Iron Overload, Microbleeding and the Role of Bilirubin in Alzheimer’s Disease Brain: Revisiting the Vascular Hypothesis
Abstract
:1. Introduction
1.1. Interplay Between Alzheimer’s Disease and Vascular Dementia: Shared Pathways and Distinctions
1.2. Cerebral Microbleeds: Pathophysiological Insights into AD and VaD
1.3. Vascular Comorbidities and Their Role in Cognitive Impairment
1.3.1. Hypertension
1.3.2. Diabetes Mellitus
1.3.3. Atrial Fibrillation
2. Microvascular Alterations in the Aging Brain
2.1. Neurovascular Unit and Microbleeding
- (i)
- Microglia and astrocytes
- (ii)
- Pericytes
2.2. The Fingerprints of Heme in the Brain
2.3. Heme Oxygenase 1 (HO-1) in AD and in VaD
2.4. Iron’s Role in AD Pathology vs. VaD Pathology
3. Bilirubin as a Theranostic Molecule in AD
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alzheimer’s Association. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 2021, 17, 327–406. [Google Scholar] [CrossRef]
- Dubois, B.; Feldman, H.H.; Jacova, C.; DeKosky, S.T.; Barberger-Gateau, P.; Cummings, J.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.A.; et al. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol. 2016, 15, 456–476. [Google Scholar] [CrossRef]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. Neuron 2016, 86, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Querfurth, H.W.; LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med. 2010, 362, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, K.; Liu, F.; Gong, C.X. Tau and neurodegenerative disease: The story so far. Nat. Rev. Neurol. 2016, 12, 15–27. [Google Scholar] [CrossRef]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vandenabeele, P.; Frautschy, S.A.; et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef]
- Gorelick, P.B.; Scuteri, A.; Black, S.E.; DeCarli, C.; Greenberg, S.M.; Iadecola, C.; Launer, L.J.; Laurent, S.; Lopez, O.L.; Nyenhuis, D.; et al. Vascular contributions to cognitive impairment and dementia. Stroke 2011, 42, 2672–2713. [Google Scholar] [CrossRef]
- Kalaria, R.N. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol. 2016, 131, 659–685. [Google Scholar] [CrossRef]
- Rockwood, K. Vascular cognitive impairment and vascular dementia. J. Neurol. Sci. 2003, 226, 23–27. [Google Scholar] [CrossRef]
- Stones, J. What Initiates the Formation of Senile Plaques? The Origin of Alzheimer-Like Dementias in Capillary Haemorrhages. Med. Hypotheses 2008, 71, 347–359. [Google Scholar] [CrossRef]
- Orehek, A.J. The Micron Stroke Hypothesis of Alzheimer’s Disease and Dementia. Med. Hypotheses 2012, 78, 562–570. [Google Scholar] [CrossRef]
- Schrag, M.; Crofton, A.; Zabel, M.; Jiffry, A.; Kirsch, D.; Dickson, A.; Mao, X.W.; Vinters, H.V.; Domaille, D.W.; Chang, C.J.; et al. Effect of Cerebral Amyloid Angiopathy on Brain Iron, Copper, and Zinc in Alzheimer’s Disease. J. Alzheimers Dis. 2011, 24, 137–149. [Google Scholar] [CrossRef]
- Franzblau, C.; Hernandez-Avila, R. Vascular Damage: A Persisting Pathology Common to Alzheimer’s Disease and Traumatic Brain Injury. Front. Aging Neurosci. 2013, 5, 30. [Google Scholar] [CrossRef]
- Nasb, M.; Tao, W.; Chen, N. Alzheimer’s Disease Puzzle: Delving into Pathogenesis Hypotheses. Aging Dis. 2024, 15, 43–73. [Google Scholar]
