You are currently viewing a new version of our website. To view the old version click .
International Journal of Molecular Sciences
  • Review
  • Open Access

28 March 2025

Next-Generation Sequencing in Oncology—A Guiding Compass for Targeted Therapy and Emerging Applications

,
,
,
,
,
and
1
“Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
2
Department of Medical Oncology II, “Prof. Dr. Al. Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
3
Department of Neurology, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
4
General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
This article belongs to the Special Issue New Insights into Gene Expression Regulation in the Next-Generation Sequencing (NGS) Era

Abstract

Multigene sequencing technologies provide a foundation for targeted therapy and precision oncology by identifying actionable alterations and enabling the development of treatments that substantially improve clinical outcomes. This review emphasizes the importance of having a molecular compass guiding treatment decision-making through the multitude of alterations and genetic mutations, showcasing why NGS plays a pivotal role in modern oncology.

1. Introduction

The unwavering pursuit of cancer cures has led to meaningful advances in multi-omic investigations, paving the way toward therapy tailored to the molecular intricacies of the cells. After successfully targeting the BCR-ABL rearrangement in chronic myeloid leukemia in 1998, the concept of precision oncology became pivotal for the development of therapeutic interventions tailored to the molecular specifics of individual tumors. Over 200 targeted therapies are currently approved, as of December 2024 [], showing a growing interest in delivering the right treatment to the right patient at the right dose at the right time [].
Consequently, precise diagnostic tools capable of accurately identifying treatment-impacting biomarkers have been developed since Next-Generation Sequencing (NGS) became almost synonymous with precision oncology and targeted therapy guidance. In essence, NGS enables a comprehensive genomic evaluation by parallel sequencing large quantities of DNA fragments extracted from tissue or liquid samples, resulting in a high-throughput, high-yield technique capable of interrogating sensitive molecular events with an impactful meaning in the subsequent clinical management []. Due to high specificity, NGS is evaluated for the development of multicancer early detection (MCED) tests [].
NGS assays have received widespread institutional approval and are highly advocated in the current oncology guidelines on the pretreatment evaluation of a multitude of solid tumors [] (Table 1).
Table 1. Commercially available NGS assays in the treatment of solid tumors.
Current National Comprehensive Cancer Network (NCCN), European Society for Medical Oncology, and American Society of Clinical Oncology (ASCO) guidelines recommend NGS in patients with advanced lung, breast, colorectal, prostate, and ovarian cancer, with indications ever expanding with the development of novel drugs [,]. Our current review is intended as a broad argument for the value of NGS in various clinical scenarios and the specific molecular alterations that can be interrogated and specifically targeted for the treatment of solid tumors.

2. The Current Role of NGS in Solid Tumor Oncology

2.1. Challenging Established Classifications and Redefining Diagnostics with Precision Oncology

Multi-omic research from past decades has provided sufficient evidence to prove the transformative role of certain molecular alterations concerning tumor biology, prognosis, and therapy. Such a paradigm shift occurred in the WHO classification of gliomas following the cIMPACT-NOW updates, which highlight the meaningful impact of simultaneously profiling key genes for an accurate diagnosis. Consequently, the 2021 EANO Guidelines for the diagnosis and management of gliomas showcase the importance of broad molecular profiling and correct identification of prognostic and predictive biomarkers [,]. We summarize the recommendations for the molecular-driven diagnosis and treatment of gliomas in Table 2.
Table 2. Molecular markers for the diagnosis and management of gliomas, as recommended by the 2021 EANO Guidelines.
Another example is the treatment for some rare tumor types, which has already proven the symbiosis between targeted therapy and gene sequencing for precise treatment administration. Gastrointestinal stromal tumors (GISTs) originate from the interstitial cells of Cajal and express a wide array of molecular alterations, including KIT, PDGFRA, and SDH alterations, providing different treatment options that require mutational testing for adequate treatment. Furthermore, mutations such as PDGFRA D842V confer insensitivity to well-established treatment agents such as Imatinib and, as such, require a broad investigation of all known molecular alterations associated with GISTs to recommend the precise therapy [,,].

2.2. Guiding Compass for Tumor-Agnostic Tumors

The classical characterization of any cancer includes the location and tissue of origin as guiding elements for clinical management. With the possibility of interrogating for druggable molecular alterations, the concept of tumor-agnostic therapy has emerged as a new approach in oncology, emphasizing the specific driver of cancer growth as a treatment decider [,].
Although other methods exist for detecting aberrant mutations, such as FISH or RT-PCR, NGS is the only one that confers the advantage of a comprehensive genomic profile, including other targetable oncogenes. Furthermore, due to the high specificity and sensitivity, DNA NGS testing on formalin-fixed, paraffin-embedded (FFPE) tumor specimens is often used as the confirmatory test for FISH and RT-PCR.
In an encouraging report from Coquerelle et al., the researchers demonstrate improved access to clinical trials due to the better genetic profiling facilitated by NGS []. It is important to note that the pan-tumor paradigm shift was made possible through basket trials using NGS for patient inclusion, depending on specific molecular alterations, rather than prioritizing the tumor origin. Consequently, patients with rare and ultra-rare tumor types, as well as patients with carcinoma of unknown primary (CUP) or patients with multiple prior lines of therapy, have been eligible for targeted therapy, with improved clinical outcomes [,,,,,].
Table 3 summarizes the data from key clinical trials for NTRK and RET inhibitors, showcasing the benefit of comprehensive genome testing for drug development in the pan-tumor setting.
Table 3. Drug development in the tumor-agnostic setting—available data from key clinical trials for NTRK and RET inhibitors.

2.2.1. Neurotrophic Tyrosine Receptor Kinase (NTRK) Fusion-Positive

The three NTRK genes (NTRK1, 2, and 3) encode the tropomyosin receptor kinase (TRK) receptor family proteins responsible for different neural cell functions. Mutations in the NTRK genes (fusions most commonly incriminated) have been observed in solid tumors such as gastrointestinal cancers and gynecological, thyroid, lung, and pediatric malignancies [,,,].
The inaugural pan-TRK inhibitor Larotrectinib was approved following three pivotal clinical trials, LOXO-TRK-14001, SCOUT, and NAVIGATE, collectively enrolling 153 eligible patients, both adult and pediatric. Pooled analysis showed an Overall Response Rate (ORR) of 79% (95% CI, 72–85%), 16% showing Complete Response (CR), a median duration of response (DoR) of 35.2 months (59 of which had a DoR of >24 months), a median progression-free survival (mPFS) of 28.3 months, and median overall survival (mOS) of 44.4 months. [,,].
Although Entrectinib is also a first-generation, small-molecule inhibitor of NTRK, it is also a multikinase inhibitor of the ROS1 and ALK oncogenes. Approval in the tissue-agnostic setting stems from integrating the data from the ALKA-372-001, STARTRK-1, and STARTRK-2 trials, showing an ORR of 57% (95% CI, 43.2–70.8%), with four patients out of the 54 adult patients included in the trials showing CR. The median DoR (mDoR) was 10 months (95% CI, 7.1 months to not reached), with 56% of patients having a response of over a year. [,]. An updated integrated analysis of 121 patients with 14 tumor types and over 30 histologies indicated (after a follow-up period of 25.8 months) an ORR of 61.2%, mDoR of 20 months (95% CI, 13–38.2 months), mPFS of 13,8 months (95% CI, 10.1–19.9 months), and mOS of 33.8 months (95% CI, 23.4–46.4 months) [].
Repotrectinib is a novel-generation multitargeted tyrosine kinase inhibitor (TKI), with data available for ROS1-positive Non-Small Cell Lung Cancer (NSCLC) through the ongoing TRIDENT-1 trial. []. However, the inhibitor showcases activity for NTRK 1/2/3 fusions and is currently on trial in the tumor-agnostic setting (Table 2).

2.2.2. Rearranged During Transfection (RET) Fusion-Positive Cancers

The RET gene is located on chromosome 10 and encodes a transmembrane receptor tyrosine kinase that is involved in the normal embryogenesis of the kidney, the enteric nervous system, and spermatogenesis [,,,,]. Since the late 1980s, the proto-oncogenic role of RET has been identified and characterized in numerous cancer types, including thyroid, lung, and breast cancer, with RET alterations occurring in less than 5% of all cancer patients [,,].
Previously, RET fusions were targeted using multikinase inhibitors (e.g., Vandetanib). However, the development of selective RET inhibitors, such as Selpercatinib and Pralsetinib, has been advantageous in the pan-cancer treatment setting and received FDA approval due to improved specificity and potency [].
Selpercatinib is a small-molecule TKI targeting RET alterations (including mutations and fusions) [] that was FDA-approved after the results from the LIBRETTO-001 trial, which included patients with RET-altered tumors, and showed encouraging activity in NSCLC and medullary thyroid carcinoma, as well as other cancers (among 45 patients with non-NSCLC or thyroid carcinoma the ORR was 43.9%, 95% CI 28.5–60.3%) [,,]. In addition to Selpercatinib, Pralsetinib has also shown pan-cancer efficacy across RET fusion-positive solid tumors, with an ORR of 57% (95% CI, 35–77%) [,]. In the ARROW clinical trial. Further information regarding the LIBRETTO-001 and ARROW clinical trials regarding the specific treatment settings where Selpercatinib and Pralsetinib have been investigated are presented in Table 2.

2.2.3. Von Hippel–Lindau Disease

Von Hippel–Lindau (VHL) disease is a rare hereditary disorder (approximately one in every 27,300–39,000 live births) linked with the development of both benign and malignant neoplasms, including clear-cell renal carcinoma (RCC), pancreatic neuroendocrine tumors (pNETs), and CNS and retinal hemangioblastomas. The hypoxia-inducible factor inhibitor Belzutifan has been approved for the treatment of advanced tumors associated with the germline pathogenic variants of the VHL gene as a result of the LITESPARK-004 trial, which showed promising results, such as an ORR of 59% for RCC (including two CRs), and 90% for pNET, with an acceptable toxicity profile [,,,,].

2.2.4. Human Epidermal Growth Factor Receptor 2-Positive (Her2-Positive) Tumors

HER2 (also known as ERBB2 or Her2-neu) is a 185 kDa transmembrane protein belonging to the Epidermal Growth Factor Receptors family. It is encoded by the HER2 gene, which is situated on the 17q21 chromosome [,,]. Overexpression of the Her2-neu gene leads to a 40–100-fold increase in HER2 protein, which in turn leads to overexpression on the cellular surface []. Although the Her2 is an orphan receptor, the protein relies upon the binding of the extracellular domain of one of the other HER family receptors (HER 1, 3, 4 tyrosine kinases) with one of the 11 possible ligands to undergo heterodimerization (or even homodimerize when expressed at very high levels) and transphosphorylation of the intracellular domain. The phosphorylated products interact with multiple intracellular signaling pathways (such as the phosphoinositide-3-kinase/protein-kinase-B, PI3K/AKT, and anti-apoptosis pathway, for which HER2 is the most potent stimulator), regulating genes involved in cancer cell proliferation, survival, differentiation, angiogenesis, invasion, and metastasis [,,,,,,]. Although HER2 overexpression is classically defined through immunohistochemistry (an IHC3+ expression meaning positivity), the HER2 amplification can be interrogated in multigene assays and can be observed in a multitude of solid tumors, including breast, gastric, biliary tract, pancreatic, and lung tumors. As such, NGS can become a practical solution for a larger-scale adoption of anti-HER2 targeted therapy in the tumor-agnostic setting or after multiple lines of therapy have been exhausted [,,,].
The DESTINY-PanTumor-02 trial confirmed the pan-cancer efficacy of trastuzumab deruxtecan (T-Dxd) by treating 267 patients across different tumor cohorts (including endometrial, cervical, biliary tract, and pancreatic) with HER2 overexpression confirmed through IHC (IHC2+ or IHC3+) with the antibody-drug conjugate. The ORR result was 37.1% for all comers (all patients with centrally confirmed HER2 overexpression experienced a response to T-Dxd). However, the response was greater for patients with centrally confirmed IHC3+, with an ORR of 61.3% (95% CI, 49.4–72.4%). Across all cohorts, the mOS was 13.4 months (95% CI, 11.9–15.5 months), ranging from 5 months in the pancreatic cohort to 26 months in the endometrial cohorts. The T-Dxd therapy is not without risks; 40.8% of patients experienced Grade 3 or greater drug-related adverse events, and 10.5% experienced drug-related interstitial lung disease, which in three cases resulted in death [,]. Nonetheless, T-Dxd has received approval for the treatment of HER2-positive (IHC3+) solid tumors and is endorsed by guidelines for the treatment of HER2 overexpressing tumors [].
Similarly, the MYPathway HER2 basket trial supports HER2-directed therapy with the combination of Pertuzumab and Trastuzumab in HER2-positive (HER2 overexpressing, IHC3+, or HER2 amplified) solid tumors, achieving an ORR of 25.9% (notably, patients with IHC3+ expression exhibited an ORR of 41%, patients with IHC2+ expression had an ORR of 21.9%, and no response was observed for patients with no HER2 expression) [].

2.2.5. BRAF V600E-Mutated Cancers

The aberrant stimulation of the mitogen-activated protein kinase (MAPK) pathway through alterations of BRAF (specifically the substitution of valine with glutamic acid at position 600 of the protein, the BRAF V600E mutation) leads to oncogenesis in up to 3% of people diagnosed with cancer, mainly in thyroid cancer and melanoma. Furthermore, activation of MEK promotes tumor cell growth, proliferation, and survival, and, as such, dual inhibition of BRAF and MEK has been proposed as a therapeutic strategy in BRAF V600E-altered tumors [,,,,,,,,,,,].
After encouraging results from melanoma and NSCLC, the pan-cancer efficacy of Dabrafenib (BRAF inhibitor) and Trametinib (MEK inhibitor) has been evaluated in the Rare Oncology Agnostic Research (ROAR) trial, which indicated clinically meaningful responses in anaplastic thyroid carcinoma (ORR, 56%), biliary tract cancer (ORR, 47%), and gliomas (ORR, 31% for high grade, 69% for low grade), leading toward the approval and recommendation of the dual blockade in the pan-cancer BRAF V600E mutation-positive setting [,,,,,,].

2.2.6. High Mutational Burden Tumors

The quantitative measure of mutations in the tumor genome (measured as the number of mutations per megabase), as assessed by NGS, is currently under research as a novel positive predictive biomarker for immune checkpoint inhibitors, especially Pembrolizumab. The interest in assessing mutational burden is high, as estimations show that nearly 20% of all cancers have a mutational burden of ≥10 mut/Mb (TMB-H tumors), including melanoma and nonmelanoma skin cancer, and also bladder, lung, and small intestinal cancers [,,,,]. As such, compared to the other pan-cancer therapies discussed so far, NGS can be used as a quantitative assay to determine the predictive biomarker for immunotherapy rather than targeted therapy.
Following the KEYNOTE-158 trial, in 102 patients with tumor mutational burden TMB ≥ 10 mut/Mb, treatment with Pembrolizumab resulted in an ORR of 29% (95% CI, 21–39%), with mDoR not reached (half of the patients achieved a duration of response of over two years), mPFS of 2.1 months (95% CI, 2.1–4.1 months), and mOS of 11.7 months (95% CI, 9.1–19.1 months). A higher tumor mutational burden (i.e., ≥13 mut/Mb) correlates with higher response rates, with similar clinical benefits for patients, leading to the FDA approval of Pembrolizumab at the 10 mut/Mb threshold [,,].

