Next Article in Journal
Protocols for Extraction of miRNA from Extracellular Vesicles of Lyophilized Human Saliva Samples
Next Article in Special Issue
Non-Integrin Laminin Receptors: Shedding New Light and Clarity on Their Involvement in Human Diseases
Previous Article in Journal
Enhancement of NK Cell Cytotoxic Activity and Immunoregulatory Effects of a Natural Product Supplement Across a Wide Age Span: A 30-Day In Vivo Human Study
Previous Article in Special Issue
Matrikines of Sea Cucumbers: Structure, Biological Activity and Mechanisms of Action
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Cathepsin K Inhibitors as Potential Drugs for the Treatment of Osteoarthritis

Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Université Lyon 1, UMR CNRS 5246, 69 622 Villeurbanne Cedex, France
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2025, 26(7), 2896; https://doi.org/10.3390/ijms26072896
Submission received: 24 January 2025 / Revised: 17 March 2025 / Accepted: 19 March 2025 / Published: 22 March 2025

Abstract

:
Links between cathepsin K and the pathophysiology of osteoarthritis (OA) can be established, not least because of the overabundance of cathepsin K in the serum of OA patients and the upregulation of cathepsin K in degraded cartilage in animal models of OA. Chondrocytes, chondroclasts, or osteoclasts contribute to the accumulated cathepsin K at the diseased osteochondral junction. After a general presentation of OA and cartilage physiology, as well as its degradation processes, we describe the function of cathepsin K and its effect on cartilage degradation via type II collagen cleavage. An overview of the most promising cathepsin K inhibitors is then presented, together with their in vitro effects. Although intensive research on cathepsin K inhibitors initially focused on bone resorption, there is growing interest in the potential of these drugs to prevent cartilage degradation. In this review, we summarize the pre-clinical and clinical trials that support the use of cathepsin K inhibitors in the treatment of OA. To date, no molecules of this type are commercially available, although a few have undergone clinical trials, but we believe that the development of cathepsin K inhibitors could broaden the therapeutic arsenal for the treatment of OA.

1. Introduction

Osteoarthritis (OA) is the most common joint disease [1,2,3,4,5], which leads to the degeneration and loss of articular cartilage, affecting over 500 million people, about 6%, worldwide [5]. It occurs in the knees, hips, and spine joints, as well in the hands and other non-weight-bearing articular sites [6,7,8,9,10,11]. OA results from the complex interactions of local and systemic factors, including aging, obesity, knee malalignment, loading of joints, and inflammation [9,11]. OA development is also affected by the female gender, especially during the decline of sex hormone levels in menopause, which may induce joint pains [10]. OA clinical symptoms are assessed by joint pain [12], radiographic assessment [7,13], and magnetic resonance imaging [7,14]. Cartilage lesions are not directly associated with pain since articular tissue is an avascular tissue [15]. The pain is induced from the lesions of synovitis, bone marrow, subchondral bone, osteophyte formation, abnormalities of infrapatellar fat pads, and ligaments, which have sensory nerves [16,17,18,19,20,21] (Figure 1).
Joint loading and repeated stress on cartilage can trigger joint inflammation [18]. Persistent inflammation produces intracellular or extracellular stimuli as damage-associated molecular patterns, which can contribute to the degradation of the extracellular matrix [17]. For instance, an infrapatellar fat pad can secrete adipokines, cytokines, growth factors, and lipid derivatives, which can contribute to the degradation of the extracellular matrix [18]. Synovitis inflammation is considered as a prognostic osteoarthritis marker and is proposed to explain the disconnection between radiography and patient symptoms [17].
The first link between cathepsin K and OA pathophysiology was established 25 years ago [22]. Cathepsin K was upregulated in the cartilage of knee joints in the first stages of the degradation process in a transgenic model of the OA (Del1 mice) process [23]. In this review, we focused on the inhibitors of cathepsin K as a possible drug therapy to repair OA cartilage. The methodology was based on a search in Pubmed and Pubchem by using keywords, including cathepsin K, chondrocyte, osteoarthritis, extracellular matrix, and cathepsin K inhibitors. A brief overview of the current treatments of osteoarthritis and promising approaches (Section 2), development of epiphyseal cartilage (Section 3) and articular cartilage (Section 4), degradation of cartilage (Section 5), function and level of expression of cathepsin K (Section 6), in vitro effects of cathepsin K inhibitors (Section 7), and pre-clinical and clinical trials on cathepsin K inhibitors (Section 8) are presented.