- Launer, L.J.; Ross, G.W.; Petrovitch, H.; Foley, D.; White, L.R.; Havlik, R.J. Midlife Blood Pressure and Dementia: The Honolulu-Asia Aging Study. Neurobiol. Aging 1995, 16, 439–444. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X.; Li, B. Glymphatic System Dysfunction in Central Nervous System Diseases and Mood Disorders. Front. Aging Neurosci. 2022, 14, 873697. [Google Scholar] [CrossRef]
- Takeda, S.; Sato, N.; Ikimura, K.; Nishino, H.; Rakugi, H.; Morishita, R. Novel Concept of Blood-Brain Barrier Dysfunction in Alzheimer’s Disease and Vascular Cognitive Impairment. Front. Aging Neurosci. 2020, 12, 110. [Google Scholar] [CrossRef]
- Burillo, J.; Martin-Fuentes, P.; Martinez-Hervas, S.; Ordoñez-Llanos, J.; Lecumberri, B.; Blanco-Vaca, F. Insulin Resistance and Alzheimer’s Disease: Role of Insulin and Other Related Factors. J. Clin. Med. 2021, 10, 1232. [Google Scholar] [CrossRef]
- Hamzé, R.; Abhayraj, K.; Rivière, A.; Rojas, A.; LeBlanc, B.; Zhang, W. Brain Insulin Resistance, Alzheimer’s Disease, and Metabolic Disorders: Exploring the Links. Cells 2022, 11, 158. [Google Scholar] [CrossRef]
- Banks, W.A.; Owen, J.B.; Erickson, M.A. Insulin in the Brain: There and Back Again. Pharmacol. Ther. 2012, 136, 82–93. [Google Scholar] [CrossRef]
- Nowell, J.; Jones, L.; Smith, K.; Brown, R.; Chen, Z. The Emerging Role of Antidiabetic Medications in Treating Alzheimer’s Disease. Brain Behav. 2023, 13, e3341. [Google Scholar] [CrossRef]
- Dulli, D.A.; Stanko, H.; Levine, R.L. Atrial Fibrillation Is Associated with Severe Acute Ischemic Stroke. Neuroepidemiology 2010, 35, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Kalantarian, S.; Stern, T.A.; Mansour, M.; Ruskin, J.N. Cognitive Impairment Associated with Atrial Fibrillation: A Meta-Analysis. Ann. Intern. Med. 2013, 158, 338–346. [Google Scholar] [CrossRef]
- Conen, D.; Rodondi, N.; Müller, A.; Beer, J.H.; Ammann, P.; Moschovitis, G.; Auricchio, A.; Hayoz, D.; Kobza, R.; Shah, D.; et al. Relationships of Overt and Silent Brain Lesions with Cognitive Function in Atrial Fibrillation. J. Am. Coll. Cardiol. 2018, 71, 680–690. [Google Scholar] [CrossRef]
- Ding, M.; Fratiglioni, L.; Johnell, K.; Santoni, G.; Fastbom, J.; Ljungman, P.; Marengoni, A.; Qiu, C. Atrial Fibrillation, Antithrombotic Treatment, and Cognitive Aging: A Population-Based Study. Neurology 2018, 91, e1732–e1740. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Refsum, H. Homocysteine, B Vitamins, and Cognitive Impairment. Annu. Rev. Nutr. 2016, 36, 211–239. [Google Scholar] [CrossRef]
- Mattson, M.P.; Shea, T.B. Folate and Homocysteine Metabolism in Neural Plasticity and Neurodegenerative Disorders. Trends Neurosci. 2003, 26, 137–146. [Google Scholar] [CrossRef]
- Morris, M.S. Homocysteine and Alzheimer’s Disease. Lancet Neurol. 2003, 2, 425–428. [Google Scholar] [CrossRef]
- Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P.F.; Rosenberg, I.H.; D’Agostino, R.B.; Wilson, P.W.F.; Wolf, P.A. Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer’s Disease. N. Engl. J. Med. 2002, 346, 476–483. [Google Scholar] [CrossRef]
- Olsen, T.; Refsum, H.; Eiser, A.R. Hyperhomocysteinemia Is Associated with a Myriad of Age-Related Illnesses: A Potential Role for Metal Toxicity. Mayo Clin. Proc. 2024, 99, 1362–1368. [Google Scholar] [CrossRef]
