The Proline Dehydrogenase Gene CsProDH1 Regulates Homeostasis of the Pro-P5C Cycle Under Drought Stress in Tea Plants
Abstract
1. Introduction
2. Results
2.1. Expression Pattern of CsProDH1 Under Different Treatments
2.2. Enzymatic Characterization of the CsProDH1 Protein
2.3. Transient Expression Assay of CsProDH1
2.4. CsProDH1 Gene Silencing Analysis Under Drought Treatment
2.5. Exogenous Application of Amino Acids for Recovery Treatment
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Bioinformatics Analysis and qRT-PCR Analyses
4.3. Antisense Oligodeoxynucleotide Inhibition Assay
4.4. Plasmid Construction of Overexpression Vector and Agrobacterium Infiltration
4.5. Subcellular Localization Analysis
4.6. Protein Extraction, Electrophoresis, and Purification
4.7. Enzymatic Characterization
4.8. Measurement of Physiological Indicators
4.9. Fast Chlorophyll Fluorescence-Induced Kinetic Curves and Fluorescence Images
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response Mechanism of Plants to Drought Stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Yadav, V.; Zhao, W.; He, Y.; Zhang, X.; Wei, C. Drought-Induced Proline Is Mainly Synthesized in Leaves and Transported to Roots in Watermelon under Water Deficit. Hortic. Plant J. 2022, 8, 615–626. [Google Scholar] [CrossRef]
- Machado, J.; Fernandes, A.P.G.; Bokor, B.; Vaculík, M.; Kostoláni, D.; Kokavcová, A.; Heuvelink, E.; Vasconcelos, M.W.; Carvalho, S.M.P. Tomato Responses to Nitrogen, Drought and Combined Stresses: Shared and Specific Effects on Vascular Plant Anatomy, Nutrient Partitioning and Amino Acids Profile. Plant Physiol. Biochem. 2025, 221, 109649. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Adamipour, N.; Khosh-Khui, M.; Salehi, H.; Razi, H.; Karami, A.; Moghadam, A. Metabolic and Genes Expression Analyses Involved in Proline Metabolism of Two Rose Species under Drought Stress. Plant Physiol. Biochem. 2020, 155, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Guo, Z.; Sun, X.; Jiang, Y.; Xie, F.; Chen, Y.; Jiang, J.; Guo, Z.; Sun, X.; Jiang, Y.; et al. Role of Proline in Regulating Turfgrass Tolerance to Abiotic Stress. Grass Res. 2023, 3, 1–7. [Google Scholar] [CrossRef]
- Trovato, M.; Forlani, G.; Signorelli, S.; Funck, D. Proline Metabolism and Its Functions in Development and Stress Tolerance. In Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants: Recent Advances and Future Perspectives; Hossain, M.A., Kumar, V., Burritt, D.J., Fujita, M., Mäkelä, P.S.A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 41–72. ISBN 978-3-030-27423-8. [Google Scholar]
- Zulfiqar, F.; Ashraf, M. Proline Alleviates Abiotic Stress Induced Oxidative Stress in Plants. J. Plant Growth Regul. 2023, 42, 4629–4651. [Google Scholar] [CrossRef]
- Zarattini, M.; Forlani, G. Toward Unveiling the Mechanisms for Transcriptional Regulation of Proline Biosynthesis in the Plant Cell Response to Biotic and Abiotic Stress Conditions. Front. Plant Sci. 2017, 8, 927. [Google Scholar] [CrossRef]
