschi, A.; Trentin, L.; Bannerji, R.; et al. Fixed-duration ibrutinib plus venetoclax for first-line treatment of CLL: Primary analysis of the CAPTIVATE FD cohort. Blood 2022, 139, 3278–3289. [Google Scholar]
- Wierda, W.G.; Jacobs, R.; Barr, P.M.; Allan, J.N.; Siddiqi, T.; Tedeschi, A.; Kipps, T.J.; O’Brien, S.M.; Badoux, X.C.; Visentin, A.; et al. Outcomes in high-risk subgroups after fixed-duration ibrutinib + venetoclax for chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL): Up to 5.5 years of follow-up in the phase 2 CAPTIVATE study. J. Clin. Oncol. 2024, 42 (Suppl. S16), 7009. [Google Scholar]
- Kater, A.P.; Owen, C.; Moreno, C.; Follows, G.; Munir, T.; Levin, M.D.; Benjamini, O.; Janssens, A.; Osterborg, A.; Robak, T.; et al. Fixed-Duration Ibrutinib-Venetoclax in Patients with Chronic Lymphocytic Leukemia and Comorbidities. NEJM Evid. 2022, 1, EVIDoa2200006. [Google Scholar]
- Niemann, C.U.; Munir, T.; Moreno, C.; Owen, C.; Follows, G.A.; Benjamini, O.; Janssens, A.; Levin, M.D.; Robak, T.; Simkovic, M.; et al. Fixed-duration ibrutinib-venetoclax versus chlorambucil-obinutuzumab in previously untreated chronic lymphocytic leukaemia (GLOW): 4-year follow-up from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2023, 24, 1423–1433. [Google Scholar]
- Niemann, C.U.; Munir, T.; Owen, C.; Follows, G.; Hernandez Rivas, J.-A.; Benjamini, O.; Janssens, A.; Levin, M.-D.; Robak, T.; Simkovic, M.; et al. First-Line Ibrutinib Plus Venetoclax Vs Chlorambucil Plus Obinutuzumab in Elderly or Comorbid Patients (Pts) with Chronic Lymphocytic Leukemia (CLL): Glow Study 64-Month Follow-up (FU) and Adverse Event (AE)-Free Progression-Free Survival (PFS) Analysis. Blood 2024, 144 (Suppl. S1), 1871. [Google Scholar]
- Hillmen, P.; Rawstron, A.C.; Brock, K.; Muñoz-Vicente, S.; Yates, F.J.; Bishop, R.; Boucher, R.; MacDonald, D.; Fegan, C.; McCaig, A.; et al. Ibrutinib Plus Venetoclax in Relapsed/Refractory Chronic Lymphocytic Leukemia: The CLARITY Study. J. Clin. Oncol. 2019, 37, 2722–2729. [Google Scholar]
- Munir, T.; Cherrill, L.-R.; Webster, N.; Dalal, S.; Boucher, R.; Sankhalpara, C.; Yates, F.; Fox, S.; Macdonald, D.; Fegan, C.; et al. MRD4 Eradication at 6 Months and Early Clearance of MRD with Combination of Ibrutinib Plus Venetoclax Results in Sustained Clinical and MRD Responses: Exploratory Analysis of the Blood Cancer UK TAP Clarity Study. Blood 2022, 140, 222–223. [Google Scholar]
- Hillmen, P.; Boucher, R.H.; Webster, N.; Dalal, S.; Brock, K.; Yates, F.; Sankhalpara, C.; Macdonald, D.; Fegan, C.; McCaig, A.; et al. Continued Long Term Responses to Ibrutinib + Venetoclax Treatment for Relapsed/Refractory CLL in the Blood Cancer UK TAP Clarity Trial. Blood 2020, 136, 17–18. [Google Scholar]
- Adalgisa Condoluci, K.P.; Stüssi, G.; Müller, G.; Dietrich, D.; Cantoni, N.; Cathomas, R.; Mey, U.; Widmer, A.; Zenz, T.; Gregor, M.; et al. Ibrutinib Lead-In Followed by Venetoclax Plus Ibrutinib Inpatients with Relapsed/Refractory Chronic Lymphocytic Leukemia. In EHA2024; Elsevier: Amsterdam, The Netherlands, 2025. [Google Scholar]