- Friberg, L.; Rosenqvist, M. Less Dementia with Oral Anticoagulation in Atrial Fibrillation. Eur. Heart J. 2018, 39, 453–460. [Google Scholar] [CrossRef] [PubMed]
- McCaddon, A.; Hudson, P.; Hill, D.; Barber, J.; Lloyd, A.; Davies, G. Homocysteine and Cognitive Decline in Healthy Elderly. Dement. Geriatr. Cogn. Disord. 2001, 12, 309–313. [Google Scholar] [CrossRef]
- Douaud, G.; Refsum, H.; de Jager, C.A.; Jacoby, R.; Nichols, T.E.; Smith, S.M.; Smith, A.D. Preventing Alzheimer’s Disease-Related Gray Matter Atrophy by B-Vitamin Treatment. Proc. Natl. Acad. Sci. USA 2013, 110, 9523–9528. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.; Bennett, D.A.; Parish, S.; Verhoef, P.; Dotsch, R.; Birks, J.; Ward, M.; Schneede, J.; Ueland, P.M.; Vollset, S.E.; et al. Homocysteine and Brain Atrophy in Mild Cognitive Impairment: A Randomized Controlled Trial. PLoS ONE 2013, 8, e79817. [Google Scholar] [CrossRef]
- Iadecola, C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 2017, 96, 17–42. [Google Scholar] [CrossRef]
- Huang, W.; Xia, Q.; Zheng, F.; Zhao, X.; Ge, F.; Xiao, J.; Liu, Z.; Shen, Y.; Ye, K.; Wang, D.; et al. Microglia-Mediated Neurovascular Unit Dysfunction in Alzheimer’s Disease. J. Alzheimers Dis. 2023, 94, S335–S354. [Google Scholar] [CrossRef]
- Corder, E.H.; Saunders, A.M.; Risch, N.J.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Rimmler, J.B.; Locke, P.A.; Conneally, P.M.; Schmader, K.E.; et al. Protective Effect of Apolipoprotein E Type 2 Allele for Late Onset Alzheimer Disease. Nat. Genet. 1994, 7, 180–184. [Google Scholar] [CrossRef]
- Suri, S.; Mackay, C.E.; Kelly, M.E.; Germuska, M.; Tunbridge, E.M.; Frisoni, G.B.; Matthews, P.M.; Ebmeier, K.P.; Bulte, D.P.; Filippini, N. Reduced Cerebrovascular Reactivity in Young Adults Carrying the APOE ε4 Allele. Alzheimers Dement. 2015, 11, 648–657.e1. [Google Scholar] [CrossRef]
- Nortley, R.; Korte, N.; Izquierdo, P.; Hirunpattarasilp, C.; Mishra, A.; Jaunmuktane, Z.; Kyrargyri, V.; Pfeiffer, T.; Khennouf, L.; Madry, C.; et al. Amyloid β Oligomers Constrict Human Capillaries in Alzheimer’s Disease via Signaling to Pericytes. Science 2019, 365, eaav9518. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Guo, D.-D.; Duan, R.-N.; Li, Y. Interactions between Beta-Amyloid and Pericytes in Alzheimer’s Disease. Front. Biosci. 2024, 29, 136. [Google Scholar] [CrossRef]
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Cerebrospinal Fluid Biomarkers of Neurovascular Dysfunction in Mild Dementia and Alzheimer’s Disease. J. Cereb. Blood Flow Metab. 2015, 35, 1055–1068. [Google Scholar] [CrossRef] [PubMed]
- Uemura, M.T.; Maki, T.; Ihara, M.; Lee, V.M.Y.; Trojanowski, J.Q. Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Front. Aging Neurosci. 2020, 12, 80. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.N.; Reynell, C.; Gesslein, B.; Hamilton, N.B.; Mishra, A.; Sutherland, B.A.; O’Farrell, F.M.; Buchan, A.M.; Lauritzen, M.; Attwell, D. Capillary Pericytes Regulate Cerebral Blood Flow in Health and Disease. Nature 2014, 508, 55–60. [Google Scholar] [CrossRef]
- Peppiatt, C.M.; Howarth, C.; Mobbs, P.; Attwell, D. Bidirectional Control of CNS Capillary Diameter by Pericytes. Nature 2006, 443, 700–704. [Google Scholar] [CrossRef]