- Deuschle, K.; Funck, D.; Forlani, G.; Stransky, H.; Biehl, A.; Leister, D.; van der Graaff, E.; Kunze, R.; Frommer, W.B. The Role of Δ1-Pyrroline-5-Carboxylate Dehydrogenase in Proline Degradation. Plant Cell 2004, 16, 3413–3425. [Google Scholar] [CrossRef]
- Wei, T.L.; Wang, Z.X.; He, Y.F.; Xue, S.; Zhang, S.Q.; Pei, M.S.; Liu, H.N.; Yu, Y.H.; Guo, D.L. Proline Synthesis and Catabolism-Related Genes Synergistically Regulate Proline Accumulation in Response to Abiotic Stresses in Grapevines. Sci. Hortic. 2022, 305, 111373. [Google Scholar] [CrossRef]
- Verslues, P.E.; Sharma, S. Proline Metabolism and Its Implications for Plant-Environment Interaction. Arab. Book 2010, 8, e0140. [Google Scholar] [CrossRef]
- Zheng, Y.; Cabassa-Hourton, C.; Planchais, S.; Crilat, E.; Clément, G.; Dacher, M.; Durand, N.; Bordenave-Jacquemin, M.; Guivarc’h, A.; Dourmap, C.; et al. Pyrroline-5-Carboxylate Dehydrogenase Is an Essential Enzyme for Proline Dehydrogenase Function during Dark-Induced Senescence in Arabidopsis Thaliana. Plant Cell Environ. 2023, 46, 901–917. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, L.J.; Sun, X.F.; Zhao, L.L.; Wang, P.C. Transcriptomic and Metabolomic Analyses Reveal Key Metabolites, Pathways and Candidate Genes in Sophora davidii (Franch.) Skeels Seedlings Under Drought Stress. Front. Plant Sci. 2022, 13, 785702. [Google Scholar] [CrossRef]
- Hosseinifard, M.; Stefaniak, S.; Ghorbani Javid, M.; Soltani, E.; Wojtyla, Ł.; Garnczarska, M. Contribution of Exogenous Proline to Abiotic Stresses Tolerance in Plants: A Review. Int. J. Mol. Sci. 2022, 23, 5186. [Google Scholar] [CrossRef] [PubMed]
- Renzetti, M.; Funck, D.; Trovato, M. Proline and ROS: A Unified Mechanism in Plant Development and Stress Response? Plants 2025, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Cabassa-Hourton, C.; Planchais, S.; Lebreton, S.; Savouré, A. The Proline Cycle as an Eukaryotic Redox Valve. J. Exp. Bot. 2021, 72, 6856–6866. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Alfano, J.R.; Becker, D.F. Proline Metabolism Increases katG Expression and Oxidative Stress Resistance in Escherichia Coli. J. Bacteriol. 2015, 197, 431–440. [Google Scholar] [CrossRef]
- Liu, L.K.; Becker, D.F.; Tanner, J.J. Structure, Function, and Mechanism of Proline Utilization A (PutA). Arch. Biochem. Biophys. 2017, 632, 142–157. [Google Scholar] [CrossRef]
- Kiyosue, T.; Yoshiba, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K. A Nuclear Gene Encoding Mitochondrial Proline Dehydrogenase, an Enzyme Involved in Proline Metabolism, Is Upregulated by Proline but Downregulated by Dehydration in Arabidopsis. Plant Cell 1996, 8, 1323–1335. [Google Scholar] [CrossRef]
- Funck, D.; Eckard, S.; Müller, G. Non-Redundant Functions of Two Proline Dehydrogenase Isoforms in Arabidopsis. BMC Plant Biol. 2010, 10, 70. [Google Scholar] [CrossRef]
- Szabados, L.; Savouré, A. Proline: A Multifunctional Amino Acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Kohl, D.H.; Schubert, K.R.; Carter, M.B.; Hagedorn, C.H.; Shearer, G. Proline Metabolism in N2-Fixing Root Nodules: Energy Transfer and Regulation of Purine Synthesis. Proc. Natl. Acad. Sci. USA 1988, 85, 2036–2040. [Google Scholar] [CrossRef]