- Munir, T.; Cairns, D.A.; Bloor, A.; Allsup, D.; Cwynarski, K.; Pettitt, A.; Paneesha, S.; Fox, C.P.; Eyre, T.A.; Forconi, F.; et al. Chronic Lymphocytic Leukemia Therapy Guided by Measurable Residual Disease. N. Engl. J. Med. 2024, 390, 326–337. [Google Scholar] [PubMed]
- Fixed-Duration Calquence Plus Venetoclax Demonstrated Superior Progression-Free Survival vs. Standard of Care in Previously Untreated Chronic Lymphocytic Leukaemia, with 77% of Patients Progression Free at Three Years in AMPLIFY Phase III Trial. Available online: https://www.astrazeneca.com/media-centre/press-releases/2024/fixed-duration-calquence-plus-venetoclax-demonstrated-superior-pfs-vs-standard-care-previously-untreated-cll-with-77-of-patients-progression-free-3-years-amplify-phase-iii-trial.html (accessed on 31 January 2025).
- Fürstenau, M.; Giza, A.; Weiss, J.; Kleinert, F.; Robrecht, S.; Franzen, F.; Stumpf, J.; Langerbeins, P.; Al-Sawaf, O.; Simon, F.; et al. Acalabrutinib, venetoclax, and obinutuzumab in relapsed/refractory CLL: Final efficacy and ctDNA analysis of the CLL2-BAAG trial. Blood 2024, 144, 272–282. [Google Scholar] [PubMed]
- Davids, M.S.; Ryan, C.E.; Lampson, B.L.; Ren, Y.; Tyekucheva, S.; Fernandes, S.M.; Crombie, J.L.; Kim, A.I.; Weinstock, M.; Montegaard, J.; et al. Phase II Study of Acalabrutinib, Venetoclax, and Obinutuzumab in a Treatment-Naïve Chronic Lymphocytic Leukemia Population Enriched for High-Risk Disease. J. Clin. Oncol. 2024, 43, 788–799. [Google Scholar]
- Tedeschi, A.; Ferrant, E.; Flinn, I.W.; Tam, C.S.; Ghia, P.; Robak, T.; Brown, J.R.; Ramakrishnan, V.; Tian, T.; Kuwahara, S.B.; et al. Zanubrutinib in Combination with Venetoclax for Patients with Treatment-Naïve (TN) Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL) with del(17p): Early Results from Arm D of the SEQUOIA (BGB-3111-304) Trial. Blood 2021, 138 (Suppl. S1), 67. [Google Scholar]
- Soumerai, J.D.; Mato, A.R.; Dogan, A.; Seshan, V.E.; Joffe, E.; Flaherty, K.; Carter, J.; Hochberg, E.; Barnes, J.A.; Hamilton, A.M.; et al. Zanubrutinib, obinutuzumab, and venetoclax with minimal residual disease-driven discontinuation in previously untreated patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: A multicentre, single-arm, phase 2 trial. Lancet Haematol. 2021, 8, e879–e890. [Google Scholar]
- Roeker, L.E.; Woyach, J.A.; Cheah, C.Y.; Coombs, C.C.; Shah, N.N.; Wierda, W.G.; Patel, M.R.; Lamanna, N.; Tsai, D.E.; Nair, B.; et al. Fixed-duration pirtobrutinib plus venetoclax with or without rituximab in relapsed/refractory CLL: The phase 1b BRUIN trial. Blood 2024, 144, 1374–1386. [Google Scholar]