2. Current Treatments of Osteoarthritis and Promising Approaches

There is no drug treatment that will stop OA progression due to the complexity of its pathophysiology [24,25,26]. Most of the current OA treatments are associated with the relief of OA symptoms and pain (Table 1) [27].
Physical exercise (running [26], walking [27]), weight management [28], prescription of nonsteroidal anti-inflammatory drugs (celecoxib, diacerin, diclofenac, etoricoxib, ibuprofen, naproxen) [29,30,31,32,33,34], acetaminophen [33], duloxetine [29,33], and tramadol [33] can contribute to the relief of OA symptoms. Other treatments include the intra-articular injection of hyaluronic acid [35,36,37] or corticosteroids [26], as well as total joint replacement (Table 1) [38,39,40,41,42]. The accumulated clinical experience indicates that both joint function and pain shall be considered for an effective OA treatment [43]. This has stimulated an intensive research effort for several decades to evaluate alternate and promising strategies to treat OA (Table 2) [43,44].
Table 1. Current treatments of OA. NSAIDS: non-steroidal anti-inflammatory drugs.
Table 1. Current treatments of OA. NSAIDS: non-steroidal anti-inflammatory drugs.
Current Treatments TypesEffectsRef.
Physical exerciseRunning Relief of OA symptoms[24]
Walking Relief of OA symptoms[25]
Weight management Relief of OA symptoms[26]
Acetominophen Acetominophem, similar to NSAIDsAnalgesic and antipyretic [31]
DuloxetineInstead of NSAIDs and acetominophen Release pain [27,31]
NSAIDsCelecoxibAnti-inflammatory [27]
Diacerin Anti-inflammatory [27]
Diclefenac Antipyretic, anti-inflammatory[28,29,30]
EtoricoxibAnti-inflammatory [29]
IbuprofenAnti-inflammatory [32]
NaproxenAnti-inflammatory [32]
Tramadol Tramadol not used for first-time treatment Opioid, relief of pain [31]
Intra-articular injectionHyaluronic acid intra-articular injection Improves integrity of joints[33,34,35]
Corticosteroid intra-articular injection Anti-inflammatory [26]
SurgeryJoint replacement Relieves pain and OA symptoms[36,37,38,39,40,41]
Several encouraging findings on the inhibition of metalloproteases [43,45,46], intra-articular injections of chondroitin sulfate [46,47], oral administration of cordycepin [48], and strontium ranelate [49] reported better preservation of cartilage integrity. Another positive line of research focuses on catabolic and anabolic molecular pathways [50,51], such as cyclin-dependent kinase inhibitors [52]; inhibitors of CXCR4, a G-coupled receptor of chemokines [53,54]; melatonin [55]; and inhibitors of mitogen-activated protein kinase (p38MAPK) [56]. Several nutraceuticals may have potential benefits against OA [57,58,59,60,61,62,63,64,65,66,67], such as curcumin [59,60], flavonoids [61,62,63], ginseng [64], grapefruits [65], omega-3 fatty acids [66], and polyphenols [67], while the effects of vitamin D on OA are inconclusive [68,69,70]. Acupotomy improves subchondral bone, as indicated by an increase in the quality of bone morphometric parameters calculated from hematoxylin and eosin staining in knee OA rabbits [71,72]. In addition, it protects cartilage, as evidenced by a recovered Safranin-O staining in rabbits with knee OA [71,72]. To promote the intrinsic regenerative capacity of cartilage, the