2.2.7. Mismatch Repair Deficient (dMMR)/High Microsatellite Instability (MSI-H) Cancers

Similar to TMB-H tumors, dMMR/MSI-H cancers are associated with a hypermutable status, resulting from deficiencies in the mismatch repair genes leading to losses of genomic integrity. These alterations are linked with Lynch Syndrome and are frequently reported in endometrial, small bowel, colon, and gastric cancers [,]. Two PD-1 blockers, Pembrolizumab and Dostarlimab, have been FDA-approved for the tissue-agnostic setting, showing improved clinical outcomes [,,,,,,].
IHC typically determines dMMR/MSI-H status. However, NGS testing can detect mutations in the four key MMR genes (MLH1, PMS2, MSH2, and MSH6) and diagnose Lynch Syndrome, which is an autosomal dominant genetic disease. Thus, NGS can screen and monitor healthy first-degree relatives at risk for Hereditary Non-Polyposis Colorectal Cancer, Endometrial Carcinoma, and other associated cancers. Furthermore, NGS testing can offer a broader panel of actionable biomarkers, impacting further treatment.
Recently, PD-1 antagonists have shown impressive responses in the neoadjuvant setting []. Such promising results are desperately awaited in the treatment of locally advanced cancers, especially chemo-unresponsive tumors such as dMMR/MSI-H, where the prognosis remains poor despite multimodal efforts to find a cure []. Table 4 summarizes the prospective trials showing the added impact of immune therapy in the pre-surgical setting of dMMR/MSI-H tumors, including the possibility of having a watch-and-wait strategy for tumors showing a complete clinical response after the completion of neoadjuvant immunotherapy.
Table 4. Prospective clinical trials that are investigating immune checkpoint inhibitors as neoadjuvant therapy for MSI-H gastrointestinal cancers.

2.3. The Oncogenic Driver Landscape in NSCLC

Determining potential oncogenic drivers is a pivotal step in the diagnosis of NSCLC, as they are positive predictors for targeted therapy, and some are negative predictors for immune checkpoint inhibitors or chemotherapy. The modest response to immune therapy comes as an inherent feature of oncogene-driven tumors, which are characterized by low TMB, lack of neoantigens, and a microenvironment low on immune cells []. These key principles of therapy apply to approximately 60% (80% in the Asian population) of lung adenocarcinoma patients who are positive for an oncogenic alteration (Figure 1 presents the incidence for each oncogenic driver). As such, the comprehensive genomic evaluation offered by NGS is vital in the diagnostic work-up for locally advanced and metastatic NSCLC by identifying druggable alterations and screening for de novo or acquired resistance mechanisms [].
Figure 1. A schematic overview of the treatment options in different clinical scenarios, according to the molecular profile of NSCLC tumors. Indications for targeted therapy were collected from the National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology, Version 4.2025, Published 14th of January 2025. Accessed 24 March 2025 (Available at: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf).
One of the most well-known examples is Epidermal Growth Factor Receptor (EGFR) mutations, present in 10–25% of NSCLC cases, more predominantly in adenocarcinomas, particularly among non-smokers, and more frequent in the Asian population []. A total of 90% of EGFR mutations are constituted by the deletion in exon 19 and the leucine–arginine substitution at codon 858 (L858R) and can be targeted by first- (Erlotinib, Gefitinib) and second-generation (Afatinib, Dacomitinib) EGFR inhibitors [,]. Unfortunately, the PFS of these drugs is largely dictated by the acquisition of a secondary point mutation, the substitution of methionine for threonine at amino acid position 790 (T790M mutation), conferring tumoral resistance to treatment []. The third-generation inhibitor Osimertinib also acts on this mutation, bypassing the resistance mechanism, and is now a pillar in the treatment of EGFR-mutated NSCLC as a first-line metastatic treatment [,]. Nonetheless, Osimertinib is also recommended as adjuvant and consolidation therapy after surgery or definitive chemoradiation, showcasing the importance of genomic profiling in pre-metastatic stages of the disease [,].
Similar to EGFR mutations, Anaplastic Lymphoma Kinase (ALK) (typically translocations) typically occurs in non-smoker NSCLC patients with adenocarcinoma histotype in approximately 3–5% of NSCLC cases [,]. Similarly, the drug development of ALK inhibitors had to overcome acquired resistance mechanisms such as L1196M (which confers resistance to Crizotinib) or ALK G120R/del (which confers resistance to both first- and second-generation ALK inhibitors), leading to the development of Lorlatinib [,]. ALK inhibition can also be used in the adjuvant setting, as shown in the ALINA trial, which showed overwhelming benefits for postsurgical treatment with Alectinib [].
EGFR and ALK mutations are two classic examples of oncogene drivers that must be identified and specifically targeted to substantially benefit patients’ clinical outcomes. As more oncogenes are discovered and therapies are developed, the need for a sensitive investigation to confirm the eligibility to specific targeted therapy tailored for these alterations will become more imperative. Consequently, NGS will become essential, both as a tool for initial diagnosis and indispensable in the later stages of the disease for profiling tumor alterations and correctly choosing treatment by considering druggable mutations and acquired resistance mechanisms. It is thus vital to encourage the development of Molecular Tumor Boards to coordinate treatments, deliver precise therapies, and mitigate the economic burden associated with NGS and novel therapies []. Figure 1 and Table 5 provide an overview of the targeted therapy landscape for NSCLC.
Table 5. Pivotal trials in oncogenic-driven NSCLC with targeted therapy, trial design, objective response rate (ORR), median progression/disease-free survival in months (mPFS/DFS), with hazard ratio (HR) if the trial was Phase 3, and median overall survival (mOS) in months, with HR if the trial was Phase 3. Indications for targeted therapy were collected from the National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology, Version 3.2025 Published 14th of January 2025, Accessed 24 March 2025 (Available at: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf).

2.4. Investigating Homologous Repair Deficiencies—Treatment Avenues and Hereditary Cancer Risk Evaluation

Homologous recombination deficiency (HRD) describes the cellular incapacity to repair DNA damage provoked by endogenous or exogenous cancerogenic agents. This results in the accumulation of double-stranded breaks in the DNA helix, increasing the likelihood of developing cancer. HRD can result from germline (as observed in hereditary cancers) or somatic mutations of a multitude of genes, BRCA1 and BRCA2 being the most well-known, due to the increased likelihood of developing breast (56–65% for BRCA1, 35–57% for BRCA2) or ovarian (20–50% for BRCA1, 5–23% for BRCA2) cancers, but also pancreatic, prostate, or colorectal cancers, and with an increased likelihood of synchronous cancers [,,,]. Other genes have also been linked to HRD, such as ARID1A, ATM, ATRX, BAP1, BARD1, BLM, CHEK1/2, MRE11A, NBN, PALB2, RAD50, RAD51, and WRN, with varying prognostic significance, indicating that evaluating HRD requires interrogation for multiple genetic anomalies simultaneously [,,].
HRD-positivity implies a positive prediction toward treatment with poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi), which have markedly improved outcomes in both adjuvant and metastatic settings [] (Table 5). Furthermore, HRD positivity has implications for the patient’s family members, as germline mutations cause hereditary cancers in first-degree relatives, requiring inclusion in screening programs and/or prophylactic interventions such as mastectomy or bilateral oophorectomy [,]. These interventions need to be tailored according to the cancer penetrance of the alteration detected, and multiple studies have noted the importance of multi-gene panel tests for the detection of hereditary cancers [,].
A summary of the pivotal trials regarding PARPi is presented in Table 5. Notably, the inhibitors show activity in BRCA1/2 mutations and the other alterations associated with HRD, showcasing the benefit of a broader investigation. The clinical benefits of improved DFS, PFS, and OS in either adjuvant or metastatic setting cannot be overlooked, as BRCA1/2 mutations are typically associated with poorer prognosis in breast, ovarian, and prostate cancers [,,]. As such, treatment with PARPi offers a much-needed treatment solution for a group of high-risk patients and NGS enables the precise inclusion of the target population, as well as investigating the familial risks for developing cancer (Table 6).
Table 6. Pivotal Phase 3 trials in PARP inhibitor therapy across cancer types, including trial design, median progression/disease-free survival in months (mPFS/DFS), hazard ratio (HR), and median overall survival (mOS) in months with HR.

2.5. Bridging the Hormone–Chemotherapy Gap in HR-Positive Advanced Breast Cancer

After the development of cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i), one of the unmet needs in the treatment of hormone receptor-positive (HR+) advanced breast cancer (ABC) was to find therapies that could provide meaningful benefit beyond progression due to the relative chemoresistance of these tumors. Although there have been investigations within the immune-mediated mechanisms of endocrine resistance, so far, immunotherapy is still under investigation and controversial [,]. As such, targeted therapies play an important role, particularly in the PIK3/AKT pathway, with PIK3CA mutations prevalent in HR+ breast cancer (34.5%) and AKT1 and PTEN mutations restricted to this subgroup []. Furthermore, the ESR1 mutation is of particular interest, as a definitive result yields the certainty of endocrine resistance, and NGS provides a very high diagnostic accuracy [].
The results of the pivotal trials on targeting this pathway are summarized in Table 7. It is important to note that these alterations should be investigated together with BRCA1/2 mutations (see Section 2.3) for treatment with PARPi and other tumor-agnostic therapies (see Section 2.2.), resulting in an increased need for multigene examination in this subset of patients.
Table 7. Pivotal clinical trials involving targeted therapies of PIK3CA/AKT1/PTEN alterations and ESR1-mutation.

3. Discussion

The need for significant developments in the precision oncology era requires tools such as NGS for the therapeutic management of oncologic patients. Several reports have provided evidence for the high-accuracy diagnostic value of NGS [,].
It is important to note, however, that several pitfalls may alter the diagnostic accuracy of NGS, particularly in the pre-analytical phase. As such, the tissue blocks selected for analysis must represent a substantial portion of the tumor (at least 20%) for biomolecular analysis viability []. Furthermore, factors such as time to fixation, duration of fixation, and the conditions for tissue storage will significantly affect the nucleic acid integrity of the tumor tissue []. Nonetheless, sequencing provides challenges as well, with risks including degradation by RNases, cross-linking, and fragmentation [,]. These pitfalls need to be considered in the evaluation of the NGS workflow, but disadvantages such as long turnaround times, the need for specialized personnel, and higher costs are outweighed by the pivotal contribution that NGS brings to oncological management.
As the article written by Zalis et al. remarks, coupling NGS testing with liquid biopsies offers significant advantages, such as an alternative to surgical tissue biopsies in a non-invasive manner (reducing the patient discomfort and risk of complications), monitoring cancer progression and response to treatment in real time (allowing for timely adjustments in therapy), detecting minimal residual disease, and identifying resistance mechanisms, thus guiding the selection of alternative treatments [].
Furthermore, growing evidence suggests that targeted therapy improves response rates and clinical outcomes []. A comprehensive literature review carried out by Gibbs et al. indicates a significant impact on survival across tumor types for NGS-informed treatment [].
Admittedly, NGS and the rise of targeted therapy indications might prove expensive. However, there is growing evidence showing the potential for cost-effectiveness under specific reimbursement policies that would permit adequate access to novel therapies []. Furthermore, most targeted therapy options are safer to administer than ChT, with fewer side effects, and require fewer days of hospitalization, as most treatments can be administered orally. This can prove advantageous for the patient’s compliance with treatment, even in adverse situations and unforeseen circumstances, such as COVID-19, which can limit access to hospitals [].
Compelling economic arguments can also include the dramatic decrease in NGS costs since the early 2000s. Technological advancements and scale economics decreased from $100 million to less than $1000 in some cases. Unfortunately, costs can still prove prohibitive in low- and middle-income countries, especially if a lack of reimbursement means out-of-pocket costs for the patient []. This is not to say, however, that NGS analysis and subsequent treatment decisions are not cost-effective, as some systematic reviews have demonstrated financial advantages for NGS-guided treatment decisions [,]. Consequently, efforts to develop cost-minimizing workflows for testing, initiatives to develop genomic research capacity, collaborative efforts for genomic data sharing and analysis, and implementation of guidelines mindful of the potential financial toxicity incurred would provide great benefit in the large-scale adoption of NGS testing [,].

4. Conclusions

In conclusion, NGS has become synonymous with precision oncology, guiding treatments with unparalleled precision and assisting in developing new treatment strategies. Integrating artificial intelligence, collaboration in Molecular Tumor Boards, and continued policy support will be essential for harnessing its full potential and ensuring equitable access to genomic-driven therapy for all patients. Guidelines from the ESMO, NCCN, and ASCO all recommend multigene panel-based genomic testing, and the continuous effort to integrate NGS testing is pivotal for precision oncology.

5. Future Directions

Our narrative review showcases the benefits of NGS in guiding diagnosis, targeted therapy, and immune therapy by interrogating multiple complex genomic alterations. The development of new therapies, such as CAR-T cell therapy for solid tumors, may result in new opportunities for NGS adoption. Trials such as the SPEARHEAD-1 in synovial sarcomas show promising results for the adoption of CAR-T cell therapies such as afamitresgene autoleucel and require molecular profiling for melanoma-associated antigen A4 (MAGE-A4) expression and HLA typing []. Further trials are expected for such therapies in solid tumors, and the pivotal role of NGS in finding valid targets and HLA typing can play a significant role in this expansion. Furthermore, the considerable impact of NGS in interrogating for polymorphisms of the same gene can be extremely useful in identifying genetic variations of pharmacogenes, implying a near future where therapy toxicity can also be adjusted according to the individual characteristics of each patient []. It is, therefore, highly likely that NGS will become synonymous with the practice of precision oncology in the management of solid tumors.

Author Contributions

Conceptualization, L.N.G. and R.M.A.; methodology, R.M.A. and O.G.T.; software, M.-A.P.; validation, O.G.T., L.N.G. and L.S.; formal analysis, L.N.G.; investigation, M.-A.P.; resources, R.M.A.; writing—original draft preparation, M.-A.P. and I.B.; writing—review and editing, I.B. and M.-A.P.; visualization, I.B.; supervision, L.N.G. and L.S.C.M. All authors have read and agreed to the published version of the manuscript.

Funding

This work was funded by the EU’s NextGenerationEU instrument through the National Recovery and Resilience Plan of Romania-Pillar III-C9-I, section I5. Establishment and operationalization of Competence Centers PNRR-III-C9/2022/MCID/I5, managed by the Ministry of Research, Innovation, and Digitalization, within the project entitled “Creation, Operation, and Development of the National Center of Competence in the Field of Cancer”, contract no. 760009/30 December 2022, code CF 14/16 November 2022.