- Tam, C.S.; Anderson, M.A.; Lasica, M.; Verner, E.; Opat, S.S.; Ma, S.; Weinkove, R.; Cordoba, R.; Soumerai, J.; Ghia, P.; et al. Combination Treatment with Sonrotoclax (BGB-11417), a Second-Generation BCL2 Inhibitor, and Zanubrutinib, a Bruton Tyrosine Kinase (BTK) Inhibitor, Is Well Tolerated and Achieves Deep Responses in Patients with Treatment-Naïve Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (TN-CLL/SLL): Data from an Ongoing Phase 1/2 Study. Blood 2023, 142 (Suppl. S1), 327. [Google Scholar]
- Davids, M.S.; Ailawadhi, S.; Chanan-Khan, A.A.; Mudenda, B.; Nogaieva, L.; Kryachok, I.; Usenko, G.; Ivanov, V.; Kyselova, O.; Perekhrestenko, T.; et al. Lisaftoclax (APG-2575) Demonstrates Activity and Safety When Given with Accelerated Ramp-up and then Combined with Acalabrutinib or Rituximab in Patients (pts) with Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL), Including Those with Prior Exposure to Venetoclax. Blood 2024, 144 (Suppl. S1), 4614. [Google Scholar]
- Chiara, T.; Lu, Z.; Elisabetta, C.; Eugenio, G.; Filippo, S.; Valdemar, P.; Luciano, C.; Alberto, J.A.; Emanuele, Z.; Davide, R.; et al. The Bruton tyrosine kinase inhibitor zanubrutinib (BGB-3111) demonstrated synergies with other anti-lymphoma targeted agents. Haematologica 2019, 104, e307–e309. [Google Scholar]
- Allan, J.N.; Helbig, D.; Mulvey, E.; Nazir, S.; Stewart, S.; Lapinta, M.L.; Rutherford, S.C.; Ruan, J.; Leonard, J.P.; Martin, P.; et al. Zanubrutinib and Venetoclax As Initial Therapy for CLL/SLL with Obinutuzumab Triplet Consolidation in Patients with Minimal Residual Disease Positivity (BruVenG). Blood 2023, 142 (Suppl. S1), 3285. [Google Scholar]
- Griffin, J.; Wu, Y.; Mu, Q.; Li, X.; Ho, R.J.Y. Design and Characterization of a Novel Venetoclax-Zanubrutinib Nano-Combination for Enhancing Leukemic Cell Uptake and Long-Acting Plasma Exposure. Pharmaceutics 2023, 15, 1016. [Google Scholar] [CrossRef]
- Pan, G.; Zhong, M.; Yao, J.; Tan, J.; Zheng, H.; Jiang, Y.; Tang, Y.; Zhou, H.; Qin, D.; Yu, X.; et al. Orelabrutinib and venetoclax synergistically induce cell death in double-hit lymphoma by interfering with the crosstalk between the PI3K/AKT and p38/MAPK signaling. J. Cancer Res. Clin. Oncol. 2023, 149, 5513–5529. [Google Scholar]
- Jain, N.; Ferrajoli, A.; Swaminathan, M.; Reville, P.K.; Burger, J.A.; Bharathi, V.; Atluri, H.; Cherng, H.-J.J.; Bataller, A.; Jabbour, E.; et al. Combined Pirtobrutinib, Venetoclax, and Obinutuzumab As First-Line Treatment of Patients with Chronic Lymphocytic Leukemia (CLL). Blood 2024, 144 (Suppl. S1), 1011. [Google Scholar]
- Muhowski, E.M.; Ravikrishnan, J.; Gordon, B.; Yu, L.; Misra, S.; Walker, B.; Eathiraj, S.; Sampath, D.; Rogers, K.A.; Byrd, J.C.; et al. Preclinical evaluation of combination nemtabrutinib and venetoclax in chronic lymphocytic leukemia. J. Hematol. Oncol. 2022, 15, 166. [Google Scholar]
- Cheah, C.Y.; Tam, C.S.; Lasica, M.; Verner, E.; Browett, P.J.; Anderson, M.A.; Hilger, J.; Fang, Y.; Simpson, D.; Opat, S. A Phase 1 Study with the Novel B-Cell Lymphoma 2 (Bcl-2) Inhibitor Bgb-11417 As Monotherapy or in Combination with Zanubrutinib (ZANU) in Patients (Pts) with CLL/SLL: Preliminary Data. Blood 2022, 140 (Suppl. S1), 2321. [Google Scholar]