intra-articular injection of mesenchymal stem cells (MSCs) was the object of clinical trials and holds promise [73,74,75,76,77,78,79,80,81,82,83,84,85,86,87]. However, the number of MSCs [87] and the best source of MSCs [88] are still debated. The incorporation of a 3D cell-laden collagenous scaffold to replicate the native bone and cartilage extracellular matrix has the potential to repair bone and cartilage tissues [89,90]. The quality of cartilage repair with chondrocyte transplantation embedded in various types of scaffolds is affected by the nature of the scaffold, which may impact cartilage tissue regeneration [90,91]. Another line of research is the use of extracellular vesicles (EVs) [92]. EVs from MSCs are heterogeneous populations of particles with distinct characteristics [92]. EVs contain specific information from donor cells, have a strong ability to circulate in body fluid, and may contribute to the diagnosis of earlier stage OA [93,94,95,96,97,98]. The properties of EVs depend highly on the origin of the cells (bone MSCs, adipose tissue MSCs, synovial MSCs, and embryonic stem cells) from which they originate [93,98,99]. The injection of EVs as a cell-free therapy appears to be a promising approach to treat OA [100,101,102,103,104,105,106]. The injection of EVs may contribute to maintaining the chondrocyte phenotype [98,107,108] and have anti-inflammatory actions [107,108,109]. The intra-articular injection of EVs in animal models with OA reduced cartilage loss [94,110,111,112,113,114]. Scaffold materials, such as hydrogels, to fill in cartilage defects and retain MSC-EVs at the cartilage defect site can ensure precise cartilage repair and reverse OA progression [115,116].
Table 2. Promising treatments of OA. EVs—extracellular vesicles, MSCs—meschenchymal stem cells.
Table 2. Promising treatments of OA. EVs—extracellular vesicles, MSCs—meschenchymal stem cells.
Promising TreatmentsTypesEffectsRef.
AcupotomyAcupotomyImproves subchondral bone in rabbit[69,70]
Chondroitin sulfateChondroitin sulfateProtective effects on joints[44,45]
Chondrocyte transplantationChondrocyte transplantationCells did not reach cartilage[88,89]
CordycepinCordycepinChondroprotective effects on explants[46]
MelatoninMelatoninProtects chondrocytes and cartilage[53]
Inhibitors of chondrocyte receptorsInhibition of AsporinMay prevent cartilage degradation[51]
Inhibition of CXCR4Activates cartilage progenitor cells[51]
Inhibition of DDR2Prevents mice cartilage degeneration[52]
Inhibitors of metalloproteasesInhibitors of metalloproteasesProposed as a treatment of OA[42,43]
Intra-articular injection of EVsIntra-articular injections of EVsReduces cartilage loss in animals[92,108,109,110,111,112]
Intra-articular injection of MSCsIntra-articular injections of MSCs Clinical trials hold promise[71,72,73,74,75,76,77,78,79,80,81,82,83,84,85]
NutraceuticalsCurcuminReduces pain but less than NSAIDs[57,58]
FlavonoidsMore clinical trials are needed[59,60,61]
GinsengAnti-oxidant and anti-inflammatory[62]
GrapefruitChondroprotective effects on rat OA[63]
Omega-3 fatty acidsNo changes in OA parameters[57,64]
PolyphenolsMore clinical trials are needed[65]
Vitamin DInconclusive[66,67,68]
Strontium ranelateStrontium ranelateReduces the progression of dog OA[47]