Acknowledgments

The publication of this paper was supported by the University of Medicine and Pharmacy Carol Davila through the institutional program Publish not Perish.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

AEAdverse Events
ALKAnaplastic Lymphoma Kinase
BRAFB-Raf Proto-Oncogene
BRCA1/2Breast Cancer Gene 1/2
CDK4/CDK6Cyclin-Dependent Kinases 4 and 6
cfDNACirculating Free DNA
ChTChemotherapy
CIConfidence Interval
CNSCentral Nervous System
CRCColorectal Cancer
DFSDisease-Free Survival
dMMRDeficient Mismatch Repair
DoRDuration of Response
EGFREpidermal Growth Factor Receptor
EREstrogen Receptor
ERBB2 (HER2)Erb-B2 Receptor Tyrosine Kinase 2 (also known as HER2)
ERBB3Erb-B2 Receptor Tyrosine Kinase 3
ESCATEuropean Society for Medical Oncology Scale for Clinical Actionability of Molecular Targets
ESR1Estrogen Receptor 1
FFPEFormalin-Fixed, Paraffin-Embedded
FISHFluorescence In Situ Hybridization
FGFR1/2/3Fibroblast Growth Factor Receptor 1, 2, and 3
HER2Human Epidermal Growth Factor Receptor 2
HRHazard Ratio
HR+Hormone Receptor-Positive
HRDHomologous Recombination Deficiency
HRRHomologous Recombination Repair
IHCImmunohistochemistry
KITKIT Proto-Oncogene, Receptor Tyrosine Kinase
KRASKirsten Rat Sarcoma Viral Oncogene
mDoRMedian Duration of Response
mDoTMedian Duration of Therapy
METMET Proto-Oncogene
MLH1MutL Homolog 1
mOSMedian Overall Survival
mPFSMedian Progression-Free Survival
MPRMajor Pathological Response
MSIMicrosatellite Instability
MSI-HMicrosatellite Instability-High
MTCMedullary Thyroid Carcinoma
mut/MbMutations per Megabase
NCCNNational Comprehensive Cancer Network
NGSNext-Generation Sequencing
NRNot Reached
NTRKNeurotrophic Tyrosine Receptor Kinase
NSCLCNon-Small Cell Lung Cancer
ORRObjective Response Rate
OSOverall Survival
PARPiPoly (ADP-ribose) Polymerase Inhibitor
PDProgressive Disease
PD-1Programmed Death-1
PDGFRAPlatelet-Derived Growth Factor Receptor Alpha
PFSProgression-Free Survival
PIK3CAPhosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha
PTCPapillary Thyroid Carcinoma
PTENPhosphatase and Tensin Homolog
q3wEvery 3 Weeks
RETRearranged During Transfection
ROS1ROS Proto-Oncogene 1
RTRadiotherapy
SCLCSmall Cell Lung Cancer
SoCStandard of Care
TMBTumour Mutational Burden
TKITyrosine Kinase Inhibitor
TMETotal Mesorectal Excision
TRKA/B/CTropomyosin Receptor Kinase A/B/C
TSC1/2Tuberous Sclerosis Complex 1 and 2
VHLVon Hippel–Lindau