- Kleffmann, T.; Russenberger, D.; von Zychlinski, A.; Christopher, W.; Sjölander, K.; Gruissem, W.; Baginsky, S. The Arabidopsis Thaliana Chloroplast Proteome Reveals Pathway Abundance and Novel Protein Functions. Curr. Biol. 2004, 14, 354–362. [Google Scholar] [CrossRef]
- Miller, G.; Honig, A.; Stein, H.; Suzuki, N.; Mittler, R.; Zilberstein, A. Unraveling Δ1-Pyrroline-5-Carboxylate-Proline Cycle in Plants by Uncoupled Expression of Proline Oxidation Enzymes. J. Biol. Chem. 2009, 284, 26482–26492. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, F.; Ichino, T.; Osanai, M.; Wada, K. Oscillation and Regulation of Proline Content by P5CS and ProDH Gene Expressions in the Light/Dark Cycles in Arabidopsis thaliana L. Plant Cell Physiol. 2000, 41, 1096–1101. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Wu, Y.; Yu, M.; Cai, H.M.; Liu, B.B.; Ni, Q.Q.; Liu, L.Z.; Xu, H.; Fang, H.; et al. Research Progress of Proline in Plant Stress Resistance. J. Jianghan Univ. (Nat. Sci. Ed.) 2023, 51, 42–51. [Google Scholar] [CrossRef]
- Alvarez, M.E.; Savouré, A.; Szabados, L. Proline Metabolism as Regulatory Hub. Trends Plant Sci. 2022, 27, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Hagedorn, C.H.; Phang, J.M. Transfer of Reducing Equivalents into Mitochondria by the Interconversions of Proline and Δ1-Pyrroline-5-Carboxylate. Arch. Biochem. Biophys. 1983, 225, 95–101. [Google Scholar] [CrossRef]
- Chalecka, M.; Kazberuk, A.; Palka, J.; Surazynski, A. P5C as an Interface of Proline Interconvertible Amino Acids and Its Role in Regulation of Cell Survival and Apoptosis. Int. J. Mol. Sci. 2021, 22, 11763. [Google Scholar] [CrossRef]
- Liu, Y.; Borchert, G.L.; Donald, S.P.; Surazynski, A.; Hu, C.A.; Weydert, C.J.; Oberley, L.W.; Phang, J.M. MnSOD Inhibits Proline Oxidase-Induced Apoptosis in Colorectal Cancer Cells. Carcinogenesis 2005, 26, 1335–1342. [Google Scholar] [CrossRef]
- Maxwell, S.A.; Rivera, A. Proline Oxidase Induces Apoptosis in Tumor Cells, and Its Expression Is Frequently Absent or Reduced in Renal Carcinomas. J. Biol. Chem. 2003, 278, 9784–9789. [Google Scholar] [CrossRef]
- Rizzi, Y.S.; Monteoliva, M.I.; Fabro, G.; Grosso, C.L.; Laróvere, L.E.; Alvarez, M.E. P5CDH Affects the Pathways Contributing to Pro Synthesis after ProDH Activation by Biotic and Abiotic Stress Conditions. Front. Plant Sci. 2015, 6, 572. [Google Scholar] [CrossRef] [PubMed]
- Phang, J.M.; Pandhare, J.; Zabirnyk, O.; Liu, Y. PPARγ and Proline Oxidase in Cancer. PPAR Res. 2008, 2008, 542694. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, S.; Shi, L.; Gong, D.; Zhang, S.; Zhao, Q.; Zhan, D.; Vasseur, L.; Wang, Y.; Yu, J.; et al. Haplotype-Resolved Genome Assembly Provides Insights into Evolutionary History of the Tea Plant Camellia Sinensis. Nat. Genet. 2021, 53, 1250–1259. [Google Scholar] [CrossRef]
- Zhao, F.G.; Su, N.C.; Liu, Y.L.; Zhang, W.H.; Liu, Z.P. Effects of ABA and NaCl on Metabolism of Polyamines and Proline in Suaeda glauca Bunge. J. Plant Physiol. Mol. Biol. 2002, 28, 117–120. [Google Scholar]