- Soumerai, J.D.; Lasica, M.; Opat, S.; Cheah, C.Y.; Chan, H.; Verner, E.; González Barca, E.; Tedeschi, A.; Hilger, J.; Fang, Y.; et al. A Phase 1 Study with the Novel B-Cell Lymphoma 2 (Bcl-2) Inhibitor Bgb-11417 As Monotherapy or in Combination with Zanubrutinib (ZANU) in Patients (Pts) with Non-Hodgkin Lymphoma (NHL) or Waldenström Macroglobulinemia (WM): Preliminary Data. Blood 2022, 140 (Suppl. S1), 9325. [Google Scholar]
- Lasica, M.; Ailawadhi, S.; Fu, C.; Thomas, S.; Wu, D.; Yi, S.; Siddiqi, T.; Yin, Q.; Allan, J.; Chen, W.; et al. Updated efficacy and safety results of BCL-2 inhibitor lisaftoclax (APG-2575) alone or combined with ibrutinib or rituximab in patients (pts) with Waldenström macroglobulinemia (WM). J. Clin. Oncol. 2024, 42, 7078. [Google Scholar]
Drug | Ibrutinib | Acalabrutinib | Zanubrutinib | Orelabrutinib | Pirtobrutinib | Nemtabrutinib | Ref. |
---|---|---|---|---|---|---|---|
Class | First-generation covalent BTKi | Second-generation covalent BTKi | Second-generation covalent BTKi | Second-generation covalent BTKi | Non-covalent BTKi | Non-covalent BTKi | [11,16,17,18] |
Binding with BTK | Irreversible at C481S | Irreversible at C481S | Irreversible at C481S | Irreversible at C481S | Reversible at the ATP-binding site | Reversible at E475 and Y476 residues of BTK | |
Specificity | Low | High | High | High | Very High | Low | |
Off-targets | ITK, EGFR, CSK, ErbB2, and TEC | Reduced off-target effects | Reduced off-target effects, TEC inhibition | Reduced off-target effects | Reduced off-target effects | SRC, AKT, and ERK inhibition | |
Half-life (hours) | 4–13 h | 1–2 h | 2–4 h | 1.5–4 h | 20 h | 20–30 h |
Clinical Trial | Phase | No. of Participants | %ORR | CR/CRi Rate | uMRD Rate | PFS Rate | OS Rate | Ref. |
---|---|---|---|---|---|---|---|---|
MD Anderson Cancer Center—pts. with R/R CLL | 2 | 80 | N/A | N/A | 48% at cycle 12 (BM), 67% at cycle 24 (BM) | c. 75% at 3 years | Over 90% at 3 years | [78] |
MD Anderson Cancer Center—treatment-naïve high-risk pts. | 2 | 120 | N/A | 69% at cycle 12 and 24 | 56% at 12 cycles (BM), 66% at 24 cycles (BM) | 90.1% at 5 years | 95.6% at 5 years | [79,80] |
CAPTIVATE—FD cohort | 2 | 159 | 96% | 56% | 77% (PB) and 60% (BM) at 12 cycles | 67% at 5 years | 96% at 5 years | [82,83] |
CAPTIVATE—MRD cohort | 2 | 164 | 97% | 46% | 75% (PB) and 68% (BM) at 12 cycles | ≥95% at 2.5 years | 99% at 3 years | [81] |
GLOW | 3 | 106 | N/A | 43% | 55% at 12 cycles (PB) | 74.6% at 3.5 years | 87.5% at 3.5 years | [85] |
CLARITY | 2 | 50 | 89% | 51% | 40% at 12 cycles (BM), 48% at 24 cycles (BM) | 98% at a median follow-up of 21.1 months | 100% at a median follow-up of 21.1 months | [87,89] |
FLAIR | 3 | 260 | 86.5% at 9 months | 59.2% | 52.4% at 2 years (BM), 65.9% at 5 years (BM) | 97.2% at 3 years | 98.0% at 3 years | [91] |