3. Development of Epiphyseal Cartilage

A short overview of the development of epiphyseal cartilage is introduced to clarify the distinct functions of chondrocytes during endochondral ossification [117,118,119]. The chondrocytes are essential for producing extracellular matrix [120,121,122,123]. Chondrocytes produce and maintain the cartilage matrix [118]. In addition, hypertrophied chondrocytes calcify the cartilage in the growth plate cartilage during endochondral ossification [117,119]. The developing epiphyseal cartilage can be divided into three distinct zones: reserve or resting zone, proliferative zone, and hypertrophic zone (Figure 2) [2,117,118,119].
As chondrocytes become hypertrophic, their volume is increased five- to twelve-fold [2,123], and they cannot proliferate but they can mineralize the cartilaginous matrix [119]. The biogenesis of matrix vesicles (MVs) coincides with the sequence of events leading to apoptosis or programmed cell death of hypertrophied chondrocytes [119] (Figure 2). The discovery of vesicles at epiphyseal cartilage supports the theory that MVs initiate mineralization [119,125,126,127,128,129,130,131,132,133,134]. More specifically, MVs strongly bound to collagen form apatite in their lumina [135]. Both hypertrophied chondrocytes and MVs highly enriched in tissue non-specific alkaline phosphatase (TNAP) are able to hydrolyze pyrophosphate, an inhibitor of apatite, to sustain the mineralization process [119]. The cartilage becomes calcified and a newly vascularized bone tissue is formed. Hypertrophic chondrocyte differentiation is associated with high TNAP activity, and the synthesis and secretion of type X collagen follows that of type II collagen [2,136]. The expression of type I collagen by hypertrophic chondrocytes might be associated with differentiation into osteoblast-like cells [137,138,139,140]. The length of the hypertrophic zone is maintained by a balance between the rate at which chondrocytes enter the hypertrophic phase and the rate at which vascular endothelial cells invade cartilage at the chondro-osseous junction (Figure 2). The hypertrophic chondrocytes synthesize vascular endothelial growth factor (VEGF) to induce vascular invasion of the epiphyseal cartilage [141]. Besides this endochondral ossification, there is a so-called intramembranous ossification, where bones develop from mesenchymal cellular condensations, which subsequently directly undergo osteoblast differentiation [141] without the involvement of any chondrocytes.

4. Articular Cartilage

The articular cartilage has only one cell type: chondrocytes [116]. The chondrocytes, which abundantly secrete cartilaginous matrix [119], occupy about 1–2% of the total tissue volume (up to 5%) [2,120,121,122,123]. Cartilage, which is avascular, is essentially a matrix containing 60–80% water and 15–22% wet collagen fibers (mainly type II collagen, non-collagenous proteins, and glycosaminoglycans), and the remaining wet weight (4–7%) consists of hydrophilic proteoglycans and glycoproteins [120,142,143]. A particular pericellular matrix containing type VI collagen is also produced by embedded chondrocytes [143]. Healthy articular chondrocytes maintain the complete extracellular matrix by secreting type II collagen, proteoglycans, and related macromolecules. They respond to the physical properties of the cartilage extracellular matrix and the mechanical forces exerted on them during joint loading [2,144]. Glycosaminoglycan, aggrecan, and small proteoglycan core proteins, with shorter life spans than collagen, are replaced more often than collagen in response to mechanical loading [145,146,147]. Primary cilia located on the chondrocyte surface and mechanosensitive receptors serve as sensors for the chondrocytes to adapt their metabolic activity in response to mechanical loading [145]. Once bone is formed, the healthy chondrocytes in the articular cartilage do not undergo hypertrophied differentiation such that no calcification is induced under physiological conditions [148,149].