References

  1. Targeted Therapy Drug List by Cancer Type—NCI. Available online: https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/approved-drug-list (accessed on 14 December 2024).
  2. Schwartzberg, L.; Kim, E.S.; Liu, D.; Schrag, D. Precision Oncology: Who, How, What, When, and When Not? In American Society of Clinical Oncology Educational Book; American Society of Clinical Oncology: Alexandria, VA, USA, 2024. [Google Scholar]
  3. Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef] [PubMed]
  4. Galeș, L.N.; Păun, M.-A.; Anghel, R.M.; Trifănescu, O.G. Cancer Screening: Present Recommendations, the Development of Multi-Cancer Early Development Tests, and the Prospect of Universal Cancer Screening. Cancers 2024, 16, 1191. [Google Scholar] [CrossRef]
  5. Milbury, C.A.; Creeden, J.; Yip, W.-K.; Smith, D.L.; Pattani, V.; Maxwell, K.; Sawchyn, B.; Gjoerup, O.; Meng, W.; Skoletsky, J.; et al. Clinical and Analytical Validation of FoundationOne®CDx, a Comprehensive Genomic Profiling Assay for Solid Tumors. PLoS ONE 2022, 17, e0264138. [Google Scholar] [CrossRef]
  6. Takeda, M.; Takahama, T.; Sakai, K.; Shimizu, S.; Watanabe, S.; Kawakami, H.; Tanaka, K.; Sato, C.; Hayashi, H.; Nonagase, Y.; et al. Clinical Application of the FoundationOne CDx Assay to Therapeutic Decision-Making for Patients with Advanced Solid Tumors. Oncologist 2021, 26, e588–e596. [Google Scholar] [CrossRef]
  7. Woodhouse, R.; Li, M.; Hughes, J.; Delfosse, D.; Skoletsky, J.; Ma, P.; Meng, W.; Dewal, N.; Milbury, C.; Clark, T.; et al. Clinical and Analytical Validation of FoundationOne Liquid CDx, a Novel 324-Gene cfDNA-Based Comprehensive Genomic Profiling Assay for Cancers of Solid Tumor Origin. PLoS ONE 2020, 15, e0237802. [Google Scholar] [CrossRef]
  8. Bauml, J.M.; Li, B.T.; Velcheti, V.; Govindan, R.; Curioni-Fontecedro, A.; Dooms, C.; Takahashi, T.; Duda, A.W.; Odegaard, J.I.; Cruz-Guilloty, F.; et al. Clinical Validation of Guardant360 CDx as a Blood-Based Companion Diagnostic for Sotorasib. Lung Cancer Amst. Neth. 2022, 166, 270–278. [Google Scholar] [CrossRef]
  9. Cheng, D.T.; Prasad, M.; Chekaluk, Y.; Benayed, R.; Sadowska, J.; Zehir, A.; Syed, A.; Wang, Y.E.; Somar, J.; Li, Y.; et al. Comprehensive Detection of Germline Variants by MSK-IMPACT, a Clinical Diagnostic Platform for Solid Tumor Molecular Oncology and Concurrent Cancer Predisposition Testing. BMC Med. Genom. 2017, 10, 33. [Google Scholar] [CrossRef]
  10. Saito, A.; Terai, H.; Kim, T.; Emoto, K.; Kawano, R.; Nakamura, K.; Hayashi, H.; Takaoka, H.; Ogata, A.; Kinoshita, K.; et al. Clinical Utility of the Oncomine Dx Target Test multi-CDx System and the Possibility of Utilizing Those Original Sequence Data. Cancer Med. 2024, 13, e7077. [Google Scholar] [CrossRef]
  11. Dumur, C.I.; Krishnan, R.; Almenara, J.A.; Brown, K.E.; Dugan, K.R.; Farni, C.; Ibrahim, F.Z.; Sanchez, N.A.; Rathore, S.; Pradhan, D.; et al. Analytical Validation and Clinical Utilization of the Oncomine Comprehensive Assay Plus Panel for Comprehensive Genomic Profiling in Solid Tumors. J. Mol. Pathol. 2023, 4, 109–127. [Google Scholar] [CrossRef]
  12. Beaubier, N.; Tell, R.; Lau, D.; Parsons, J.R.; Bush, S.; Perera, J.; Sorrells, S.; Baker, T.; Chang, A.; Michuda, J.; et al. Clinical Validation of the Tempus xT Next-Generation Targeted Oncology Sequencing Assay. Oncotarget 2019, 10, 2384–2396. [Google Scholar] [CrossRef]
  13. Carter, P.; Alifrangis, C.; Cereser, B.; Chandrasinghe, P.; Del Bel Belluz, L.; Moderau, N.; Poyia, F.; Schwartzberg, L.S.; Tabassum, N.; Wen, J.; et al. Molecular Profiling of Advanced Breast Cancer Tumors Is Beneficial in Assisting Clinical Treatment Plans. Oncotarget 2018, 9, 17589–17596. [Google Scholar] [CrossRef] [PubMed]
  14. Mosele, M.F.; Westphalen, C.B.; Stenzinger, A.; Barlesi, F.; Bayle, A.; Bièche, I.; Bonastre, J.; Castro, E.; Dienstmann, R.; Krämer, A.; et al. Recommendations for the Use of Next-Generation Sequencing (NGS) for Patients with Advanced Cancer in 2024: A Report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2024, 35, 588–606. [Google Scholar] [CrossRef] [PubMed]
  15. Chakravarty, D.; Johnson, A.; Sklar, J.; Lindeman, N.I.; Moore, K.; Ganesan, S.; Lovly, C.M.; Perlmutter, J.; Gray, S.W.; Hwang, J.; et al. Somatic Genomic Testing in Patients with Metastatic or Advanced Cancer: ASCO Provisional Clinical Opinion. J. Clin. Oncol. 2022, 40, 1231–1258. [Google Scholar] [CrossRef] [PubMed]
  16. Trifănescu, O.G.; Trifănescu, R.A.; Mitrică, R.; Mitrea, D.; Ciornei, A.; Georgescu, M.; Butnariu, I.; Galeș, L.N.; Șerbănescu, L.; Anghel, R.M.; et al. Upstaging and Downstaging in Gliomas-Clinical Implications for the Fifth Edition of the World Health Organization Classification of Tumors of the Central Nervous System. Diagnostics 2023, 13, 197. [Google Scholar] [CrossRef]
  17. Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO Guidelines on the Diagnosis and Treatment of Diffuse Gliomas of Adulthood. Nat. Rev. Clin. Oncol. 2021, 18, 170–186. [Google Scholar] [CrossRef]
  18. Nannini, M.; Rizzo, A.; Indio, V.; Schipani, A.; Astolfi, A.; Pantaleo, M.A. Targeted Therapy in SDH-Deficient GIST. Ther. Adv. Med. Oncol. 2021, 13, 17588359211023278. [Google Scholar] [CrossRef] [PubMed]
  19. Radu, P.; Zurzu, M.; Paic, V.; Bratucu, M.; Garofil, D.; Tigora, A.; Georgescu, V.; Prunoiu, V.; Popa, F.; Surlin, V.; et al. Interstitial Cells of Cajal—Origin, Distribution and Relationship with Gastrointestinal Tumors. Medicina 2023, 59, 63. [Google Scholar] [CrossRef]
  20. Sun, Y.; Yue, L.; Xu, P.; Hu, W. An Overview of Agents and Treatments for PDGFRA-Mutated Gastrointestinal Stromal Tumors. Front. Oncol. 2022, 12, 927587. [Google Scholar] [CrossRef]
  21. Flaherty, K.T.; Le, D.T.; Lemery, S. Tissue-Agnostic Drug Development. In American Society of Clinical Oncology Educational Book; American Society of Clinical Oncology: Alexandria, VA, USA, 2025. [Google Scholar]
  22. Subbiah, V.; Gouda, M.A.; Ryll, B.; Burris, H.A.; Kurzrock, R. The Evolving Landscape of Tissue-agnostic Therapies in Precision Oncology. CA. Cancer J. Clin. 2024, 74, 433–452. [Google Scholar] [CrossRef]
  23. Coquerelle, S.; Darlington, M.; Michel, M.; Durand, M.; Borget, I.; Baffert, S.; Marino, P.; Perrier, L.; Durand-Zaleski, I. Impact of Next Generation Sequencing on Clinical Practice in Oncology in France: Better Genetic Profiles for Patients Improve Access to Experimental Treatments. Value Health 2020, 23, 898–906. [Google Scholar] [CrossRef]
  24. Park, J.J.H.; Hsu, G.; Siden, E.G.; Thorlund, K.; Mills, E.J. An Overview of Precision Oncology Basket and Umbrella Trials for Clinicians. CA Cancer J. Clin. 2020, 70, 125–137. [Google Scholar] [CrossRef] [PubMed]
  25. Popat, S.; Ramagopalan, S.V.; Ray, J.; Roze, S.; Subbiah, V. Assessment of Tumour-Agnostic Therapies in Basket Trials. Lancet Oncol. 2022, 23, e7. [Google Scholar] [CrossRef]
  26. Lengliné, E.; Peron, J.; Vanier, A.; Gueyffier, F.; Kouzan, S.; Dufour, P.; Guillot, B.; Blondon, H.; Clanet, M.; Cochat, P.; et al. Basket Clinical Trial Design for Targeted Therapies for Cancer: A French National Authority for Health Statement for Health Technology Assessment. Lancet Oncol. 2021, 22, e430–e434. [Google Scholar] [CrossRef]
  27. Gouda, M.A.; Nelson, B.E.; Buschhorn, L.; Wahida, A.; Subbiah, V. Tumor-Agnostic Precision Medicine from the AACR GENIE Database: Clinical Implications. Clin. Cancer Res. 2023, 29, 2753–2760. [Google Scholar] [CrossRef] [PubMed]
  28. Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion–Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef] [PubMed]
  29. Laetsch, T.W.; DuBois, S.G.; Mascarenhas, L.; Turpin, B.; Federman, N.; Albert, C.M.; Nagasubramanian, R.; Davis, J.L.; Rudzinski, E.; Feraco, A.M.; et al. Larotrectinib for Paediatric Solid Tumours Harbouring NTRK Gene Fusions: A Multicentre, Open-Label, Phase 1 Study. Lancet Oncol. 2018, 19, 705–714. [Google Scholar] [CrossRef]
  30. Brose, M.S.; Westphalen, C.B.; Kehl, K.L.; Pan, X.; Bernard-Gauthier, V.; Kurtinecz, M.; Guo, H.; Aris, V.; Brett, N.R.; Majdi, A.; et al. Outcomes of Larotrectinib Compared with Real-World Data from Non-TRK Inhibitor Therapies in Patients with TRK Fusion Cancer: VICTORIA Study. J. Clin. Oncol. 2024, 42, 3105. [Google Scholar] [CrossRef]
  31. Drilon, A.; Siena, S.; Ou, S.-H.I.; Patel, M.; Ahn, M.J.; Lee, J.; Bauer, T.M.; Farago, A.F.; Wheler, J.J.; Liu, S.V.; et al. Safety and Antitumor Activity of the Multi-Targeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib (RXDX-101): Combined Results from Two Phase 1 Trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017, 7, 400–409. [Google Scholar] [CrossRef]
  32. Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in Patients with Advanced or Metastatic NTRK Fusion-Positive Solid Tumours: Integrated Analysis of Three Phase 1–2 Trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
  33. Desai, A.V.; Robinson, G.W.; Gauvain, K.; Basu, E.M.; Macy, M.E.; Maese, L.; Whipple, N.S.; Sabnis, A.J.; Foster, J.H.; Shusterman, S.; et al. Entrectinib in Children and Young Adults with Solid or Primary CNS Tumors Harboring NTRK, ROS1, or ALK Aberrations (STARTRK-NG). Neuro-Oncology 2022, 24, 1776–1789. [Google Scholar] [CrossRef]
  34. Drilon, A.; Camidge, D.R.; Lin, J.J.; Kim, S.-W.; Solomon, B.J.; Dziadziuszko, R.; Besse, B.; Goto, K.; De Langen, A.J.; Wolf, J.; et al. Repotrectinib in ROS1 Fusion–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2024, 390, 118–131. [Google Scholar] [CrossRef]
  35. Subbiah, V.; Wolf, J.; Konda, B.; Kang, H.; Spira, A.; Weiss, J.; Takeda, M.; Ohe, Y.; Khan, S.; Ohashi, K.; et al. Tumour-Agnostic Efficacy and Safety of Selpercatinib in Patients with RET Fusion-Positive Solid Tumours Other than Lung or Thyroid Tumours (LIBRETTO-001): A Phase 1/2, Open-Label, Basket Trial. Lancet Oncol. 2022, 23, 1261–1273. [Google Scholar] [CrossRef] [PubMed]
  36. Wirth, L.J.; Brose, M.S.; Subbiah, V.; Worden, F.; Solomon, B.; Robinson, B.; Hadoux, J.; Tomasini, P.; Weiler, D.; Deschler-Baier, B.; et al. Durability of Response with Selpercatinib in Patients with RET-Activated Thyroid Cancer: Long-Term Safety and Efficacy From LIBRETTO-001. J. Clin. Oncol. 2024, 42, 3187–3195. [Google Scholar] [CrossRef] [PubMed]
  37. Drilon, A.; Subbiah, V.; Gautschi, O.; Tomasini, P.; de Braud, F.; Solomon, B.J.; Shao-Weng Tan, D.; Alonso, G.; Wolf, J.; Park, K.; et al. Selpercatinib in Patients with RET Fusion–Positive Non–Small-Cell Lung Cancer: Updated Safety and Efficacy from the Registrational LIBRETTO-001 Phase I/II Trial. J. Clin. Oncol. 2023, 41, 385–394. [Google Scholar] [CrossRef] [PubMed]
  38. Subbiah, V.; Cassier, P.A.; Siena, S.; Garralda, E.; Paz-Ares, L.; Garrido, P.; Nadal, E.; Vuky, J.; Lopes, G.; Kalemkerian, G.P.; et al. Pan-Cancer Efficacy of Pralsetinib in Patients with RET Fusion–Positive Solid Tumors from the Phase 1/2 ARROW Trial. Nat. Med. 2022, 28, 1640–1645. [Google Scholar] [CrossRef]
  39. Griesinger, F.; Curigliano, G.; Thomas, M.; Subbiah, V.; Baik, C.S.; Tan, D.S.W.; Lee, D.H.; Misch, D.; Garralda, E.; Kim, D.-W.; et al. Safety and Efficacy of Pralsetinib in RET Fusion–Positive Non-Small-Cell Lung Cancer Including as First-Line Therapy: Update from the ARROW Trial. Ann. Oncol. 2022, 33, 1168–1178. [Google Scholar] [CrossRef]
  40. Gainor, J.F.; Curigliano, G.; Kim, D.-W.; Lee, D.H.; Besse, B.; Baik, C.S.; Doebele, R.C.; Cassier, P.A.; Lopes, G.; Tan, D.S.W.; et al. Pralsetinib for RET Fusion-Positive Non-Small-Cell Lung Cancer (ARROW): A Multi-Cohort, Open-Label, Phase 1/2 Study. Lancet Oncol. 2021, 22, 959–969. [Google Scholar] [CrossRef]
  41. Subbiah, V.; Hu, M.I.; Wirth, L.J.; Schuler, M.; Mansfield, A.S.; Curigliano, G.; Brose, M.S.; Zhu, V.W.; Leboulleux, S.; Bowles, D.W.; et al. Pralsetinib for Patients with Advanced or Metastatic RET-Altered Thyroid Cancer (ARROW): A Multi-Cohort, Open-Label, Registrational, Phase 1/2 Study. Lancet Diabetes Endocrinol. 2021, 9, 491–501. [Google Scholar] [CrossRef]
  42. Lannon, C.L.; Sorensen, P.H.B. ETV6–NTRK3: A Chimeric Protein Tyrosine Kinase with Transformation Activity in Multiple Cell Lineages. Semin. Cancer Biol. 2005, 15, 215–223. [Google Scholar] [CrossRef]
  43. Pulciani, S.; Santos, E.; Lauver, A.V.; Long, L.K.; Aaronson, S.A.; Barbacid, M. Oncogenes in Solid Human Tumours. Nature 1982, 300, 539–542. [Google Scholar] [CrossRef]
  44. Ruiz-Cordero, R.; Ng, D.L. Neurotrophic Receptor Tyrosine Kinase (NTRK) Fusions and Their Role in Cancer. Cancer Cytopathol. 2020, 128, 775–779. [Google Scholar] [CrossRef] [PubMed]
  45. Doebele, R.C.; Davis, L.E.; Vaishnavi, A.; Le, A.T.; Estrada-Bernal, A.; Keysar, S.; Jimeno, A.; Varella-Garcia, M.; Aisner, D.L.; Li, Y.; et al. An Oncogenic NTRK Fusion in a Soft Tissue Sarcoma Patient with Response to the Tropomyosin-Related Kinase (TRK) Inhibitor LOXO-101. Cancer Discov. 2015, 5, 1049–1057. [Google Scholar] [CrossRef]
  46. Menichincheri, M.; Ardini, E.; Magnaghi, P.; Avanzi, N.; Banfi, P.; Bossi, R.; Buffa, L.; Canevari, G.; Ceriani, L.; Colombo, M.; et al. Correction to Discovery of Entrectinib: A New 3-Aminoindazole as a Potent Anaplastic Lymphoma Kinase (ALK), c-Ros Oncogene 1 Kinase (ROS1), and Pan-Tropomyosin Receptor Kinases (Pan-TRKs) Inhibitor. J. Med. Chem. 2019, 62, 8364. [Google Scholar] [CrossRef]
  47. Demetri, G.D.; De Braud, F.; Drilon, A.; Siena, S.; Patel, M.R.; Cho, B.C.; Liu, S.V.; Ahn, M.-J.; Chiu, C.-H.; Lin, J.J.; et al. Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Patients with NTRK Fusion-Positive Solid Tumors. Clin. Cancer Res. 2022, 28, 1302–1312. [Google Scholar] [CrossRef] [PubMed]