- Verbruggen, N.; Hermans, C. Proline Accumulation in Plants: A Review. Amino Acids 2008, 35, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Székely, G.; Abrahám, E.; Cséplo, A.; Rigó, G.; Zsigmond, L.; Csiszár, J.; Ayaydin, F.; Strizhov, N.; Jásik, J.; Schmelzer, E.; et al. Duplicated P5CS Genes of Arabidopsis Play Distinct Roles in Stress Regulation and Developmental Control of Proline Biosynthesis. Plant J. 2008, 53, 11–28. [Google Scholar] [CrossRef]
- Furlan, A.L.; Bianucci, E.; Giordano, W.; Castro, S.; Becker, D.F. Proline Metabolic Dynamics and Implications in Drought Tolerance of Peanut Plants. Plant Physiol. Biochem. 2020, 151, 566–578. [Google Scholar] [CrossRef]
- Saibi, W.; Brini, F. Proline, A Peculiar Amino Acid with Astucious Functions in Development and Salt Tolerance Process in Plants. J. Food Nutr. Metab. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Ghosh, U.K.; Islam, M.D.N.; Siddiqui, M.D.N.; Khan, M.D.A.R. Understanding the Roles of Osmolytes for Acclimatizing Plants to Changing Environment: A Review of Potential Mechanism. Plant Signal. Behav. 2012, 16, 1913306. [Google Scholar] [CrossRef]
- Xia, E.H.; Tong, W.; Wu, Q.; Wei, S.; Zhao, J.; Zhang, Z.Z.; Wei, C.L.; Wan, X.C. Tea Plant Genomics: Achievements, Challenges and Perspectives. Hortic. Res. 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Wang, Y.; Xie, H.; Qiu, C.; Zhang, S.; Xiao, J.; Li, H.; Chen, L.; Li, X.; Ding, Z. Drought Stress Triggers Proteomic Changes Involving Lignin, Flavonoids and Fatty Acids in Tea Plants. Sci. Rep. 2020, 10, 15504. [Google Scholar] [CrossRef]
- Rahimi, M.; Kordrostami, M.; Mortezavi, M. Evaluation of Tea (Camellia sinensis L.) Biochemical Traits in Normal and Drought Stress Conditions to Identify Drought Tolerant Clones. Physiol. Mol. Biol. Plants 2019, 25, 59–69. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, S.; Zhu, C.; Chang, X.; Yue, C.; Wang, Z.; Lin, Y.; Lai, Z. Identification of Drought-Responsive miRNAs and Physiological Characterization of Tea Plant (Camellia sinensis L.) under Drought Stress. BMC Plant Biol. 2017, 17, 211. [Google Scholar] [CrossRef]
- Cabassa-Hourton, C.; Schertl, P.; Bordenave-Jacquemin, M.; Saadallah, K.; Guivarc’h, A.; Lebreton, S.; Planchais, S.; Klodmann, J.; Eubel, H.; Crilat, E.; et al. Proteomic and Functional Analysis of Proline Dehydrogenase 1 Link Proline Catabolism to Mitochondrial Electron Transport in Arabidopsis thaliana. Biochem. J. 2016, 473, 2623–2634. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, Y.S.; Cecchini, N.M.; Fabro, G.; Alvarez, M.E. Differential Control and Function of Arabidopsis ProDH1 and ProDH2 Genes on Infection with Biotrophic and Necrotrophic Pathogens. Mol. Plant Pathol. 2016, 18, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Launay, A.; Cabassa-Hourton, C.; Eubel, H.; Maldiney, R.; Guivarc’h, A.; Crilat, E.; Planchais, S.; Lacoste, J.; Bordenave-Jacquemin, M.; Clement, G.; et al. Proline Oxidation Fuels Mitochondrial Respiration during Dark-Induced Leaf Senescence in Arabidopsis Thaliana. J. Exp. Bot. 2019, 70, 6203–6214. [Google Scholar] [CrossRef]