5. Degradation of Cartilage

5.1. Pathological Mechanisms of OA

OA affects the articular cartilage, subchondral bone, ligaments, capsule, synovial membrane, and muscles, which finally lead to joint failure [2,3,4]. The joint pain is not a uniform accompaniment to structural change caused by the cartilage but is related to the interactions with vascular tissues [15,16,17,18,19,20,21,150]. Pain in OA was reviewed [15,16,17,18,19,20,21,151,152] and will not be further reported in this review. The abnormal differentiation of chondrocytes toward hypertrophied chondrocytes or the osteoclast-like phenotype, as well the chondrocyte apoptosis or senescence [153], which is induced by excessive mechanical loading, may lead to changes in the composition and structure of the cartilage matrix [144,154,155,156,157]. During the late stage of OA, hypertrophic chondrocytes express genes associated with the calcification of cartilage, including type X collagen and runt-related transcription factor 2 (RUNX2) [158]. In this respect, the type X collagen is a diagnostic factor for knee OA in humans [159]. The inactivation of Wnt signaling pathway, which can be affected by sclerostin [160,161], Wnt-16 [160,162,163,164], and Dickkopf-1 (Dkk1) [165], may favor hypertrophy [166]. Among the integrins, which connect chondrocytes with the extracellular matrix, integrin α5β1 [167,168] integrates mechanical cues that induce inflammation [169] and catabolism [170]. Not only local cytokines (Interleuline-1β (IL-1β), RGD peptides, interleuline-4 (IL-4), sclerostin, and Dkk1) but also hormones (i.e., estrogen, heparin-binding EGF-like factor) regulate chondrocytes subjected to loads [147]. The chondrocyte apoptosis, induced by IL-1β, tumor necrosis factor, nuclear factor-kappa B, Wnt, microRNA, and oxidative-stress-signaling pathways can contribute to the degradation of the extracellular matrix [171]. Excessive loading cycles can trigger the abnormal differentiation of chondrocytes, which induce surface fibrillations and deep fissures associated with the exfoliation of cartilage fragments [171]. Taken together, excessive loading cycles may contribute to the expansion of calcified cartilage and the disturbance of articular cartilage homeostasis [172,173,174].
Concerning the mineral composition of calcified cartilage, a distinction shall be made between calcium pyrophosphate (CPP) crystals and apatite [175]. The CPP crystals occur in acute inflammatory arthritis (formerly known as pseudo gout) or in chronic CPP crystal arthritis [176,177], whereas OA instead deals with apatite. Apatite deposition in the cartilage during OA recapitulates a program of endochondral bone formation induced by hypertrophied chondrocytes [174], which may correspond to the advanced stage of OA [178]. Hypertrophied chondrocytes, senescent chondrocytes, and synovial fibroblasts contribute to the progression of OA [157]. It is still unclear whether hypertrophied chondrocytes or senescent chondrocytes come first to initiate OA [157]. An increased production of VEGFs, including VEGF121, VEGF165, and VEGF189, was observed in OA [179]. VEGFs secretion contributes to the chondrocyte differentiation, vascular invasion, and calcified cartilage expansion [179]. Angiogenesis triggers blood vessel growth, disrupts the osteochondral junction, and creates channels from subchondral bone spaces into noncalcified articular cartilage [180]. Blood vessels in joint OA can invade non-calcified cartilage [181], which facilitates the penetration of osteoclast precursors, and finally forms an ossification center [182,183]. Endothelial cells proliferate within the OA synovium [184,185,186]. Inflammation drives synovial angiogenesis through macrophage activation [187] and induces chondrocyte apoptosis [188]. Activated fibroblast-like synoviocytes in the OA synovium secrete cytokines, growth factors, metalloproteases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs), which contribute to the macrophage activation and stimulate catabolic pathways in chondrocytes [188].