Clinical Trial | Phase | Combination | No. of Participants | %ORR | CR/CRi Rate | uMRD Rate | PFS Rate | OS Rate | Ref. |
---|---|---|---|---|---|---|---|---|---|
AMPLIFY | 3 | Acalabrutinib + venetoclax +/− obinutuzumab | 867 | AV 92.8%, AVO 92.7% | N/A | AV 34.4% at cycle 14, day 28; AVO 67.1% at cycle 6, day 1 | AV 76.5%, AVO 83.1% at 36 months | AV 94.1%, AVO 87.7% at 36 months | [92] |
CLL2-BAAG | 2 | Acalabrutinib + venetoclax + obinutuzumab | 46 | N/A | N/A | 93.3% at 36.3 months | 85% at 3 years | 93.8% at 3 years | [93] |
Davids et al. | 2 | Acalabrutinib + venetoclax | 72 | Best ORR: Patients with TP53 aberration 98% and all-comers 99% | Patients with TP53 aberration 48.9% and all-comers 47.2% at cycle 16 | BM-uMRD: Patients with TP53 aberration 71% and all-comers 78% at cycle 16 | 70% at 4 years | Patients with TP53 aberration 88% and all-comers 100% at 4 years | [94] |
SEQUOIA (Arm D) | 3 | Zanubrutinib + venetoclax | 35 | 96.8% | 11% | N/A | N/A | N/A | [95] |
Soumerai et al. | 2 | Zanubrutinib + venetoclax + obinutuzumab | 39 | 100% | 57% | 89% | Not reached | N/A | [96] |
BRUIN | 1b | Pirtobrutinib + venetoclax (PV) +/− rituximab (PVR) | 25 | PV 93.3% PVR 100% | 40% | PV 85.7% PVR 90% | PV 79.6% at 24 months PVR 80% at 18 months | PV 92.9% at 24 months PVR 80% at 18 months | [97] |
Tam et al. | 1/2 | Zanubrutinib + sonrotoclax | 94 | 100% | N/A | 75% at week 48 | N/A | N/A | [98] |
Davids et al. | 1b/2 | Lisaftoclax + acalabrutinib (LA) or rituximab (LAR) | 176 | Lisaftoclax + acalabrutinib 96.6% | N/A | N/A | 86% at 18 months | N/A | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zygmunciak, P.; Dancewicz, H.; Stróżna, K.; Błażowska, O.; Bieliński, K.; Robak, T.; Puła, B. Double Strike in Chronic Lymphocytic Leukemia—The Combination of BTK and BCL2 Inhibitors in Actual and Future Clinical Practice. Int. J. Mol. Sci. 2025, 26, 3193. https://doi.org/10.3390/ijms26073193
Zygmunciak P, Dancewicz H, Stróżna K, Błażowska O, Bieliński K, Robak T, Puła B. Double Strike in Chronic Lymphocytic Leukemia—The Combination of BTK and BCL2 Inhibitors in Actual and Future Clinical Practice. International Journal of Molecular Sciences. 2025; 26(7):3193. https://doi.org/10.3390/ijms26073193
Chicago/Turabian StyleZygmunciak, Przemyslaw, Hanna Dancewicz, Katarzyna Stróżna, Olga Błażowska, Krzysztof Bieliński, Tadeusz Robak, and Bartosz Puła. 2025. "Double Strike in Chronic Lymphocytic Leukemia—The Combination of BTK and BCL2 Inhibitors in Actual and Future Clinical Practice" International Journal of Molecular Sciences 26, no. 7: 3193. https://doi.org/10.3390/ijms26073193
APA StyleZygmunciak, P., Dancewicz, H., Stróżna, K., Błażowska, O., Bieliński, K., Robak, T., & Puła, B. (2025). Double Strike in Chronic Lymphocytic Leukemia—The Combination of BTK and BCL2 Inhibitors in Actual and Future Clinical Practice. International Journal of Molecular Sciences, 26(7), 3193. https://doi.org/10.3390/ijms26073193