  48. Chi, X.; Michos, O.; Shakya, R.; Riccio, P.; Enomoto, H.; Licht, J.D.; Asai, N.; Takahashi, M.; Ohgami, N.; Kato, M.; et al. Ret-Dependent Cell Rearrangements in the Wolffian Duct Epithelium Initiate Ureteric Bud Morphogenesis. Dev. Cell 2009, 17, 199–209. [Google Scholar] [CrossRef] [PubMed]
  49. Enomoto, H.; Crawford, P.A.; Gorodinsky, A.; Heuckeroth, R.O.; Johnson, E.M.; Milbrandt, J. RET Signaling Is Essential for Migration, Axonal Growth and Axon Guidance of Developing Sympathetic Neurons. Dev. Camb. Engl. 2001, 128, 3963–3974. [Google Scholar] [CrossRef]
  50. Enomoto, H.; Heuckeroth, R.O.; Golden, J.P.; Johnson, E.M.; Milbrandt, J. Development of Cranial Parasympathetic Ganglia Requires Sequential Actions of GDNF and Neurturin. Dev. Camb. Engl. 2000, 127, 4877–4889. [Google Scholar] [CrossRef]
  51. Pachnis, V.; Mankoo, B.; Costantini, F. Expression of the C-Ret Proto-Oncogene during Mouse Embryogenesis. Development 1993, 119, 1005–1017. [Google Scholar] [CrossRef]
  52. Trupp, M.; Rydén, M.; Jörnvall, H.; Funakoshi, H.; Timmusk, T.; Arenas, E.; Ibáñez, C.F. Peripheral Expression and Biological Activities of GDNF, a New Neurotrophic Factor for Avian and Mammalian Peripheral Neurons. J. Cell Biol. 1995, 130, 137–148. [Google Scholar]
  53. Regua, A.T.; Najjar, M.; Lo, H.-W. RET Signaling Pathway and RET Inhibitors in Human Cancer. Front. Oncol. 2022, 12, 932353. [Google Scholar] [CrossRef]
  54. Grieco, M.; Santoro, M.; Berlingieri, M.T.; Melillo, R.M.; Donghi, R.; Bongarzone, I.; Pierotti, M.A.; Della Ports, G.; Fusco, A.; Vecchiot, G. PTC Is a Novel Rearranged Form of the Ret Proto-Oncogene and Is Frequently Detected in Vivo in Human Thyroid Papillary Carcinomas. Cell 1990, 60, 557–563. [Google Scholar] [CrossRef] [PubMed]
  55. Ou, S.-H.I.; Zhu, V.W. Catalog of 5′ Fusion Partners in RET+ NSCLC Circa 2020. JTO Clin. Res. Rep. 2020, 1, 100037. [Google Scholar] [CrossRef]
  56. Subbiah, V.; Velcheti, V.; Tuch, B.B.; Ebata, K.; Busaidy, N.L.; Cabanillas, M.E.; Wirth, L.J.; Stock, S.; Smith, S.; Lauriault, V.; et al. Selective RET Kinase Inhibition for Patients with RET-Altered Cancers. Ann. Oncol. 2018, 29, 1869–1876. [Google Scholar] [CrossRef] [PubMed]
  57. Jonasch, E.; Iliopoulos, O.; Rathmell, W.K.; Narayan, V.; Maughan, B.L.; Oudard, S.; Else, T.; Maranchie, J.K.; Welsh, S.J.; Iversen, A.B.B.; et al. LITESPARK-004 (MK-6482-004) Phase 2 Study of Belzutifan, an Oral Hypoxia-Inducible Factor 2α Inhibitor (HIF-2α), for von Hippel-Lindau (VHL) Disease: Update with More than Two Years of Follow-up Data. J. Clin. Oncol. 2022, 40, 4546–4546. [Google Scholar] [CrossRef]
  58. Else, T.; Jonasch, E.; Iliopoulos, O.; Beckermann, K.E.; Narayan, V.; Maughan, B.L.; Oudard, S.; Maranchie, J.K.; Iversen, A.B.; Goldberg, C.M.; et al. Belzutifan for von Hippel–Lindau Disease: Pancreatic Lesion Population of the Phase 2 LITESPARK-004 Study. Clin. Cancer Res. 2024, 30, 1750–1757. [Google Scholar] [CrossRef]
  59. Iliopoulos, O.; Iversen, A.B.; Narayan, V.; Maughan, B.L.; Beckermann, K.E.; Oudard, S.; Else, T.; Maranchie, J.K.; Goldberg, C.M.; Fu, W.; et al. Belzutifan for Patients with von Hippel-Lindau Disease-Associated CNS Haemangioblastomas (LITESPARK-004): A Multicentre, Single-Arm, Phase 2 Study. Lancet Oncol. 2024, 25, 1325–1336. [Google Scholar] [CrossRef]
  60. Jonasch, E.; Donskov, F.; Iliopoulos, O.; Rathmell, W.K.; Narayan, V.K.; Maughan, B.L.; Oudard, S.; Else, T.; Maranchie, J.K.; Welsh, S.J.; et al. Belzutifan for Renal Cell Carcinoma in von Hippel–Lindau Disease. N. Engl. J. Med. 2021, 385, 2036–2046. [Google Scholar] [CrossRef]
  61. Curry, L.; Soleimani, M. Belzutifan: A Novel Therapeutic for the Management of von Hippel–Lindau Disease and Beyond. Future Oncol. 2024, 20, 1251–1266. [Google Scholar] [CrossRef]
  62. Rubin, I.; Yarden, Y. The Basic Biology of HER2. Ann. Oncol. 2001, 12, S3–S8. [Google Scholar] [CrossRef]
  63. Cho, H.-S.; Mason, K.; Ramyar, K.X.; Stanley, A.M.; Gabelli, S.B.; Denney, D.W.; Leahy, D.J. Structure of the Extracellular Region of HER2 Alone and in Complex with the Herceptin Fab. Nature 2003, 421, 756–760. [Google Scholar] [CrossRef]
  64. Xia, X.; Gong, C.; Zhang, Y.; Xiong, H. The History and Development of HER2 Inhibitors. Pharmaceuticals 2023, 16, 1450. [Google Scholar] [CrossRef]
  65. Kallioniemi, O.P.; Kallioniemi, A.; Kurisu, W.; Thor, A.; Chen, L.C.; Smith, H.S.; Waldman, F.M.; Pinkel, D.; Gray, J.W. ERBB2 Amplification in Breast Cancer Analyzed by Fluorescence in Situ Hybridization. Proc. Natl. Acad. Sci. USA 1992, 89, 5321–5325. [Google Scholar] [PubMed]
  66. Citri, A.; Yarden, Y. EGF–ERBB Signalling: Towards the Systems Level. Nat. Rev. Mol. Cell Biol. 2006, 7, 505–516. [Google Scholar] [CrossRef]
  67. Yarden, Y. Biology of HER2 and Its Importance in Breast Cancer. Oncology 2001, 61, 1–13. [Google Scholar] [CrossRef]
  68. Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB Signalling Network. Nat. Rev. Mol. Cell Biol. 2001, 2, 127–137. [Google Scholar] [CrossRef]
  69. Bazley, L.A.; Gullick, W.J. The Epidermal Growth Factor Receptor Family. Endocr. Relat. Cancer 2005, 12, S17–S27. [Google Scholar] [CrossRef] [PubMed]
  70. Moasser, M.M. The Oncogene HER2: Its Signaling and Transforming Functions and Its Role in Human Cancer Pathogenesis. Oncogene 2007, 26, 6469–6487. [Google Scholar] [CrossRef] [PubMed]
  71. Graus-Porta, D.; Beerli, R.R.; Daly, J.M.; Hynes, N.E. ErbB-2, the Preferred Heterodimerization Partner of All ErbB Receptors, Is a Mediator of Lateral Signaling. EMBO J. 1997, 16, 1647–1655. [Google Scholar] [CrossRef]
  72. Meric-Bernstam, F.; Makker, V.; Oaknin, A.; Oh, D.-Y.; Banerjee, S.; González-Martín, A.; Jung, K.H.; Ługowska, I.; Manso, L.; Manzano, A.; et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients with HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial. J. Clin. Oncol. 2024, 42, 47–58. [Google Scholar] [CrossRef]
  73. Sweeney, C.J.; Hainsworth, J.D.; Bose, R.; Burris, H.A.; Kurzrock, R.; Swanton, C.; Friedman, C.F.; Spigel, D.R.; Szado, T.; Schulze, K.; et al. MyPathway Human Epidermal Growth Factor Receptor 2 Basket Study: Pertuzumab + Trastuzumab Treatment of a Tissue-Agnostic Cohort of Patients with Human Epidermal Growth Factor Receptor 2–Altered Advanced Solid Tumors. J. Clin. Oncol. 2024, 42, 258–265. [Google Scholar] [CrossRef]
  74. Gouda, M.A.; Subbiah, V. Precision Oncology for BRAF-Mutant Cancers with BRAF and MEK Inhibitors: From Melanoma to Tissue-Agnostic Therapy. ESMO Open 2023, 8, 100788. [Google Scholar] [CrossRef] [PubMed]
  75. Wellbrock, C.; Karasarides, M.; Marais, R. The RAF Proteins Take Centre Stage. Nat. Rev. Mol. Cell Biol. 2004, 5, 875–885. [Google Scholar] [CrossRef]
  76. Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions. Endocr. Rev. 2001, 22, 153–183. [Google Scholar] [CrossRef] [PubMed]
  77. Dankner, M.; Rose, A.A.N.; Rajkumar, S.; Siegel, P.M.; Watson, I.R. Classifying BRAF Alterations in Cancer: New Rational Therapeutic Strategies for Actionable Mutations. Oncogene 2018, 37, 3183–3199. [Google Scholar] [CrossRef] [PubMed]
  78. Yaeger, R.; Corcoran, R.B. Targeting Alterations in the RAF–MEK Pathway. Cancer Discov. 2019, 9, 329–341. [Google Scholar] [CrossRef]
  79. Zhao, J.; Liu, P.; Yu, Y.; Zhi, J.; Zheng, X.; Yu, J.; Gao, M. Comparison of Diagnostic Methods for the Detection of a BRAF Mutation in Papillary Thyroid Cancer. Oncol. Lett. 2019, 17, 4661–4666. [Google Scholar] [CrossRef]
  80. Cheng, L.; Lopez-Beltran, A.; Massari, F.; MacLennan, G.T.; Montironi, R. Molecular Testing for BRAF Mutations to Inform Melanoma Treatment Decisions: A Move toward Precision Medicine. Mod. Pathol. 2018, 31, 24–38. [Google Scholar] [CrossRef]
  81. Szymonek, M.; Kowalik, A.; Kopczyński, J.; Gąsior-Perczak, D.; Pałyga, I.; Walczyk, A.; Gadawska-Juszczyk, K.; Płusa, A.; Mężyk, R.; Chrapek, M.; et al. Immunohistochemistry Cannot Replace DNA Analysis for Evaluation of BRAF V600E Mutations in Papillary Thyroid Carcinoma. Oncotarget 2017, 8, 74897–74909. [Google Scholar] [CrossRef]
  82. Kwon, J.-H.; Jeong, B.-K.; Yoon, Y.S.; Yu, C.S.; Kim, J. Utility of BRAF VE1 Immunohistochemistry as a Screening Tool for Colorectal Cancer Harboring BRAF V600E Mutation. J. Pathol. Transl. Med. 2018, 52, 157–163. [Google Scholar] [CrossRef]
  83. Chakravarty, D.; Gao, J.; Phillips, S.; Kundra, R.; Zhang, H.; Wang, J.; Rudolph, J.E.; Yaeger, R.; Soumerai, T.; Nissan, M.H.; et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 2017, 1, 1–16. [Google Scholar] [CrossRef]
  84. Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; Cabanillas, M.E.; Urbanowitz, G.; et al. Dabrafenib and Trametinib Treatment in Patients with Locally Advanced or Metastatic BRAF V600–Mutant Anaplastic Thyroid Cancer. J. Clin. Oncol. 2018, 36, 7–13. [Google Scholar] [CrossRef] [PubMed]
  85. Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.C.; Cabanillas, M.E.; Boran, A.; et al. Dabrafenib plus Trametinib in Patients with BRAF V600E-Mutant Anaplastic Thyroid Cancer: Updated Analysis from the Phase II ROAR Basket Study. Ann. Oncol. 2022, 33, 406–415. [Google Scholar] [CrossRef] [PubMed]
  86. Subbiah, V.; Lassen, U.; Élez, E.; Italiano, A.; Curigliano, G.; Javle, M.; De Braud, F.; Prager, G.W.; Greil, R.; Stein, A.; et al. Dabrafenib plus Trametinib in Patients with BRAFV600E-Mutated Biliary Tract Cancer (ROAR): A Phase 2, Open-Label, Single-Arm, Multicentre Basket Trial. Lancet Oncol. 2020, 21, 1234–1243. [Google Scholar] [CrossRef] [PubMed]
  87. Wen, P.Y.; Stein, A.; Van Den Bent, M.; De Greve, J.; Wick, A.; De Vos, F.Y.F.L.; Von Bubnoff, N.; Van Linde, M.E.; Lai, A.; Prager, G.W.; et al. Dabrafenib plus Trametinib in Patients with BRAFV600E-Mutant Low-Grade and High-Grade Glioma (ROAR): A Multicentre, Open-Label, Single-Arm, Phase 2, Basket Trial. Lancet Oncol. 2022, 23, 53–64. [Google Scholar] [CrossRef]
  88. Kreitman, R.J.; Moreau, P.; Ravandi, F.; Hutchings, M.; Gazzah, A.; Michallet, A.-S.; Wainberg, Z.A.; Stein, A.; Dietrich, S.; de Jonge, M.J.A.; et al. Dabrafenib plus Trametinib in Patients with Relapsed/Refractory BRAF V600E Mutation–Positive Hairy Cell Leukemia. Blood 2023, 141, 996–1006. [Google Scholar] [CrossRef]
  89. Fusco, M.J.; West, H.; Walko, C.M. Tumor Mutation Burden and Cancer Treatment. JAMA Oncol. 2021, 7, 316. [Google Scholar] [CrossRef]
  90. Galuppini, F.; Dal Pozzo, C.A.; Deckert, J.; Loupakis, F.; Fassan, M.; Baffa, R. Tumor Mutation Burden: From Comprehensive Mutational Screening to the Clinic. Cancer Cell Int. 2019, 19, 209. [Google Scholar] [CrossRef] [PubMed]
  91. Subbiah, V.; Solit, D.B.; Chan, T.A.; Kurzrock, R. The FDA Approval of Pembrolizumab for Adult and Pediatric Patients with Tumor Mutational Burden (TMB) ≥10: A Decision Centered on Empowering Patients and Their Physicians. Ann. Oncol. 2020, 31, 1115–1118. [Google Scholar] [CrossRef]
  92. Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of Tumor Mutation Burden as an Immunotherapy Biomarker: Utility for the Oncology Clinic. Ann. Oncol. 2019, 30, 44–56. [Google Scholar] [CrossRef]
  93. Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H.; et al. Association of Tumour Mutational Burden with Outcomes in Patients with Advanced Solid Tumours Treated with Pembrolizumab: Prospective Biomarker Analysis of the Multicohort, Open-Label, Phase 2 KEYNOTE-158 Study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
  94. Kang, Y.-J.; O’Haire, S.; Franchini, F.; IJzerman, M.; Zalcberg, J.; Macrae, F.; Canfell, K.; Steinberg, J. A Scoping Review and Meta-Analysis on the Prevalence of Pan-Tumour Biomarkers (dMMR, MSI, High TMB) in Different Solid Tumours. Sci. Rep. 2022, 12, 20495. [Google Scholar] [CrossRef]
  95. Mirza, M.R.; Chase, D.M.; Slomovitz, B.M.; dePont Christensen, R.; Novák, Z.; Black, D.; Gilbert, L.; Sharma, S.; Valabrega, G.; Landrum, L.M.; et al. Dostarlimab for Primary Advanced or Recurrent Endometrial Cancer. N. Engl. J. Med. 2023, 388, 2145–2158. [Google Scholar] [CrossRef]
  96. André, T.; Berton, D.; Curigliano, G.; Sabatier, R.; Tinker, A.V.; Oaknin, A.; Ellard, S.; de Braud, F.; Arkenau, H.-T.; Trigo, J.; et al. Antitumor Activity and Safety of Dostarlimab Monotherapy in Patients with Mismatch Repair Deficient Solid Tumors: A Nonrandomized Controlled Trial. JAMA Netw. Open 2023, 6, e2341165. [Google Scholar] [CrossRef]
  97. Frenel, J.-S.; Le Tourneau, C.; O’Neil, B.; Ott, P.A.; Piha-Paul, S.A.; Gomez-Roca, C.; van Brummelen, E.M.J.; Rugo, H.S.; Thomas, S.; Saraf, S.; et al. Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer: Results From the Phase Ib KEYNOTE-028 Trial. J. Clin. Oncol. 2017, 35, 4035–4041. [Google Scholar] [CrossRef] [PubMed]
  98. Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for Patients with PD-L1-Positive Advanced Gastric Cancer (KEYNOTE-012): A Multicentre, Open-Label, Phase 1b Trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef] [PubMed]
  99. Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [PubMed]
  100. Le, D.T.; Kim, T.W.; Van Cutsem, E.; Geva, R.; Jäger, D.; Hara, H.; Burge, M.; O’Neil, B.; Kavan, P.; Yoshino, T.; et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability–High/Mismatch Repair–Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J. Clin. Oncol. 2020, 38, 11–19. [Google Scholar] [CrossRef]
  101. Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I.H.; Segal, N.; Shcherba, M.; Sugarman, R.; et al. PD-1 Blockade in Mismatch Repair–Deficient, Locally Advanced Rectal Cancer. N. Engl. J. Med. 2022, 386, 2363–2376. [Google Scholar] [CrossRef]