- Ursino, M.; Giannessi, M. A Model of Cerebrovascular Reactivity Including the Circle of Willis and Cortical Anastomoses. Ann. Biomed. Eng. 2010, 38, 955–974. [Google Scholar] [CrossRef]
- Calvetti, D.; Prezioso, J.; Somersalo, E. Estimating Hemodynamic Stimulus and Blood Vessel Compliance from Cerebral Blood Flow Data. J. Theor. Biol. 2019, 460, 243–261. [Google Scholar] [CrossRef]
- Anselmino, M.; Scarsoglio, S.; Saglietto, A.; Gaita, F.; Ridolfi, L. Transient Cerebral Hypoperfusion and Hypertensive Events during Atrial Fibrillation: A Plausible Mechanism for Cognitive Impairment. Sci. Rep. 2016, 6, 28635. [Google Scholar] [CrossRef] [PubMed]
- Alkhalifa, A.E.; Al-Ghraiybah, N.F.; Odum, J.; Shunnarah, J.G.; Austin, N.; Kaddoumi, A. Blood–Brain Barrier Breakdown in Alzheimer’s Disease: Mechanisms and Targeted Strategies. Int. J. Mol. Sci. 2023, 24, 16288. [Google Scholar] [CrossRef]
- Nelson, A.R.; Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Neurovascular Dysfunction and Neurodegeneration in Dementia and Alzheimer’s Disease. Biochim. Biophys. Acta Mol. Basis Dis. 2016, 1862, 887–900. [Google Scholar] [CrossRef]
- Mazza, M.; Marano, G.; Traversi, G.; Bria, P.; Mazza, S. Primary Cerebral Blood Flow Deficiency and Alzheimer’s Disease: Shadows and Lights. J. Alzheimers Dis. 2011, 23, 375–389. [Google Scholar] [CrossRef]
- Winkler, E.A.; Sagare, A.P.; Zlokovic, B.V. The Pericyte: A Forgotten Cell Type with Important Implications for Alzheimer’s Disease? Brain Pathol. 2014, 24, 371–386. [Google Scholar] [CrossRef] [PubMed]
- ElAli, A.; Thériault, P.; Rivest, S. The Role of Pericytes in Neurovascular Unit Remodeling in Brain Disorders. Int. J. Mol. Sci. 2014, 15, 6453–6474. [Google Scholar] [CrossRef] [PubMed]
- Schipper, H.M. Heme oxygenase-1 in Alzheimer disease: A tribute to Moussa Youdim. J. Neural Transm. 2011, 118, 381–387. [Google Scholar] [CrossRef]
- Schipper, H.M.; Song, W.; Tavitian, A.; Cressatti, M. The Sinister Face of Heme Oxygenase-1 in Brain Aging and Disease. Prog. Neurobiol. 2019, 172, 40–70. [Google Scholar] [CrossRef]
- Cuadrado, A.; Rojo, A.I. Heme Oxygenase-1 as a Therapeutic Target in Neurodegenerative Diseases and Brain Infections. Curr. Pharm. Des. 2008, 14, 429–442. [Google Scholar] [CrossRef]
- Liu, R.; Yang, J.; Li, Y.; Xie, J.; Wang, J. Heme oxygenase-1: The roles of both good and evil in neurodegenerative diseases. J. Neurochem. 2023, 167, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Stocker, R.; Yamamoto, Y.; McDonagh, A.F.; Glazer, A.N.; Ames, B.N. Bilirubin is an antioxidant of possible physiological importance. Science 1987, 235, 1043–1046. [Google Scholar] [CrossRef]
- Schipper, H.M.; Bennett, D.A.; Liberman, A.; Bienias, J.L.; Schneider, J.A.; Kelly, J.; Arvanitakis, Z. Glial Heme Oxygenase-1 Expression in Alzheimer Disease and Mild Cognitive Impairment. Neurobiol. Aging 2006, 27, 252–261. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Hsieh, H.-L. Roles of Heme Oxygenase-1 in Neuroinflammation and Brain Disorders. Antioxidants 2022, 11, 923. [Google Scholar] [CrossRef]
- Si, Z.; Wang, X. The Neuroprotective and Neurodegeneration Effects of Heme Oxygenase-1 in Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 1259. [Google Scholar] [CrossRef]