- Lebreton, S.; Cabassa-Hourton, C.; Savouré, A.; Funck, D.; Forlani, G. Appropriate Activity Assays Are Crucial for the Specific Determination of Proline Dehydrogenase and Pyrroline-5-Carboxylate Reductase Activities. Front. Plant Sci. 2020, 11, 602939. [Google Scholar] [CrossRef]
- White, T.A.; Krishnan, N.; Becker, D.F.; Tanner, J.J. Structure and Kinetics of Monofunctional Proline Dehydrogenase from Thermus thermophilus. J. Biol. Chem. 2007, 282, 14316–14327. [Google Scholar] [CrossRef]
- Shahbaz Mohammadi, H.; Omidinia, E. Proline Dehydrogenase from Pseudomonas Fluorescens: Gene Cloning, Purification, Characterization and Homology Modeling. Appl. Biochem. Microbiol. 2012, 48, 167–174. [Google Scholar] [CrossRef]
- Moxley, M.A.; Tanner, J.J.; Becker, D.F. Steady-State Kinetic Mechanism of the Proline:Ubiquinone Oxidoreductase Activity of Proline Utilization A (PutA) from Escherichia coli. Arch. Biochem. Biophys. 2011, 516, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Moxley, M.A.; Sanyal, N.; Krishnan, N.; Tanner, J.J.; Becker, D.F. Evidence for Hysteretic Substrate Channeling in the Proline Dehydrogenase and Δ1-Pyrroline-5-Carboxylate Dehydrogenase Coupled Reaction of Proline Utilization A (PutA). J. Biol. Chem. 2014, 289, 3639–3651. [Google Scholar] [CrossRef]
- Schertl, P.; Cabassa, C.; Saadallah, K.; Bordenave, M.; Savouré, A.; Braun, H.-P. Biochemical Characterization of Proline Dehydrogenase in Arabidopsis Mitochondria. FEBS J. 2014, 281, 2794–2804. [Google Scholar] [CrossRef]
- Mori, T.; Wang, S.; Wang, C.; Zhang, W.; Mo, J. Effect of Long-Term Nitrogen Addition on the Kinetics of Phosphatases in a Subtropical Forest in Southern China. Appl. Soil. Ecol. 2024, 202, 105589. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll Fluorescence Analysis: A Guide to Good Practice and Understanding Some New Applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a Fluorescence as a Tool to Monitor Physiological Status of Plants under Abiotic Stress Conditions. Acta Physiol. Plant 2016, 38, 102. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, Y.; Goltsev, V.; Strasser, R.J.; Kalaji, H.M.; Wang, H.; Wang, X.; Chen, S.; Qiang, S. Comparative Effect of Tenuazonic Acid, Diuron, Bentazone, Dibromothymoquinone and Methyl Viologen on the Kinetics of Chl a Fluorescence Rise OJIP and the MR820 Signal. Plant Physiol. Biochem. 2020, 156, 39–48. [Google Scholar] [CrossRef]
- Wei, X.; Han, L.; Xu, N.; Sun, M.; Yang, X. Nitrate Nitrogen Enhances the Efficiency of Photoprotection in Leymus Chinensis under Drought Stress. Front. Plant Sci. 2024, 15, 1348925. [Google Scholar] [CrossRef]
- Rapacz, M.; Wójcik-Jagła, M.; Fiust, A.; Kalaji, H.M.; Kościelniak, J. Genome-Wide Associations of Chlorophyll Fluorescence OJIP Transient Parameters Connected with Soil Drought Response in Barley. Front. Plant Sci. 2019, 10, 78. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the Chlorophyll a Fluorescence Transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. ISBN 978-1-4020-3218-9. [Google Scholar]