  102. Georgescu, M.-T.; Patrascu, T.; Serbanescu, L.G.; Anghel, R.M.; Gales, L.N.; Georgescu, F.T.; Mitrica, R.I.; Georgescu, D.E. When Should We Expect Curative Results of Neoadjuvant Treatment in Locally Advanced Rectal Cancer Patients? Chirurgia 2021, 116, 16. [Google Scholar] [CrossRef]
  103. André, T.; Tougeron, D.; Piessen, G.; de la Fouchardière, C.; Louvet, C.; Adenis, A.; Jary, M.; Tournigand, C.; Aparicio, T.; Desrame, J.; et al. Neoadjuvant Nivolumab Plus Ipilimumab and Adjuvant Nivolumab in Localized Deficient Mismatch Repair/Microsatellite Instability–High Gastric or Esophagogastric Junction Adenocarcinoma: The GERCOR NEONIPIGA Phase II Study. J. Clin. Oncol. 2023, 41, 255–265. [Google Scholar] [CrossRef]
  104. Chalabi, M.; Fanchi, L.F.; Dijkstra, K.K.; Van den Berg, J.G.; Aalbers, A.G.; Sikorska, K.; Lopez-Yurda, M.; Grootscholten, C.; Beets, G.L.; Snaebjornsson, P.; et al. Neoadjuvant Immunotherapy Leads to Pathological Responses in MMR-Proficient and MMR-Deficient Early-Stage Colon Cancers. Nat. Med. 2020, 26, 566–576. [Google Scholar] [CrossRef]
  105. Chalabi, M.; Verschoor, Y.L.; Tan, P.B.; Balduzzi, S.; Lent, A.U.V.; Grootscholten, C.; Dokter, S.; Büller, N.V.; Grotenhuis, B.A.; Kuhlmann, K.; et al. Neoadjuvant Immunotherapy in Locally Advanced Mismatch Repair–Deficient Colon Cancer. N. Engl. J. Med. 2024, 390, 1949–1958. [Google Scholar] [CrossRef]
  106. Ludford, K.; Ho, W.J.; Thomas, J.V.; Raghav, K.P.S.; Murphy, M.B.; Fleming, N.D.; Lee, M.S.; Smaglo, B.G.; You, Y.N.; Tillman, M.M.; et al. Neoadjuvant Pembrolizumab in Localized Microsatellite Instability High/Deficient Mismatch Repair Solid Tumors. J. Clin. Oncol. 2023, 41, 2181–2190. [Google Scholar] [CrossRef]
  107. Addeo, A.; Passaro, A.; Malapelle, U.; Banna, G.L.; Subbiah, V.; Friedlaender, A. Immunotherapy in Non-Small Cell Lung Cancer Harbouring Driver Mutations. Cancer Treat. Rev. 2021, 96, 102179. [Google Scholar] [CrossRef] [PubMed]
  108. Friedlaender, A.; Perol, M.; Banna, G.L.; Parikh, K.; Addeo, A. Oncogenic Alterations in Advanced NSCLC: A Molecular Super-Highway. Biomark. Res. 2024, 12, 24. [Google Scholar] [CrossRef] [PubMed]
  109. Foffano, L.; Bertoli, E.; Bortolot, M.; Torresan, S.; De Carlo, E.; Stanzione, B.; Del Conte, A.; Puglisi, F.; Spina, M.; Bearz, A. Immunotherapy in Oncogene-Addicted NSCLC: Evidence and Therapeutic Approaches. Int. J. Mol. Sci. 2025, 26, 583. [Google Scholar] [CrossRef]
  110. Corvaja, C.; Passaro, A.; Attili, I.; Aliaga, P.T.; Spitaleri, G.; Signore, E.D.; Marinis, F. de Advancements in Fourth-Generation EGFR TKIs in EGFR-Mutant NSCLC: Bridging Biological Insights and Therapeutic Development. Cancer Treat. Rev. 2024, 130, 102824. [Google Scholar] [CrossRef] [PubMed]
  111. Ferrara, M.G.; Di Noia, V.; D’Argento, E.; Vita, E.; Damiano, P.; Cannella, A.; Ribelli, M.; Pilotto, S.; Milella, M.; Tortora, G.; et al. Oncogene-Addicted Non-Small-Cell Lung Cancer: Treatment Opportunities and Future Perspectives. Cancers 2020, 12, 1196. [Google Scholar] [CrossRef]
  112. Suda, K.; Onozato, R.; Yatabe, Y.; Mitsudomi, T. EGFR T790M Mutation: A Double Role in Lung Cancer Cell Survival? J. Thorac. Oncol. 2009, 4, 1–4. [Google Scholar] [CrossRef]
  113. Soria, J.-C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef]
  114. Planchard, D.; Jänne, P.A.; Cheng, Y.; Yang, J.C.-H.; Yanagitani, N.; Kim, S.-W.; Sugawara, S.; Yu, Y.; Fan, Y.; Geater, S.L.; et al. Osimertinib with or without Chemotherapy in EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2023, 389, 1935–1948. [Google Scholar] [CrossRef] [PubMed]
  115. Wu, Y.-L.; Tsuboi, M.; He, J.; John, T.; Grohe, C.; Majem, M.; Goldman, J.W.; Laktionov, K.; Kim, S.-W.; Kato, T.; et al. Osimertinib in Resected EGFR -Mutated Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 1711–1723. [Google Scholar] [CrossRef] [PubMed]
  116. Lu, S.; Kato, T.; Dong, X.; Ahn, M.-J.; Quang, L.-V.; Soparattanapaisarn, N.; Inoue, T.; Wang, C.-L.; Huang, M.; Yang, J.C.-H.; et al. Osimertinib after Chemoradiotherapy in Stage III EGFR-Mutated NSCLC. N. Engl. J. Med. 2024, 391, 585–597. [Google Scholar] [CrossRef] [PubMed]
  117. Shaw, A.T.; Yeap, B.Y.; Mino-Kenudson, M.; Digumarthy, S.R.; Costa, D.B.; Heist, R.S.; Solomon, B.; Stubbs, H.; Admane, S.; McDermott, U.; et al. Clinical Features and Outcome of Patients with Non–Small-Cell Lung Cancer Who Harbor EML4-ALK. J. Clin. Oncol. 2009, 27, 4247–4253. [Google Scholar] [CrossRef]
  118. Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; et al. Identification of the Transforming EML4-ALK Fusion Gene in Non-Small-Cell Lung Cancer. Nature 2007, 448, 561–566. [Google Scholar] [CrossRef]
  119. Solomon, B.J.; Bauer, T.M.; Mok, T.S.K.; Liu, G.; Mazieres, J.; de Marinis, F.; Goto, Y.; Kim, D.-W.; Wu, Y.-L.; Jassem, J.; et al. Efficacy and Safety of First-Line Lorlatinib versus Crizotinib in Patients with Advanced, ALK-Positive Non-Small-Cell Lung Cancer: Updated Analysis of Data from the Phase 3, Randomised, Open-Label CROWN Study. Lancet Respir. Med. 2023, 11, 354–366. [Google Scholar] [CrossRef]
  120. Wu, Y.-L.; Dziadziuszko, R.; Ahn, J.S.; Barlesi, F.; Nishio, M.; Lee, D.H.; Lee, J.-S.; Zhong, W.; Horinouchi, H.; Mao, W.; et al. Alectinib in Resected ALK -Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2024, 390, 1265–1276. [Google Scholar] [CrossRef]
  121. Vingiani, A.; Agnelli, L.; Duca, M.; Lorenzini, D.; Damian, S.; Proto, C.; Niger, M.; Nichetti, F.; Tamborini, E.; Perrone, F.; et al. Molecular Tumor Board as a Clinical Tool for Converting Molecular Data Into Real-World Patient Care. JCO Precis. Oncol. 2023, 7, e2300067. [Google Scholar] [CrossRef]
  122. Yang, J.C.-H.; Wu, Y.-L.; Schuler, M.; Sebastian, M.; Popat, S.; Yamamoto, N.; Zhou, C.; Hu, C.-P.; O’Byrne, K.; Feng, J.; et al. Afatinib versus Cisplatin-Based Chemotherapy for EGFR Mutation-Positive Lung Adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): Analysis of Overall Survival Data from Two Randomised, Phase 3 Trials. Lancet Oncol. 2015, 16, 141–151. [Google Scholar] [CrossRef]
  123. Wu, Y.-L.; Zhou, C.; Hu, C.-P.; Feng, J.; Lu, S.; Huang, Y.; Li, W.; Hou, M.; Shi, J.H.; Lee, K.Y.; et al. Afatinib versus Cisplatin plus Gemcitabine for First-Line Treatment of Asian Patients with Advanced Non-Small-Cell Lung Cancer Harbouring EGFR Mutations (LUX-Lung 6): An Open-Label, Randomised Phase 3 Trial. Lancet Oncol. 2014, 15, 213–222. [Google Scholar] [CrossRef]
  124. Sequist, L.V.; Yang, J.C.-H.; Yamamoto, N.; O’Byrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C.-M.; Boyer, M.; et al. Phase III Study of Afatinib or Cisplatin plus Pemetrexed in Patients with Metastatic Lung Adenocarcinoma with EGFR Mutations. J. Clin. Oncol. 2013, 31, 3327–3334. [Google Scholar] [CrossRef] [PubMed]
  125. Yang, J.C.-H.; Shih, J.-Y.; Su, W.-C.; Hsia, T.-C.; Tsai, C.-M.; Ou, S.-H.I.; Yu, C.-J.; Chang, G.-C.; Ho, C.-L.; Sequist, L.V.; et al. Afatinib for Patients with Lung Adenocarcinoma and Epidermal Growth Factor Receptor Mutations (LUX-Lung 2): A Phase 2 Trial. Lancet Oncol. 2012, 13, 539–548. [Google Scholar] [CrossRef]
  126. Yang, J.C.-H.; Sequist, L.V.; Geater, S.L.; Tsai, C.-M.; Mok, T.S.K.; Schuler, M.; Yamamoto, N.; Yu, C.-J.; Ou, S.-H.I.; Zhou, C.; et al. Clinical Activity of Afatinib in Patients with Advanced Non-Small-Cell Lung Cancer Harbouring Uncommon EGFR Mutations: A Combined Post-Hoc Analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol. 2015, 16, 830–838. [Google Scholar] [CrossRef]
  127. Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; et al. Erlotinib versus Standard Chemotherapy as First-Line Treatment for European Patients with Advanced EGFR Mutation-Positive Non-Small-Cell Lung Cancer (EURTAC): A Multicentre, Open-Label, Randomised Phase 3 Trial. Lancet Oncol. 2012, 13, 239–246. [Google Scholar] [CrossRef]
  128. Shepherd, F.A.; Hirsh, V.; Smylie, M.; Findlay, B.; Santabárbara, P. Erlotinib in Previously Treated Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2005, 353, 123–132. [Google Scholar] [CrossRef]
  129. Wu, Y.-L.; Cheng, Y.; Zhou, X.; Lee, K.H.; Nakagawa, K.; Niho, S.; Tsuji, F.; Linke, R.; Rosell, R.; Corral, J.; et al. Dacomitinib versus Gefitinib as First-Line Treatment for Patients with EGFR-Mutation-Positive Non-Small-Cell Lung Cancer (ARCHER 1050): A Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2017, 18, 1454–1466. [Google Scholar] [CrossRef] [PubMed]
  130. Mok, T.S.; Cheng, Y.; Zhou, X.; Lee, K.H.; Nakagawa, K.; Niho, S.; Chawla, A.; Rosell, R.; Corral, J.; Migliorino, M.R.; et al. Updated Overall Survival in a Randomized Study Comparing Dacomitinib with Gefitinib as First-Line Treatment in Patients with Advanced Non-Small-Cell Lung Cancer and EGFR-Activating Mutations. Drugs 2021, 81, 257–266. [Google Scholar] [CrossRef]
  131. Inoue, A.; Kobayashi, K.; Maemondo, M.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; et al. Updated Overall Survival Results from a Randomized Phase III Trial Comparing Gefitinib with Carboplatin–Paclitaxel for Chemo-Naïve Non-Small Cell Lung Cancer with Sensitive EGFR Gene Mutations (NEJ002). Ann. Oncol. 2013, 24, 54–59. [Google Scholar] [CrossRef] [PubMed]
  132. Maemondo, M.; Inoue, A.; Kobayashi, K.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; et al. Gefitinib or Chemotherapy for Non–Small-Cell Lung Cancer with Mutated EGFR. N. Engl. J. Med. 2010, 362, 2380–2388. [Google Scholar] [CrossRef]
  133. Tsuboi, M.; Herbst, R.S.; John, T.; Kato, T.; Majem, M.; Grohé, C.; Wang, J.; Goldman, J.W.; Lu, S.; Su, W.-C.; et al. Overall Survival with Osimertinib in Resected EGFR-Mutated NSCLC. N. Engl. J. Med. 2023, 389, 137–147. [Google Scholar] [CrossRef]
  134. Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef] [PubMed]
  135. Papadimitrakopoulou, V.A.; Mok, T.S.; Han, J.-Y.; Ahn, M.-J.; Delmonte, A.; Ramalingam, S.S.; Kim, S.W.; Shepherd, F.A.; Laskin, J.; He, Y.; et al. Osimertinib versus Platinum-Pemetrexed for Patients with EGFR T790M Advanced NSCLC and Progression on a Prior EGFR-Tyrosine Kinase Inhibitor: AURA3 Overall Survival Analysis. Ann. Oncol. 2020, 31, 1536–1544. [Google Scholar] [CrossRef] [PubMed]
  136. Mok, T.S.; Wu, Y.-L.; Ahn, M.-J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.M.E.; et al. Osimertinib or Platinum–Pemetrexed in EGFR T790M–Positive Lung Cancer. N. Engl. J. Med. 2017, 376, 629–640. [Google Scholar] [CrossRef]
  137. Zhou, C.; Tang, K.-J.; Cho, B.C.; Liu, B.; Paz-Ares, L.; Cheng, S.; Kitazono, S.; Thiagarajan, M.; Goldman, J.W.; Sabari, J.K.; et al. Amivantamab plus Chemotherapy in NSCLC with EGFR Exon 20 Insertions. N. Engl. J. Med. 2023, 389, 2039–2051. [Google Scholar] [CrossRef]
  138. Cho, B.C.; Lu, S.; Felip, E.; Spira, A.I.; Girard, N.; Lee, J.-S.; Lee, S.-H.; Ostapenko, Y.; Danchaivijitr, P.; Liu, B.; et al. Amivantamab plus Lazertinib in Previously Untreated EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2024, 391, 1486–1498. [Google Scholar] [CrossRef] [PubMed]
  139. Goto, K.; Goto, Y.; Kubo, T.; Ninomiya, K.; Kim, S.-W.; Planchard, D.; Ahn, M.-J.; Smit, E.F.; de Langen, A.J.; Pérol, M.; et al. Trastuzumab Deruxtecan in Patients with HER2-Mutant Metastatic Non–Small-Cell Lung Cancer: Primary Results From the Randomized, Phase II DESTINY-Lung02 Trial. J. Clin. Oncol. 2023, 41, 4852–4863. [Google Scholar] [CrossRef]
  140. de Langen, A.J.; Johnson, M.L.; Mazieres, J.; Dingemans, A.-M.C.; Mountzios, G.; Pless, M.; Wolf, J.; Schuler, M.; Lena, H.; Skoulidis, F.; et al. Sotorasib versus Docetaxel for Previously Treated Non-Small-Cell Lung Cancer with KRASG12C Mutation: A Randomised, Open-Label, Phase 3 Trial. Lancet 2023, 401, 733–746. [Google Scholar] [CrossRef]
  141. Jänne, P.A.; Riely, G.J.; Gadgeel, S.M.; Heist, R.S.; Ou, S.-H.I.; Pacheco, J.M.; Johnson, M.L.; Sabari, J.K.; Leventakos, K.; Yau, E.; et al. Adagrasib in Non–Small-Cell Lung Cancer Harboring a KRASG12C Mutation. N. Engl. J. Med. 2022, 387, 120–131. [Google Scholar] [CrossRef]
  142. Drilon, A.; Rekhtman, N.; Arcila, M.; Wang, L.; Ni, A.; Albano, M.; Van Voorthuysen, M.; Somwar, R.; Smith, R.S.; Montecalvo, J.; et al. A Phase 2 Single Arm Trial of Cabozantinib in Patients with Advanced RET-Rearranged Lung Cancers. Lancet Oncol. 2016, 17, 1653–1660. [Google Scholar] [CrossRef]
  143. Solomon, B.J.; Mok, T.; Kim, D.-W.; Wu, Y.-L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; et al. First-Line Crizotinib versus Chemotherapy in ALK-Positive Lung Cancer. N. Engl. J. Med. 2014, 371, 2167–2177. [Google Scholar] [CrossRef]
  144. Shaw, A.T.; Kim, D.-W.; Nakagawa, K.; Seto, T.; Crinó, L.; Ahn, M.-J.; Pas, T.D.; Besse, B.; Solomon, B.J.; Blackhall, F.; et al. Crizotinib versus Chemotherapy in Advanced ALK-Positive Lung Cancer. N. Engl. J. Med. 2013, 368, 2385–2394. [Google Scholar] [CrossRef] [PubMed]
  145. Soria, J.-C.; Tan, D.S.W.; Chiari, R.; Wu, Y.-L.; Paz-Ares, L.; Wolf, J.; Geater, S.L.; Orlov, S.; Cortinovis, D.; Yu, C.-J.; et al. First-Line Ceritinib versus Platinum-Based Chemotherapy in Advanced ALK-Rearranged Non-Small-Cell Lung Cancer (ASCEND-4): A Randomised, Open-Label, Phase 3 Study. Lancet 2017, 389, 917–929. [Google Scholar] [CrossRef]
  146. Tan, D.S.W.; Geater, S.; Yu, C.-J.; Tsai, C.-M.; Hsia, T.-C.; Chen, J.; Lin, M.-C.; Lu, Y.; Sriuranpong, V.; Yang, C.-T.; et al. Ceritinib Efficacy and Safety in Treatment-Naive Asian Patients with Advanced ALK-Rearranged NSCLC: An ASCEND-4 Subgroup Analysis. JTO Clin. Res. Rep. 2021, 2, 100131. [Google Scholar] [CrossRef] [PubMed]