- Lin, S.-H.; Song, W.; Cressatti, M.; Zukor, H.; Wang, E.; Schipper, H.M. Heme Oxygenase-1 Modulates MicroRNA Expression in Cultured Astroglia: Implications for Chronic Brain Disorders. Glia 2015, 63, 1270–1284. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zukor, H.; Lin, S.-H.; Liberman, A.; Tavitian, A.; Mui, J.; Vali, H.; Fillebeen, C.; Pantopoulos, K.; Wu, T.-D.; et al. Unregulated Brain Iron Deposition in Transgenic Mice Over-Expressing HMOX1 in the Astrocytic Compartment. J. Neurochem. 2012, 123, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, N.; Dallas, M.; Al-Owais, M.; Boyle, J.P.; Scragg, J.L.; Peers, C.; Pearson, H.A.; Green, R.; Vaughan, P.F.; Peers, C. Modulation of Heme Oxygenase-1 Protects against Alzheimer’s Amyloid-β₁₋₄₂-Induced Toxicity via Carbon Monoxide Production. Cell Death Dis. 2014, 5, e1569. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Q.; Wu, M. Antioxidant and Neuroprotective Actions of Resveratrol in Cerebrovascular Diseases. Cell Death Dis. 2014, 5, e1569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xiao, Y.; Lv, P.; Teng, Z.; Dong, Y.; Qi, Q.; Liu, Z. Edaravone Attenuates Oxidative Stress Induced by Chronic Cerebral Hypoperfusion: Role of the ERK/Nrf2/HO-1 Signaling Pathway. Neurol. Res. 2018, 40, 1–10. [Google Scholar] [CrossRef]
- Mao, L.; Yang, T.; Li, X.; Lei, X.; Sun, Y.; Zhao, Y.; Zhang, W.; Gao, Y.; Sun, B.; Zhang, F. Protective Effects of Sulforaphane in Experimental Vascular Cognitive Impairment: Contribution of the Nrf2 Pathway. J. Cereb. Blood Flow Metab. 2019, 39, 352–366. [Google Scholar] [CrossRef]
- Ficiarà, E.; Munir, Z.; Boschi, S.; Caligiuri, M.E.; Guiot, C. Alteration of Iron Concentration in Alzheimer’s Disease as a Potential Diagnostic Biomarker Revealing Ferroptosis. Int. J. Mol. Sci. 2021, 22, 4479. [Google Scholar] [CrossRef]
- Fleming, D.J.; Jacques, P.F.; Tucker, K.L.; Massaro, J.M.; D’Agostino Sr, R.B.; Wilson, P.W.; Wood, R.J. Iron Status of the Free-Living, Elderly Framingham Heart Study Cohort: An Iron-Replete Population with a High Prevalence of Elevated Iron Stores. J. Nutr. 2001, 131, 3032–3036. [Google Scholar] [CrossRef]
- Ward, R.J.; Zucca, F.A.; Duyn, J.H.; Crichton, R.R.; Zecca, L. The Role of Iron in Brain Ageing and Neurodegenerative Disorders. Lancet Neurol. 2014, 13, 1045–1060. [Google Scholar] [CrossRef]
- Ashraf, A.; Clark, M.; So, P.W. The Aging of Iron Man. Front. Neurosci. 2018, 12, 694. [Google Scholar] [CrossRef]
- Cheng, R.; Dhorajia, V.; Kim, J.; Kim, Y. Mitochondrial Iron Metabolism and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 12345. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Real, J.M.; Manco, M. Effects of Iron Overload on Chronic Metabolic Diseases. Lancet Diabetes Endocrinol. 2014, 2, 513–526. [Google Scholar] [CrossRef]
- Belaidi, A.A.; Bush, A.I. The Neurochemistry of Iron in Alzheimer’s and Parkinson’s Disease: Targets for Therapy. J. Neurochem. 2016, 139, 179–197. [Google Scholar] [CrossRef] [PubMed]
- Ficiarà, E.; Molinar, C.; Gazzin, S.; Jayanti, S.; Argenziano, M.; Nasi, L.; Casoli, F.; Albertini, F.; Ansari, S.A.; Marcantoni, A.; et al. Development of Iron Nanochelating Agents: Preliminary Investigation of Efficacy and Safety for Central Nervous System Applications. Int. J. Mol. Sci. 2023, 25, 729. [Google Scholar] [CrossRef]