- Cecchini, N.M.; Monteoliva, M.I.; Alvarez, M.E. Proline Dehydrogenase Contributes to Pathogen Defense in Arabidopsis. Plant Physiol. 2011, 155, 1947–1959. [Google Scholar] [CrossRef]
- Lv, W.T.; Lin, B.; Zhang, M.; Hua, X.J. Proline Accumulation Is Inhibitory to Arabidopsis Seedlings during Heat Stress. Plant Physiol. 2011, 156, 1921–1933. [Google Scholar] [CrossRef]
- Mani, S.; Van de Cotte, B.; Van Montagu, M.; Verbruggen, N. Altered Levels of Proline Dehydrogenase Cause Hypersensitivity to Proline and Its Analogs in Arabidopsis. Plant Physiol. 2002, 128, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Ibragimova, S.M.; Genaev, M.A.; Kochetov, A.V.; Afonnikov, D.A. Variability of Leaf Pubescence Characteristics in Transgenic Tobacco Lines with Partial Proline Dehydrogenase Gene Suppression. Biol. Plant. 2022, 66, 24–28. [Google Scholar] [CrossRef]
- Satoh, R.; Fujita, Y.; Nakashima, K.; Shinozaki, K.; Yamaguchi-Shinozaki, K. A Novel Subgroup of bZIP Proteins Functions as Transcriptional Activators in Hypoosmolarity-Responsive Expression of the ProDH Gene in Arabidopsis. Plant Cell Physiol. 2004, 45, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Mao, Z.; Yang, Z.; Li, X.; Hu, D.; Wu, F.; Yu, D.; Huang, F. A Soybean Pyrroline-5-Carboxylate Dehydrogenase GmP5CDH1 Modulates Plant Growth and Proline Sensitivity. Agronomy 2024, 14, 2411. [Google Scholar] [CrossRef]
- Wu, Q.L.; Ren, X.P.; Zhang, X.C. Cloning of ProDH gene and construction of the RNAi vector in tomato. J. Beijing Univ. Agric. 2016, 31, 26–30. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, H.R.; Zhang, X.Z.; Ma, J.L.; Bao, Y.Y.; Yin, D.H.; Wang, W.; Ma, Y.H. Changes in Proline Content and Expression Patterns of Key Regulatory Genes in Sea Buckthorn (Hippophae rhamnoides subsp. sinensis) under Drought Stress. Mol. Plant Breed. 2021, 19, 7596–7603. [Google Scholar] [CrossRef]
- Weltmeier, F.; Ehlert, A.; Mayer, C.S.; Dietrich, K.; Wang, X.; Schütze, K.; Alonso, R.; Harter, K.; Vicente-Carbajosa, J.; Dröge-Laser, W. Combinatorial Control of Arabidopsis Proline Dehydrogenase Transcription by Specific Heterodimerisation of bZIP Transcription Factors. EMBO J. 2006, 25, 3133–3143. [Google Scholar] [CrossRef]
- Dietrich, K.; Weltmeier, F.; Ehlert, A.; Weiste, C.; Stahl, M.; Harter, K.; Dröge-Laser, W. Heterodimers of the Arabidopsis Transcription Factors bZIP1 and bZIP53 Reprogram Amino Acid Metabolism during Low Energy Stress. Plant Cell 2011, 23, 381–395. [Google Scholar] [CrossRef]
- Satoh, R.; Nakashima, K.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. ACTCAT, a Novel Cis-Acting Element for Proline- and Hypoosmolarity-Responsive Expression of the ProDH Gene Encoding Proline Dehydrogenase in Arabidopsis. Plant Physiol. 2002, 130, 709–719. [Google Scholar] [CrossRef]