  147. Shaw, A.T.; Kim, T.M.; Crinò, L.; Gridelli, C.; Kiura, K.; Liu, G.; Novello, S.; Bearz, A.; Gautschi, O.; Mok, T.; et al. Ceritinib versus Chemotherapy in Patients with ALK-Rearranged Non-Small-Cell Lung Cancer Previously given Chemotherapy and Crizotinib (ASCEND-5): A Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet Oncol. 2017, 18, 874–886. [Google Scholar] [CrossRef]
  148. Ahn, M.J.; Kim, H.R.; Yang, J.C.H.; Han, J.-Y.; Li, J.Y.-C.; Hochmair, M.J.; Chang, G.-C.; Delmonte, A.; Lee, K.H.; Campelo, R.G.; et al. Efficacy and Safety of Brigatinib Compared with Crizotinib in Asian vs. Non-Asian Patients with Locally Advanced or Metastatic ALK-Inhibitor-Naive ALK+ Non-Small Cell Lung Cancer: Final Results From the Phase III ALTA-1L Study. Clin. Lung Cancer 2022, 23, 720–730. [Google Scholar] [CrossRef] [PubMed]
  149. Camidge, D.R.; Kim, H.R.; Ahn, M.-J.; Yang, J.C.-H.; Han, J.-Y.; Lee, J.-S.; Hochmair, M.J.; Li, J.Y.-C.; Chang, G.-C.; Lee, K.H.; et al. Brigatinib versus Crizotinib in ALK -Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2027–2039. [Google Scholar] [CrossRef]
  150. Camidge, D.R.; Kim, H.R.; Ahn, M.-J.; Yang, J.C.H.; Han, J.-Y.; Hochmair, M.J.; Lee, K.H.; Delmonte, A.; Garcia Campelo, M.R.; Kim, D.-W.; et al. Brigatinib Versus Crizotinib in ALK Inhibitor-Naive Advanced ALK-Positive NSCLC: Final Results of Phase 3 ALTA-1L Trial. J. Thorac. Oncol. 2021, 16, 2091–2108. [Google Scholar] [CrossRef]
  151. Hochmair, M.J.; Tiseo, M.; Reckamp, K.L.; West, H.L.; Groen, H.J.; Langer, C.J.; Reichmann, W.; Kerstein, D.; Kim, D.-W.; Camidge, D.R. Brigatinib in Crizotinib-Refractory ALK+ NSCLC: Updates from the Pivotal Randomized Phase 2 Trial (ALTA). Ann. Oncol. 2017, 28, ii35–ii36. [Google Scholar] [CrossRef]
  152. Huber, R.M.; Hansen, K.H.; Rodríguez, L.P.-A.; West, H.L.; Reckamp, K.L.; Leighl, N.B.; Tiseo, M.; Smit, E.F.; Kim, D.-W.; Gettinger, S.N.; et al. Brigatinib in Crizotinib-Refractory ALK+ NSCLC: 2-Year Follow-up on Systemic and Intracranial Outcomes in the Phase 2 ALTA Trial. J. Thorac. Oncol. 2020, 15, 404–415. [Google Scholar] [CrossRef]
  153. Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.-W.; Ou, S.-H.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; et al. Alectinib versus Crizotinib in Untreated ALK -Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 829–838. [Google Scholar] [CrossRef]
  154. Mok, T.; Camidge, D.R.; Gadgeel, S.M.; Rosell, R.; Dziadziuszko, R.; Kim, D.-W.; Pérol, M.; Ou, S.-H.I.; Ahn, J.S.; Shaw, A.T.; et al. Updated Overall Survival and Final Progression-Free Survival Data for Patients with Treatment-Naive Advanced ALK-Positive Non-Small-Cell Lung Cancer in the ALEX Study. Ann. Oncol. 2020, 31, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
  155. Horn, L.; Wang, Z.; Wu, G.; Poddubskaya, E.; Mok, T.; Reck, M.; Wakelee, H.; Chiappori, A.A.; Lee, D.H.; Breder, V.; et al. Ensartinib vs Crizotinib for Patients with Anaplastic Lymphoma Kinase−Positive Non–Small Cell Lung Cancer: A Randomized Clinical Trial. JAMA Oncol. 2021, 7, 1617–1625. [Google Scholar] [CrossRef] [PubMed]
  156. Shaw, A.T.; Bauer, T.M.; De Marinis, F.; Felip, E.; Goto, Y.; Liu, G.; Mazieres, J.; Kim, D.-W.; Mok, T.; Polli, A.; et al. First-Line Lorlatinib or Crizotinib in Advanced ALK -Positive Lung Cancer. N. Engl. J. Med. 2020, 383, 2018–2029. [Google Scholar] [CrossRef] [PubMed]
  157. Solomon, B.J.; Liu, G.; Felip, E.; Mok, T.S.K.; Soo, R.A.; Mazieres, J.; Shaw, A.T.; de Marinis, F.; Goto, Y.; Wu, Y.-L.; et al. Lorlatinib Versus Crizotinib in Patients with Advanced ALK-Positive Non–Small Cell Lung Cancer: 5-Year Outcomes From the Phase III CROWN Study. J. Clin. Oncol. 2024, 42, 3400–3409. [Google Scholar] [CrossRef]
  158. Shaw, A.T.; Ou, S.-H.I.; Bang, Y.-J.; Camidge, D.R.; Solomon, B.J.; Salgia, R.; Riely, G.J.; Varella-Garcia, M.; Shapiro, G.I.; Costa, D.B.; et al. Crizotinib in ROS1-Rearranged Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2014, 371, 1963–1971. [Google Scholar] [CrossRef]
  159. Shaw, A.T.; Riely, G.J.; Bang, Y.-J.; Kim, D.-W.; Camidge, D.R.; Solomon, B.J.; Varella-Garcia, M.; Iafrate, A.J.; Shapiro, G.I.; Usari, T.; et al. Crizotinib in ROS1-Rearranged Advanced Non-Small-Cell Lung Cancer (NSCLC): Updated Results, Including Overall Survival, from PROFILE 1001. Ann. Oncol. 2019, 30, 1121–1126. [Google Scholar] [CrossRef]
  160. Dziadziuszko, R.; Krebs, M.G.; De Braud, F.; Siena, S.; Drilon, A.; Doebele, R.C.; Patel, M.R.; Cho, B.C.; Liu, S.V.; Ahn, M.-J.; et al. Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Locally Advanced or Metastatic ROS1 Fusion–Positive Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2021, 39, 1253–1263. [Google Scholar] [CrossRef]
  161. Drilon, A.; Chiu, C.-H.; Fan, Y.; Cho, B.C.; Lu, S.; Ahn, M.-J.; Krebs, M.G.; Liu, S.V.; John, T.; Otterson, G.A.; et al. Long-Term Efficacy and Safety of Entrectinib in ROS1 Fusion–Positive NSCLC. JTO Clin. Res. Rep. 2022, 3, 100332. [Google Scholar] [CrossRef]
  162. Shaw, A.T.; Solomon, B.J.; Chiari, R.; Riely, G.J.; Besse, B.; Soo, R.A.; Kao, S.; Lin, C.-C.; Bauer, T.M.; Clancy, J.S.; et al. Lorlatinib in Advanced ROS1-Positive Non-Small-Cell Lung Cancer: A Multicentre, Open-Label, Single-Arm, Phase 1–2 Trial. Lancet Oncol. 2019, 20, 1691–1701. [Google Scholar] [CrossRef]
  163. Wolf, J.; Seto, T.; Han, J.-Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.W.; Hida, T.; De Jonge, M.; Orlov, S.V.; et al. Capmatinib in MET Exon 14–Mutated or MET -Amplified Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 944–957. [Google Scholar] [CrossRef]
  164. Wolf, J.; Hochmair, M.; Han, J.-Y.; Reguart, N.; Souquet, P.-J.; Smit, E.F.; Orlov, S.V.; Vansteenkiste, J.; Nishio, M.; Jonge, M. de; et al. Capmatinib in MET Exon 14-Mutated Non-Small-Cell Lung Cancer: Final Results from the Open-Label, Phase 2 GEOMETRY Mono-1 Trial. Lancet Oncol. 2024, 25, 1357–1370. [Google Scholar] [CrossRef] [PubMed]
  165. Mazieres, J.; Paik, P.K.; Garassino, M.C.; Le, X.; Sakai, H.; Veillon, R.; Smit, E.F.; Cortot, A.B.; Raskin, J.; Viteri, S.; et al. Tepotinib Treatment in Patients with MET Exon 14–Skipping Non–Small Cell Lung Cancer: Long-Term Follow-up of the VISION Phase 2 Nonrandomized Clinical Trial. JAMA Oncol. 2023, 9, 1260. [Google Scholar] [CrossRef] [PubMed]
  166. Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Van Meerbeeck, J.; et al. Tepotinib in Non–Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations. N. Engl. J. Med. 2020, 383, 931–943. [Google Scholar] [CrossRef]
  167. Drilon, A.; Clark, J.W.; Weiss, J.; Ou, S.-H.I.; Camidge, D.R.; Solomon, B.J.; Otterson, G.A.; Villaruz, L.C.; Riely, G.J.; Heist, R.S.; et al. Antitumor Activity of Crizotinib in Lung Cancers Harboring a MET Exon 14 Alteration. Nat. Med. 2020, 26, 47–51. [Google Scholar] [CrossRef]
  168. Planchard, D.; Besse, B.; Groen, H.J.M.; Hashemi, S.M.S.; Mazieres, J.; Kim, T.M.; Quoix, E.; Souquet, P.-J.; Barlesi, F.; Baik, C.; et al. Phase 2 Study of Dabrafenib Plus Trametinib in Patients with BRAF V600E-Mutant Metastatic NSCLC: Updated 5-Year Survival Rates and Genomic Analysis. J. Thorac. Oncol. 2022, 17, 103–115. [Google Scholar] [CrossRef] [PubMed]
  169. Planchard, D.; Smit, E.F.; Groen, H.J.M.; Mazieres, J.; Besse, B.; Helland, Å.; Giannone, V.; D’Amelio, A.M.; Zhang, P.; Mookerjee, B.; et al. Dabrafenib plus Trametinib in Patients with Previously Untreated BRAFV600E-Mutant Metastatic Non-Small-Cell Lung Cancer: An Open-Label, Phase 2 Trial. Lancet Oncol. 2017, 18, 1307–1316. [Google Scholar] [CrossRef]
  170. Riely, G.J.; Smit, E.F.; Ahn, M.-J.; Felip, E.; Ramalingam, S.S.; Tsao, A.; Johnson, M.; Gelsomino, F.; Esper, R.; Nadal, E.; et al. Phase II, Open-Label Study of Encorafenib Plus Binimetinib in Patients with BRAFV600-Mutant Metastatic Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2023, 41, 3700–3711. [Google Scholar] [CrossRef]
  171. Drilon, A.; Tan, D.S.W.; Lassen, U.N.; Leyvraz, S.; Liu, Y.; Patel, J.D.; Rosen, L.; Solomon, B.; Norenberg, R.; Dima, L.; et al. Efficacy and Safety of Larotrectinib in Patients with Tropomyosin Receptor Kinase Fusion-Positive Lung Cancers. JCO Precis. Oncol. 2022, 6, e2100418. [Google Scholar] [CrossRef]
  172. Paz-Ares, L.; Doebele, R.C.; Farago, A.F.; Liu, S.V.; Chawla, S.P.; Tosi, D.; Blakely, C.M.; Krauss, J.C.; Sigal, D.; Bazhenova, L.; et al. Entrectinib in NTRK Fusion-Positive Non-Small Cell Lung Cancer (NSCLC): Integrated Analysis of Patients (Pts) Enrolled in STARTRK-2, STARTRK-1 and ALKA-372-001. Ann. Oncol. 2019, 30, ii48–ii49. [Google Scholar] [CrossRef]
  173. Cho, B.C.; Chiu, C.-H.; Massarelli, E.; Buchschacher, G.L.; Goto, K.; Overbeck, T.R.; Loong, H.H.F.; Chee, C.E.; Garrido, P.; Dong, X.; et al. Updated Efficacy and Safety of Entrectinib in NTRK Fusion-Positive Non-Small Cell Lung Cancer. Lung Cancer 2024, 188, 107442. [Google Scholar] [CrossRef]
  174. Kim, D.-W.; Schram, A.M.; Hollebecque, A.; Nishino, K.; Macarulla, T.; Rha, S.Y.; Duruisseaux, M.; Liu, S.V.; Al Hallak, M.N.; Umemoto, K.; et al. The Phase I/II eNRGy Trial: Zenocutuzumab in Patients with Cancers Harboring NRG1 Gene Fusions. Future Oncol. Lond. Engl. 2024, 20, 1057–1067. [Google Scholar] [CrossRef]
  175. Simion, L.; Chitoran, E.; Cirimbei, C.; Stefan, D.-C.; Neicu, A.; Tanase, B.; Ionescu, S.O.; Luca, D.C.; Gales, L.; Gheorghe, A.S.; et al. A Decade of Therapeutic Challenges in Synchronous Gynecological Cancers from the Bucharest Oncological Institute. Diagnostics 2023, 13, 2069. [Google Scholar] [CrossRef] [PubMed]
  176. Li, S.; Silvestri, V.; Leslie, G.; Rebbeck, T.R.; Neuhausen, S.L.; Hopper, J.L.; Nielsen, H.R.; Lee, A.; Yang, X.; McGuffog, L.; et al. Cancer Risks Associated with BRCA1 and BRCA2 Pathogenic Variants. J. Clin. Oncol. 2022, 40, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
  177. Tasca, G.; Dieci, M.V.; Baretta, Z.; Faggioni, G.; Montagna, M.; Nicoletto, M.O.; Peccatori, F.A.; Guarneri, V.; Colombo, N. Synchronous and Metachronous Breast and Ovarian Cancer: Experience From Two Large Cancer Center. Front. Oncol. 2020, 10, 608783. [Google Scholar] [CrossRef]
  178. Concolino, P.; Gelli, G.; Rizza, R.; Costella, A.; Scambia, G.; Capoluongo, E. BRCA1 and BRCA2 Testing through Next Generation Sequencing in a Small Cohort of Italian Breast/Ovarian Cancer Patients: Novel Pathogenic and Unknown Clinical Significance Variants. Int. J. Mol. Sci. 2019, 20, 3442. [Google Scholar] [CrossRef]
  179. den Brok, W.D.; Schrader, K.A.; Sun, S.; Tinker, A.V.; Zhao, E.Y.; Aparicio, S.; Gelmon, K.A. Homologous Recombination Deficiency in Breast Cancer: A Clinical Review. JCO Precis. Oncol. 2017, 1, 1–13. [Google Scholar] [CrossRef] [PubMed]
  180. Vogel, A.; Haupts, A.; Kloth, M.; Roth, W.; Hartmann, N. A Novel Targeted NGS Panel Identifies Numerous Homologous Recombination Deficiency (HRD)-Associated Gene Mutations in Addition to Known BRCA Mutations. Diagn. Pathol. 2024, 19, 9. [Google Scholar] [CrossRef]
  181. Tsantikidi, A.; Papadopoulou, E.; Metaxa-Mariatou, V.; Kapetsis, G.; Tsaousis, G.; Meintani, A.; Florou-Chatzigiannidou, C.; Gazouli, M.; Papadimitriou, C.; Timotheadou, E.; et al. The Utility of NGS Analysis in Homologous Recombination Deficiency Tracking. Diagnostics 2023, 13, 2962. [Google Scholar] [CrossRef]
  182. Prophylactic Interventions for Hereditary Breast and Ovarian Cancer Risks and Mortality in BRCA1/2 Carriers. Available online: https://www.mdpi.com/2072-6694/16/1/103 (accessed on 30 January 2025).
  183. Bono, M.; Fanale, D.; Incorvaia, L.; Cancelliere, D.; Fiorino, A.; Calò, V.; Dimino, A.; Filorizzo, C.; Corsini, L.R.; Brando, C.; et al. Impact of Deleterious Variants in Other Genes beyond BRCA1/2 Detected in Breast/Ovarian and Pancreatic Cancer Patients by NGS-Based Multi-Gene Panel Testing: Looking over the Hedge. ESMO Open 2021, 6, 100235. [Google Scholar] [CrossRef]
  184. Kurian, A.W.; Hughes, E.; Handorf, E.A.; Gutin, A.; Allen, B.; Hartman, A.-R.; Hall, M.J. Breast and Ovarian Cancer Penetrance Estimates Derived From Germline Multiple-Gene Sequencing Results in Women. JCO Precis. Oncol. 2017, 1, 1–12. [Google Scholar] [CrossRef]
  185. Akbari, M.R.; Wallis, C.J.D.; Toi, A.; Trachtenberg, J.; Sun, P.; Narod, S.A.; Nam, R.K. The Impact of a BRCA2 Mutation on Mortality from Screen-Detected Prostate Cancer. Br. J. Cancer 2014, 111, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
  186. Bolton, K.L.; Chenevix-Trench, G.; Goh, C.; Sadetzki, S.; Ramus, S.J.; Karlan, B.Y.; Lambrechts, D.; Despierre, E.; Barrowdale, D.; McGuffog, L.; et al. Association Between BRCA1 and BRCA2 Mutations and Survival in Women with Invasive Epithelial Ovarian Cancer. JAMA J. Am. Med. Assoc. 2012, 307, 382–390. [Google Scholar] [CrossRef]
  187. Zhu, Y.; Wu, J.; Zhang, C.; Sun, S.; Zhang, J.; Liu, W.; Huang, J.; Zhang, Z. BRCA Mutations and Survival in Breast Cancer: An Updated Systematic Review and Meta-Analysis. Oncotarget 2016, 7, 70113–70127. [Google Scholar] [CrossRef]
  188. Moore, K.; Colombo, N.; Scambia, G.; Kim, B.-G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; Sonke, G.S.; et al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2018, 379, 2495–2505. [Google Scholar] [CrossRef]
  189. DiSilvestro, P.; Banerjee, S.; Colombo, N.; Scambia, G.; Kim, B.-G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; et al. Overall Survival with Maintenance Olaparib at a 7-Year Follow-Up in Patients with Newly Diagnosed Advanced Ovarian Cancer and a BRCA Mutation: The SOLO1/GOG 3004 Trial. J. Clin. Oncol. 2023, 41, 609–617. [Google Scholar] [CrossRef] [PubMed]
  190. Ray-Coquard, I.; Pautier, P.; Pignata, S.; Pérol, D.; González-Martín, A.; Berger, R.; Fujiwara, K.; Vergote, I.; Colombo, N.; Mäenpää, J.; et al. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2416–2428. [Google Scholar] [CrossRef]