- Devos, D.; Cabantchik, Z.I.; Moreau, C.; Danel, V.; Mahoney-Sanchez, L.; Bouchaoui, H.; Gouel, F.; Rolland, A.-S.; Duce, J.A.; Devedjian, J.-C. Conservative Iron Chelation for Neurodegenerative Diseases. J. Neural Transm. 2020, 127, 189–206. [Google Scholar] [CrossRef]
- Pamphlett, R.; Bishop, D.P. The Toxic Metal Hypothesis for Neurological Disorders. Front. Neurol. 2023, 14, 1173779. [Google Scholar] [CrossRef]
- Gorini, F.; Tonacci, A. Metal Toxicity and Dementia Including Frontotemporal Dementia: Current State of Knowledge. Antioxidants 2024, 13, 938. [Google Scholar] [CrossRef]
- Gazzin, S.; Jayanti, S.; Tiribelli, C. Models of Bilirubin Neurological Damage: Lessons Learned and New Challenges. Pediatr. Res. 2023, 93, 1838–1845. [Google Scholar] [CrossRef]
- Kaur, A.; Rohit; Aran, K.R. Unraveling the Dual Role of Bilirubin in Neurological Diseases: A Comprehensive Exploration of Its Neuroprotective and Neurotoxic Effects. Brain Res. 2025, 1851, 149472. [Google Scholar] [CrossRef]
- Llido, J.P.; Jayanti, S.; Tiribelli, C.; Gazzin, S. Bilirubin and Oxidative Stress in Age-Related Brain Diseases. Antioxidants 2023, 12, 1525. [Google Scholar] [CrossRef]
- Maleki, M.H.; Vakili, O.; Tavakoli, R.; Nadimi, E.; Noori, Z.; Taghizadeh, M.; Dehghanian, A.; Tayebi, L.; Shafiee, S.M. Protective and Curative Effects of Unconjugated Bilirubin on Gene Expression of LOX-1 and iNOS in the Heart of Rats Receiving High-Fat Diet and Low-Dose Streptozotocin: A Histomorphometric Approach. J. Inflamm. 2024, 21, 26. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liang, L.; Xu, H.; Xu, J.; Yao, L.; Li, Y.; Tan, Y.; Li, X.; Huang, Q.; Yang, Z.; et al. Short-Term Exposure to Bilirubin Induces Encephalopathy Similar to Alzheimer’s Disease in Late Life. J. Alzheimers Dis. 2020, 73, 277–295. [Google Scholar] [CrossRef] [PubMed]
- Soladogun, A.S.; Zhang, L. The Neural Palette of Heme: Altered Heme Homeostasis Underlies Defective Neurotransmission, Increased Oxidative Stress, and Disease Pathogenesis. Antioxidants 2024, 13, 1441. [Google Scholar] [CrossRef]
- Kimpara, T.; Takeda, A.; Watanabe, K.; Itoyama, Y.; Ohno, K.; Watanabe, M.; Baba, T.; Nishimura, M. Increased Bilirubin and Its Derivatives in the Cerebrospinal Fluid in Alzheimer’s Disease. Neurobiol. Aging 2000, 21, 551–554. [Google Scholar] [CrossRef]
- Gazzin, S.; Bellarosa, C.; Tiribelli, C. Molecular Events in Bilirubin Brain Toxicity Revisited. Pediatr. Res. 2024, 95, 1734–1740. [Google Scholar] [CrossRef]
- Hansen, T.W.R. Bilirubin Brain Toxicity. J. Perinatol. 2001, 21, S48–S51. [Google Scholar] [CrossRef]
- Doré, S.; Takahashi, M.; Ferris, C.D.; Hester, L.D.; Guastella, D.; Snyder, S.H. Bilirubin, Formed by Activation of Heme Oxygenase-2, Protects Neurons against Oxidative Stress Injury. Proc. Natl. Acad. Sci. USA 1999, 96, 2445–2450. [Google Scholar] [CrossRef]
- Kim, T.S.; Pae, C.U.; Yoon, S.J.; Jang, W.Y.; Lee, N.J.; Kim, J.J.; Lee, S.J.; Lee, C.; Paik, I.H.; Lee, C.U. Decreased plasma antioxidants in patients with Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2006, 21, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Zhao, X.; Lin, R.; Xie, X.; Zhou, Y.; Wang, Y.; Zhang, Y.; Cui, X. The therapeutic effect of albumin infusion on Alzheimer’s disease patients with amyloid-beta deposition: A systematic review. Front. Neurosci. 2020, 14, 604. [Google Scholar] [CrossRef]