- Veerabagu, M.; Kirchler, T.; Elgass, K.; Stadelhofer, B.; Stahl, M.; Harter, K.; Mira-Rodado, V.; Chaban, C. The Interaction of the Arabidopsis Response Regulator ARR18 with bZIP63 Mediates the Regulation of PROLINE DEHYDROGENASE Expression. Mol. Plant 2014, 7, 1560–1577. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Luo, F.; Zhang, X.; Wang, X.; Sun, H.; Lou, Z.; Zhou, L.; Chen, Z. Uptake, Translocation, and Metabolism of Anthracene in Tea Plants. Sci. Total Environ. 2022, 821, 152905. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Ma, X.; Cai, W.; Wang, Y.; Gao, X.; Fu, B.; Li, S. Exogenous Proline Improves Salt Tolerance of Alfalfa through Modulation of Antioxidant Capacity, Ion Homeostasis, and Proline Metabolism. Plants 2022, 11, 2994. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.E.-A.; Abd El Mageed, T.; Abohamid, Y.; Abdallah, H.; El-Saadony, M.; AbuQamar, S.; El-Tarabily, K.; Abdou, N. Exogenously Applied Proline Enhances Morph-Physiological Responses and Yield of Drought-Stressed Maize Plants Grown Under Different Irrigation Systems. Front. Plant Sci. 2022, 13, 897027. [Google Scholar] [CrossRef]
- Goto, Y.; Maki, N.; Ichihashi, Y.; Kitazawa, D.; Igarashi, D.; Kadota, Y.; Shirasu, K. Exogenous Treatment with Glutamate Induces Immune Responses in Arabidopsis. Mol. Plant-Microbe Interact. 2020, 33, 474–487. [Google Scholar] [CrossRef]
- Cao, Y.; Ren, T.Y.; Ma, Y.C.; Li, F.; Fang, W.P.; Zhu, X.J. Effects of spraying exogenous GABA on some physiological indexes of Camellia sinensis leaves under high temperature condition. J. Plant Resour. Environ. 2021, 30, 69–71. [Google Scholar]
- Wei, C.J.; Li, S.Q.; Deng, F.; Liu, J.W.; Ren, J. Effects of γ-aminobutyric Acid Application on the Growth and Chlorophyll Fluorescence Parameters of Oat Seedlings under Drought Stress. Acta Agrestia Sin. 2025, 33, 489–497. [Google Scholar]
- He, G.; Zhang, H.; Liu, S.; Li, H.; Huo, Y.; Guo, K.; Xu, Z.; Zhang, H. Exogenous γ-Glutamic Acid (GABA) Induces Proline and Glutathione Synthesis in Alleviating Cd-Induced Photosynthetic Inhibition and Oxidative Damage in Tobacco Leaves. J. Plant Interact. 2021, 16, 296–306. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Gui, J.; Dong, F.; Cheng, S.; Mei, X.; Zhang, L.; Li, Y.; Su, X.; Baldermann, S.; et al. Molecular Cloning and Characterization of a Short-Chain Dehydrogenase Showing Activity with Volatile Compounds Isolated from Camellia sinensis. Plant Mol. Biol. Rep. 2015, 33, 253–263. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, K.; Yue, C.; Luo, L.; Zeng, L.; Wu, Z. CsXDH1 Gene Promotes Caffeine Catabolism Induced by Continuous Strong Light in Tea Plant. Hortic. Res. 2023, 10, uhad090. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Guo, L.; Yan, M.; Hu, J.; Lin, Q.; Wang, P.; Wang, M.; Zhao, H.; Wang, Y.; Ni, D.; et al. A Rapid and Efficient Transient Expression System for Gene Function and Subcellular Localization Studies in the Tea Plant (Camellia sinensis) Leaves. Sci. Hortic. 2022, 297, 110927. [Google Scholar] [CrossRef]
- Horton, P.; Park, K.-J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein Localization Predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar] [CrossRef]