  191. Ray-Coquard, I.; Leary, A.; Pignata, S.; Cropet, C.; González-Martín, A.; Marth, C.; Nagao, S.; Vergote, I.; Colombo, N.; Mäenpää, J.; et al. Olaparib plus Bevacizumab First-Line Maintenance in Ovarian Cancer: Final Overall Survival Results from the PAOLA-1/ENGOT-Ov25 Trial. Ann. Oncol. 2023, 34, 681–692. [Google Scholar] [CrossRef] [PubMed]
  192. Tutt, A.N.J.; Garber, J.E.; Kaufman, B.; Viale, G.; Fumagalli, D.; Rastogi, P.; Gelber, R.D.; de Azambuja, E.; Fielding, A.; Balmaña, J.; et al. Adjuvant Olaparib for Patients with BRCA1- or BRCA2-Mutated Breast Cancer. N. Engl. J. Med. 2021, 384, 2394–2405. [Google Scholar] [CrossRef]
  193. Geyer, C.E.; Garber, J.E.; Gelber, R.D.; Yothers, G.; Taboada, M.; Ross, L.; Rastogi, P.; Cui, K.; Arahmani, A.; Aktan, G.; et al. Overall Survival in the OlympiA Phase III Trial of Adjuvant Olaparib in Patients with Germline Pathogenic Variants in BRCA1/2 and High-Risk, Early Breast Cancer. Ann. Oncol. 2022, 33, 1250–1268. [Google Scholar] [CrossRef]
  194. Robson, M.; Im, S.-A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017, 377, 523–533. [Google Scholar] [CrossRef]
  195. Robson, M.E.; Tung, N.; Conte, P.; Im, S.-A.; Senkus, E.; Xu, B.; Masuda, N.; Delaloge, S.; Li, W.; Armstrong, A.; et al. OlympiAD Final Overall Survival and Tolerability Results: Olaparib versus Chemotherapy Treatment of Physician’s Choice in Patients with a Germline BRCA Mutation and HER2-Negative Metastatic Breast Cancer. Ann. Oncol. 2019, 30, 558–566. [Google Scholar] [CrossRef] [PubMed]
  196. Robson, M.E.; Im, S.-A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Tung, N.; Armstrong, A.; Dymond, M.; et al. OlympiAD Extended Follow-up for Overall Survival and Safety: Olaparib versus Chemotherapy Treatment of Physician’s Choice in Patients with a Germline BRCA Mutation and HER2-Negative Metastatic Breast Cancer. Eur. J. Cancer 2023, 184, 39–47. [Google Scholar] [CrossRef] [PubMed]
  197. de Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 382, 2091–2102. [Google Scholar] [CrossRef]
  198. Clarke, N.W.; Armstrong, A.J.; Thiery-Vuillemin, A.; Oya, M.; Shore, N.; Loredo, E.; Procopio, G.; de Menezes, J.; Girotto, G.; Arslan, C.; et al. Abiraterone and Olaparib for Metastatic Castration-Resistant Prostate Cancer. NEJM Evid. 2022, 1, EVIDoa2200043. [Google Scholar] [CrossRef] [PubMed]
  199. Saad, F.; Clarke, N.W.; Oya, M.; Shore, N.; Procopio, G.; Guedes, J.D.; Arslan, C.; Mehra, N.; Parnis, F.; Brown, E.; et al. Olaparib plus Abiraterone versus Placebo plus Abiraterone in Metastatic Castration-Resistant Prostate Cancer (PROpel): Final Prespecified Overall Survival Results of a Randomised, Double-Blind, Phase 3 Trial. Lancet Oncol. 2023, 24, 1094–1108. [Google Scholar] [CrossRef]
  200. Golan, T.; Hammel, P.; Reni, M.; Cutsem, E.V.; Macarulla, T.; Hall, M.J.; Park, J.-O.; Hochhauser, D.; Arnold, D.; Oh, D.-Y.; et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019, 381, 317–327. [Google Scholar] [CrossRef]
  201. Kindler, H.L.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.O.; Hochhauser, D.; Arnold, D.; Oh, D.-Y.; et al. Overall Survival Results From the POLO Trial: A Phase III Study of Active Maintenance Olaparib Versus Placebo for Germline BRCA-Mutated Metastatic Pancreatic Cancer. J. Clin. Oncol. 2022, 40, 3929–3939. [Google Scholar] [CrossRef]
  202. Westin, S.N.; Moore, K.; Chon, H.S.; Lee, J.-Y.; Pepin, J.T.; Sundborg, M.; Shai, A.; de la Garza, J.; Nishio, S.; Gold, M.A.; et al. Durvalumab Plus Carboplatin/Paclitaxel Followed by Maintenance Durvalumab with or without Olaparib as First-Line Treatment for Advanced Endometrial Cancer: The Phase III DUO-E Trial. J. Clin. Oncol. 2024, 42, 283–299. [Google Scholar] [CrossRef]
  203. González-Martín, A.; Pothuri, B.; Vergote, I.; Christensen, R.D.; Graybill, W.; Mirza, M.R.; McCormick, C.; Lorusso, D.; Hoskins, P.; Freyer, G.; et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2391–2402. [Google Scholar] [CrossRef]
  204. Monk, B.J.; Barretina-Ginesta, M.P.; Pothuri, B.; Vergote, I.; Graybill, W.; Mirza, M.R.; McCormick, C.C.; Lorusso, D.; Moore, R.G.; Freyer, G.; et al. Niraparib First-Line Maintenance Therapy in Patients with Newly Diagnosed Advanced Ovarian Cancer: Final Overall Survival Results from the PRIMA/ENGOT-OV26/GOG-3012 Trial. Ann. Oncol. 2024, 35, 981–992. [Google Scholar] [CrossRef]
  205. Chi, K.N.; Rathkopf, D.; Smith, M.R.; Efstathiou, E.; Attard, G.; Olmos, D.; Lee, J.Y.; Small, E.J.; Pereira de Santana Gomes, A.J.; Roubaud, G.; et al. Niraparib and Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2023, 41, 3339–3351. [Google Scholar] [CrossRef]
  206. Coleman, R.L.; Oza, A.M.; Lorusso, D.; Aghajanian, C.; Oaknin, A.; Dean, A.; Colombo, N.; Weberpals, J.I.; Clamp, A.; Scambia, G.; et al. Rucaparib Maintenance Treatment for Recurrent Ovarian Carcinoma after Response to Platinum Therapy (ARIEL3): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet 2017, 390, 1949–1961. [Google Scholar] [CrossRef]
  207. Ledermann, J.A.; Oza, A.M.; Lorusso, D.; Aghajanian, C.; Oaknin, A.; Dean, A.; Colombo, N.; Weberpals, J.I.; Clamp, A.R.; Scambia, G.; et al. Rucaparib for Patients with Platinum-Sensitive, Recurrent Ovarian Carcinoma (ARIEL3): Post-Progression Outcomes and Updated Safety Results from a Randomised, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2020, 21, 710–722. [Google Scholar] [CrossRef] [PubMed]
  208. Fizazi, K.; Piulats, J.M.; Reaume, M.N.; Ostler, P.; McDermott, R.; Gingerich, J.R.; Pintus, E.; Sridhar, S.S.; Bambury, R.M.; Emmenegger, U.; et al. Rucaparib or Physician’s Choice in Metastatic Prostate Cancer. N. Engl. J. Med. 2023, 388, 719–732. [Google Scholar] [CrossRef] [PubMed]
  209. Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.-H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef] [PubMed]
  210. Litton, J.K.; Hurvitz, S.A.; Mina, L.A.; Rugo, H.S.; Lee, K.-H.; Gonçalves, A.; Diab, S.; Woodward, N.; Goodwin, A.; Yerushalmi, R.; et al. Talazoparib versus Chemotherapy in Patients with Germline BRCA1/2-Mutated HER2-Negative Advanced Breast Cancer: Final Overall Survival Results from the EMBRACA Trial. Ann. Oncol. 2020, 31, 1526–1535. [Google Scholar] [CrossRef]
  211. Agarwal, N.; Azad, A.A.; Carles, J.; Fay, A.P.; Matsubara, N.; Heinrich, D.; Szczylik, C.; Giorgi, U.D.; Joung, J.Y.; Fong, P.C.C.; et al. Talazoparib plus Enzalutamide in Men with First-Line Metastatic Castration-Resistant Prostate Cancer (TALAPRO-2): A Randomised, Placebo-Controlled, Phase 3 Trial. Lancet 2023, 402, 291–303. [Google Scholar] [CrossRef]
  212. Fizazi, K.; Azad, A.A.; Matsubara, N.; Carles, J.; Fay, A.P.; De Giorgi, U.; Joung, J.Y.; Fong, P.C.C.; Voog, E.; Jones, R.J.; et al. First-Line Talazoparib with Enzalutamide in HRR-Deficient Metastatic Castration-Resistant Prostate Cancer: The Phase 3 TALAPRO-2 Trial. Nat. Med. 2024, 30, 257–264. [Google Scholar] [CrossRef]
  213. Zgura, A.; Gales, L.; Bratila, E.; Mehedintu, C.; Haineala, B.; Barac, R.I.; Popa, A.R.; Buhas, C.; Berceanu, C.; Andreescu, C.V.; et al. Variation of the T Lymphocytes According to Treatment in Breast Cancer. Rev. Chim. 2019, 70, 1649–1654. [Google Scholar] [CrossRef]
  214. Cardoso, F.; Hirshfield, K.M.; Kraynyak, K.A.; Tryfonidis, K.; Bardia, A. Immunotherapy for Hormone Receptor‒positive HER2-Negative Breast Cancer. Npj Breast Cancer 2024, 10, 104. [Google Scholar] [CrossRef]
  215. Stemke-Hale, K.; Gonzalez-Angulo, A.M.; Lluch, A.; Neve, R.M.; Kuo, W.-L.; Davies, M.; Carey, M.; Hu, Z.; Guan, Y.; Sahin, A.; et al. An Integrative Genomic and Proteomic Analysis of PIK3CA, PTEN, and AKT Mutations in Breast Cancer. Cancer Res. 2008, 68, 6084–6091. [Google Scholar] [CrossRef] [PubMed]
  216. Raei, M.; Heydari, K.; Tabarestani, M.; Razavi, A.; Mirshafiei, F.; Esmaeily, F.; Taheri, M.; Hoseini, A.; Nazari, H.; Shamshirian, D.; et al. Diagnostic Accuracy of ESR1 Mutation Detection by Cell-Free DNA in Breast Cancer: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy. BMC Cancer 2024, 24, 908. [Google Scholar] [CrossRef]
  217. Turner, N.C.; Im, S.-A.; Saura, C.; Juric, D.; Loibl, S.; Kalinsky, K.; Schmid, P.; Loi, S.; Sunpaweravong, P.; Musolino, A.; et al. Inavolisib-Based Therapy in PIK3CA-Mutated Advanced Breast Cancer. N. Engl. J. Med. 2024, 391, 1584–1596. [Google Scholar] [CrossRef]
  218. André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
  219. André, F.; Ciruelos, E.M.; Juric, D.; Loibl, S.; Campone, M.; Mayer, I.A.; Rubovszky, G.; Yamashita, T.; Kaufman, B.; Lu, Y.-S.; et al. Alpelisib plus Fulvestrant for PIK3CA-Mutated, Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor-2-Negative Advanced Breast Cancer: Final Overall Survival Results from SOLAR-1. Ann. Oncol. 2021, 32, 208–217. [Google Scholar] [CrossRef] [PubMed]
  220. Turner, N.C.; Oliveira, M.; Howell, S.J.; Dalenc, F.; Cortes, J.; Moreno, H.L.G.; Hu, X.; Jhaveri, K.; Krivorotko, P.; Loibl, S.; et al. Capivasertib in Hormone Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2023, 388, 2058–2070. [Google Scholar] [CrossRef]
  221. Bidard, F.-C.; Kaklamani, V.G.; Neven, P.; Streich, G.; Montero, A.J.; Forget, F.; Mouret-Reynier, M.-A.; Sohn, J.H.; Taylor, D.; Harnden, K.K.; et al. Elacestrant (Oral Selective Estrogen Receptor Degrader) Versus Standard Endocrine Therapy for Estrogen Receptor–Positive, Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer: Results from the Randomized Phase III EMERALD Trial. J. Clin. Oncol. 2022, 40, 3246–3256. [Google Scholar] [CrossRef]
  222. Sebastião, M.M.; Ho, R.S.; de Carvalho, J.P.V.; Nussbaum, M. Diagnostic Accuracy of Next Generation Sequencing Panel Using Circulating Tumor DNA in Patients with Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. J. Health Econ. Outcomes Res. 2020, 7, 158–163. [Google Scholar] [CrossRef]
  223. Gašperšič, J.; Videtič Paska, A. Potential of Modern Circulating Cell-Free DNA Diagnostic Tools for Detection of Specific Tumour Cells in Clinical Practice. Biochem. Medica 2020, 30, 030504. [Google Scholar] [CrossRef]
  224. Gu, W.; Zhuang, W.; Zhuang, M.; He, M.; Li, Z. DNA Damage Response and Repair Gene Mutations Are Associated with Tumor Mutational Burden and Outcomes to Platinum-Based Chemotherapy/Immunotherapy in Advanced NSCLC Patients. Diagn. Pathol. 2023, 18, 119. [Google Scholar] [CrossRef]
  225. Wang, H.; Sun, L.; Sang, Y.; Yang, X.; Tian, G.; Wang, Z.; Fang, J.; Sun, W.; Zhou, L.; Jia, L.; et al. A Study of ALK-Positive Pulmonary Squamous-Cell Carcinoma: From Diagnostic Methodologies to Clinical Efficacy. Lung Cancer Amst. Neth. 2019, 130, 135–142. [Google Scholar] [CrossRef]
  226. Byron, S.A.; Van Keuren-Jensen, K.R.; Engelthaler, D.M.; Carpten, J.D.; Craig, D.W. Translating RNA Sequencing into Clinical Diagnostics: Opportunities and Challenges. Nat. Rev. Genet. 2016, 17, 257–271. [Google Scholar] [CrossRef] [PubMed]
  227. Gibbs, S.N.; Peneva, D.; Cuyun Carter, G.; Palomares, M.R.; Thakkar, S.; Hall, D.W.; Dalglish, H.; Campos, C.; Yermilov, I. Comprehensive Review on the Clinical Impact of Next-Generation Sequencing Tests for the Management of Advanced Cancer. JCO Precis. Oncol. 2023, 7, e2200715. [Google Scholar] [CrossRef]
  228. Mirza, M.; Goerke, L.; Anderson, A.; Wilsdon, T. Assessing the Cost-Effectiveness of Next-Generation Sequencing as a Biomarker Testing Approach in Oncology and Policy Implications: A Literature Review. Value Health 2024, 27, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
  229. Trifanescu, O.G.; Gales, L.; Bacinschi, X.; Serbanescu, L.; Georgescu, M.; Sandu, A.; Michire, A.; Anghel, R. Impact of the COVID-19 Pandemic on Treatment and Oncologic Outcomes for Cancer Patients in Romania. Vivo 2022, 36, 934–941. [Google Scholar] [CrossRef]
  230. Schluckebier, L.; Caetano, R.; Garay, O.U.; Montenegro, G.T.; Custodio, M.; Aran, V.; Gil Ferreira, C. Cost-Effectiveness Analysis Comparing Companion Diagnostic Tests for EGFR, ALK, and ROS1 versus next-Generation Sequencing (NGS) in Advanced Adenocarcinoma Lung Cancer Patients. BMC Cancer 2020, 20, 875. [Google Scholar] [CrossRef]
  231. Ferreira-Gonzalez, A.; Ko, G.; Fusco, N.; Stewart, F.; Kistler, K.; Appukkuttan, S.; Hocum, B.; Allen, S.M.; Babajanyan, S. Barriers and Facilitators to Next-Generation Sequencing Use in United States Oncology Settings: A Systematic Review. Future Oncol. 2024, 20, 2765–2777. [Google Scholar] [CrossRef]
  232. Rehm, H.L.; Page, A.J.H.; Smith, L.; Adams, J.B.; Alterovitz, G.; Babb, L.J.; Barkley, M.P.; Baudis, M.; Beauvais, M.J.S.; Beck, T.; et al. GA4GH: International Policies and Standards for Data Sharing across Genomic Research and Healthcare. Cell Genom. 2021, 1, 100029. [Google Scholar] [CrossRef]
  233. Mulder, N.; Abimiku, A.; Adebamowo, S.N.; de Vries, J.; Matimba, A.; Olowoyo, P.; Ramsay, M.; Skelton, M.; Stein, D.J. H3Africa: Current Perspectives. Pharmacogenom. Pers. Med. 2018, 11, 59–66. [Google Scholar] [CrossRef]
  234. D’Angelo, S.P.; Araujo, D.M.; Razak, A.R.A.; Agulnik, M.; Attia, S.; Blay, J.-Y.; Garcia, I.C.; Charlson, J.A.; Choy, E.; Demetri, G.D.; et al. Afamitresgene Autoleucel for Advanced Synovial Sarcoma and Myxoid Round Cell Liposarcoma (SPEARHEAD-1): An International, Open-Label, Phase 2 Trial. Lancet 2024, 403, 1460–1471. [Google Scholar] [CrossRef]
  235. Gulilat, M.; Lamb, T.; Teft, W.A.; Wang, J.; Dron, J.S.; Robinson, J.F.; Tirona, R.G.; Hegele, R.A.; Kim, R.B.; Schwarz, U.I. Targeted next Generation Sequencing as a Tool for Precision Medicine. BMC Med. Genom. 2019, 12, 81. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.