- Lakovic, K.; Goonetilleke, N.; White, J.A.; Nixon, G.F.; Chung, K.K.K.; Grinberg, L.T.; Walker, F.R.; Rosenfeld, J.V.; Dziennis, S.; Turner, R.J. Bilirubin and its oxidation products damage brain white matter. J. Cereb. Blood Flow Metab. 2014, 34, 1837–1847. [Google Scholar] [CrossRef]
- Paul, B.D.; Pieper, A.A. Neuroprotective Roles of the Biliverdin Reductase-A/Bilirubin Axis in the Brain. Biomolecules 2024, 14, 155. [Google Scholar] [CrossRef]
- Jayanti, S.; Vitek, L.; Dalla Verde, C.; Llido, J.P.; Sukowati, C.; Tiribelli, C.; Gazzin, S. Role of Natural Compounds Modulating Heme Catabolic Pathway in Gut, Liver, Cardiovascular, and Brain Diseases. Biomolecules 2024, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Jayanti, S.; Dalla Verde, C.; Tiribelli, C.; Gazzin, S. Inflammation, Dopaminergic Brain and Bilirubin. Int. J. Mol. Sci. 2023, 24, 11478. [Google Scholar] [CrossRef]
- Rosenthal, P.; Pincus, M.; Fink, D. Sex- and age-related differences in bilirubin concentrations in serum. Clin. Chem. 1984, 30, 1380–1382. [Google Scholar] [CrossRef] [PubMed]
- Ilzecka, J.; Stelmasiak, Z. Serum bilirubin concentration in patients with amyotrophic lateral sclerosis. Clin. Neurol. Neurosurg. 2003, 105, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, K.; Saito, Y.; Kanamaru, K.; Kirino, Y.; Liu, N.; Funakoshi, K.; Ito, M.; Uchimura, K. Biliverdin protects against brain ischemia/reperfusion injury in rats. Brain Res. 2008, 1193, 136–143. [Google Scholar] [CrossRef]
- Kitamura, Y.; Ishida, Y.; Takata, K.; Mizutani, H.; Kakimura, J.; Inden, M.; Nakata, J.; Taniguchi, T.; Tsukahara, T.; Akaike, A.; et al. Hyperbilirubinemia Protects Against Focal Ischemia in Rats. J. Neurosci. Res. 2003, 71, 544–550. [Google Scholar] [CrossRef]
Aspect | Alzheimer’s Disease (AD) | Vascular Dementia (VaD) | Similarities |
---|---|---|---|
Prevalence | Most common dementia type (60–80% of cases globally). | Second most common dementia type. | Both are prevalent dementia types. |
Etiology | Neurodegenerative; characterized by amyloid plaques and tau tangles. | Results from cerebrovascular conditions like stroke, atherosclerosis, and small vessel disease. | Both involve cognitive decline and neuronal damage. |
Neuropathology | Amyloid plaques, tau tangles, neuroinflammation, neuronal loss. | Vascular damage, ischemic lesions, white matter degeneration, hypoperfusion. | Both cause neuronal injury through oxidative stress and other mechanisms. |
Pathological Progression | Begins in the hippocampus, spreading to temporoparietal and frontal regions. | Varies depending on vascular events (e.g., cortical infarction, subcortical hypoperfusion). | Both involve progressive brain damage. |
Cognitive Symptoms | Progressive decline in memory, language, and executive function; uniform trajectory. | Unpredictable decline, influenced by stroke type and severity. | Overlapping deficits in memory, language, visuospatial abilities, and executive function. |
Motor Impairment | Less common in early stages. | More pronounced motor impairments. | Both can affect motor functions, but to varying extents. |