- Chou, K.-C.; Shen, H.-B. Cell-PLoc: A Package of Web Servers for Predicting Subcellular Localization of Proteins in Various Organisms. Nat. Protoc. 2008, 3, 153–162. [Google Scholar] [CrossRef]
- Emanuelsson, O.; Brunak, S.; von Heijne, G.; Nielsen, H. Locating Proteins in the Cell Using TargetP, SignalP and Related Tools. Nat. Protoc. 2007, 2, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Senthil-Kumar, M.; Mysore, K.S. Ornithine-Delta-Aminotransferase and Proline Dehydrogenase Genes Play a Role in Non-Host Disease Resistance by Regulating Pyrroline-5-Carboxylate Metabolism-Induced Hypersensitive Response. Plant Cell Environ. 2012, 35, 1329–1343. [Google Scholar] [CrossRef]
- Gu, S.; Abid, M.; Bai, D.; Chen, C.; Sun, L.; Qi, X.; Zhong, Y.; Fang, J. Transcriptome-Wide Identification and Functional Characterization of CIPK Gene Family Members in Actinidia valvata under Salt Stress. Int. J. Mol. Sci. 2023, 24, 805. [Google Scholar] [CrossRef]
- Yuan, J.L.; Ma, C.; Feng, Y.L.; Zhang, J.; Yang, F.Q.; Li, Y.J. Response of chlorophyll fluorescence transient in leaves of wheats with different drought resistances to drought stresses and rehydration. Plant Physiol. J. 2018, 54, 1119–1129. [Google Scholar] [CrossRef]
asODN | Exogenous Proline (Pro) | |||
---|---|---|---|---|
CK | asODN | 0 mM | 10 mM | |
Asp | 1.00 | 1.26 | 1.00 | 1.25 |
Ser | 1.00 | 1.91 | 1.00 | 0.90 |
Glu | 1.00 | 1.51 | 1.00 | 1.16 |
Gly | 1.00 | 1.54 | 1.00 | 0.90 |
Ala | 1.00 | 1.55 | 1.00 | 1.05 |
Cys | 1.00 | 1.89 | 1.00 | 1.01 |
Val | 1.00 | 1.51 | 1.00 | 0.89 |
Met | 1.00 | 1.94 | 1.00 | 1.24 |
Ile | 1.00 | 2.25 | 1.00 | 0.98 |
Leu | 1.00 | 1.81 | 1.00 | 1.03 |
Tyr | 1.00 | 3.15 | 1.00 | 1.73 |
Phe | 1.00 | 0.86 | 1.00 | 0.77 |
GABA | 1.00 | 0.90 | 1.00 | 0.77 |
Lys | 1.00 | 1.63 | 1.00 | 1.43 |
His | 1.00 | 3.80 | 1.00 | 0.76 |
Arg | 1.00 | 1.72 | 1.00 | 1.07 |
Pro | 1.00 | 1.85 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, D.; Gao, Q.; Zeng, R.; Jiang, J.; Shen, Q.; Ma, Y.; Fang, W.; Zhu, X. The Proline Dehydrogenase Gene CsProDH1 Regulates Homeostasis of the Pro-P5C Cycle Under Drought Stress in Tea Plants. Int. J. Mol. Sci. 2025, 26, 3121. https://doi.org/10.3390/ijms26073121
Deng D, Gao Q, Zeng R, Jiang J, Shen Q, Ma Y, Fang W, Zhu X. The Proline Dehydrogenase Gene CsProDH1 Regulates Homeostasis of the Pro-P5C Cycle Under Drought Stress in Tea Plants. International Journal of Molecular Sciences. 2025; 26(7):3121. https://doi.org/10.3390/ijms26073121
Chicago/Turabian StyleDeng, Deng, Qinqin Gao, Rou Zeng, Jie Jiang, Qiang Shen, Yuanchun Ma, Wanping Fang, and Xujun Zhu. 2025. "The Proline Dehydrogenase Gene CsProDH1 Regulates Homeostasis of the Pro-P5C Cycle Under Drought Stress in Tea Plants" International Journal of Molecular Sciences 26, no. 7: 3121. https://doi.org/10.3390/ijms26073121
APA StyleDeng, D., Gao, Q., Zeng, R., Jiang, J., Shen, Q., Ma, Y., Fang, W., & Zhu, X. (2025). The Proline Dehydrogenase Gene CsProDH1 Regulates Homeostasis of the Pro-P5C Cycle Under Drought Stress in Tea Plants. International Journal of Molecular Sciences, 26(7), 3121. https://doi.org/10.3390/ijms26073121