Life Expectancy | Longer average survival after diagnosis compared to VaD. | Shorter average survival (~5 years post-diagnosis). | Both conditions reduce life expectancy. |
Diagnosis | Neuropsychological tests moderately accurate; associated with wandering behavior. | Neuropsychological tests moderately accurate; associated with early-onset depression. | Differential diagnosis is challenging; both share overlapping features. |
Risk Factors | Includes APOE ε4 allele, age, and family history. | Includes stroke, cardiovascular diseases, and shared genetic factors like APOE ε4 allele. | Both share common genetic and lifestyle risk factors. |
Mixed Dementia | Often coexists with vascular pathology in older individuals. | Commonly overlaps with AD pathology in mixed dementia cases. | Mixed dementia reflects shared characteristics and overlapping pathologies. |
Treatment Challenges | No definitive cure; focus on slowing progression and managing symptoms. | No definitive cure; focuses on managing vascular health and preventing further strokes. | Both lack curative treatments, with emphasis on symptom management. |
Vascular comorbidities | Often coexists with hypertension, diabetes, and atherosclerosis, contributing to disease progression. | Strongly linked to cardiovascular risk factors such as hypertension, atrial fibrillation, and stroke history. | Both are influenced by vascular health, with overlapping risk factors exacerbating cognitive decline. |
Homocysteine’s Role | Elevated homocysteine levels are associated with increased amyloid aggregation, oxidative stress, and neurodegeneration in AD. | High homocysteine contributes to endothelial dysfunction, cerebrovascular damage, and an increased risk of stroke, exacerbating VaD progression. | Elevated homocysteine is a shared risk factor, promoting neurotoxicity, vascular damage, and cognitive decline in both conditions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ficiarà, E.; Rabbito, R.; Roveta, F.; Rubino, E.; Rainero, I.; Guiot, C.; Boschi, S. Iron Overload, Microbleeding and the Role of Bilirubin in Alzheimer’s Disease Brain: Revisiting the Vascular Hypothesis. Int. J. Mol. Sci. 2025, 26, 3060. https://doi.org/10.3390/ijms26073060
Ficiarà E, Rabbito R, Roveta F, Rubino E, Rainero I, Guiot C, Boschi S. Iron Overload, Microbleeding and the Role of Bilirubin in Alzheimer’s Disease Brain: Revisiting the Vascular Hypothesis. International Journal of Molecular Sciences. 2025; 26(7):3060. https://doi.org/10.3390/ijms26073060
Chicago/Turabian StyleFiciarà, Eleonora, Rosita Rabbito, Fausto Roveta, Elisa Rubino, Innocenzo Rainero, Caterina Guiot, and Silvia Boschi. 2025. "Iron Overload, Microbleeding and the Role of Bilirubin in Alzheimer’s Disease Brain: Revisiting the Vascular Hypothesis" International Journal of Molecular Sciences 26, no. 7: 3060. https://doi.org/10.3390/ijms26073060
APA StyleFiciarà, E., Rabbito, R., Roveta, F., Rubino, E., Rainero, I., Guiot, C., & Boschi, S. (2025). Iron Overload, Microbleeding and the Role of Bilirubin in Alzheimer’s Disease Brain: Revisiting the Vascular Hypothesis. International Journal of Molecular Sciences, 26(7), 3060. https://doi.org/10.3390/ijms26073060