5.2. Enzymatic Degradation of Cartilage

The degradation of cartilage is initiated by the enzymatic activities of several proteases, including aggrecanases and collagenases, as ADAMs (disintegrin and metalloproteinases), ADAMTS (disintegrin and metalloproteinases with thrombospondin motifs), and MMPs [189]. The expressions of aggrecanases, such as ADAMTS-4 and ADAMTS-5 (previously named Aggrecanase 1 and Aggrecanase 2), are altered in OA [189,190,191]. They act on aggrecans, which are the major cartilage matrix components. In addition, ADAMTS-7 and ADAMTS-12, which contribute to cartilage matrix catabolism, and ADAM9, ADAM10, and ADAM12, which are involved in chondrocyte differentiation and proliferation, are overexpressed in OA [188,189]. Not all the enzymes overexpressed in OA may impair cartilage, for instance, ADAMTS-2, ADAMTS-3, and ADAMTS-14, may instead promote matrix anabolism [192]. Regarding the MMP family, elevated levels of MMP-3 and MMP-13, which act preferentially in the other major cartilage component type II collagen, are found in OA [189]. In OA, the excess of TIMPs do not increase to the same extent as those of MMPs, which may result in a cartilage breakdown [193]. It was proposed that inhibitors of collagenases, including MMP-1 (preferred substrate is type III collagen), MMP-2 (interstitial collagenase that degrades types I and IV collagen), MMP-8 (preferred substrates are types I and III collagen), MMP-9 (termed as gelatinase-B, which cleaves gelatins, elastins, aggrecans, and types IV and V collagens), and MMP-13, may have the therapeutic potential to prevent cartilage degradation (Table 2) [194].
Cathepsin K is one of the few extracellular proteolytic enzymes capable of degrading native fibrillar collagen [195]. Cathepsin K may contribute to the progressive destruction of articular cartilage in OA [195,196,197,198] and be a biomarker for monitoring the progression of joint destruction in OA [199]. The following chapters provide more insight into its function, level of expression, design of cathepsin K inhibitors, in vitro and in vivo findings, and preclinical trials.

6. Functions of Cathepsin K

6.1. Involvement of Cathepsin K in Osteoarthritis Physiopathology

The first link between cathepsin K and OA pathophysiology was established 25 years ago [22]. Cathepsin K is upregulated in the cartilage of knee joints in the first stages of the degradation process in a transgenic model of the OA (Del1 mice) process [23]. These mice possess six copies of a transgene with a small deletion mutation engineered into the mouse type II collagen gene [23]. Likewise, transgenic UTU17 mice with constitutive overexpression of cathepsin K [200] naturally developed synovitis and articular cartilage degradation [201]. Moreover, they developed early osteopenia in diaphyseal cortical bone and metaphyseal trabecular bone [202]. In contrast, cathepsin K-knockout mice exhibited delayed cartilage destruction in a model of destabilization-induced OA [203] and after anterior cruciate ligament transection (ACLT) [204] when compared with wild-type counterparts. Furthermore, a cathepsin K-knockout mice model with the destabilization of medial meniscus (DMM) also showed slower articular cartilage degradation and higher subchondral bone volume [205]. Cathepsin K is also involved in cartilage collagen degradation in naturally occurring equine OA [206] by degrading type II collagen [207].

6.2. Function and Level of Expression of Cathepsin K

During skeletal development, the strongest expression of cathepsin K is detected in the osteoclasts of bone following the onset of osteoclast differentiation [199,208]. First produced in an inactive zymogen form, its maturation occurs intracellularly in the osteoclasts on the bone surface, which shows intense enzyme activity [209]. During endochondral ossification in long bones, cathepsin K expression is localized at the osteochondral junction of growth cartilages in osteoclasts, but also in hypertrophic chondrocytes, and possibly in chondroclasts [199,210,211,212]. The upregulation of cathepsin K expression is associated with cartilage degeneration and disease progression in a mouse OA model [23]. Its expression is localized near sites of cartilaginous matrix degradation in both the proliferative and the calcified zone [23]. In agreement, the chondrocytes of OA patients overexpress cathepsin K at both the mRNA and the protein level in the superficial zone and damaged areas in relation to the severity of the OA [213,214]. In addition, high levels of cathepsin K mRNA are also detected within OA synovial tissue [22]. This overabundance of cathepsin K can even be detected in the circulatory system since its level is increased in the serum of OA patients [215]. In chondrocytes, Cathepsin K may also be involved in the gene and protein expressions of the chondrogenic markers type II collagen and aggrecan [216].
Cathepsin K is the key enzyme for osteoclastic activity: bone resorption [217,218,219,220]. It is one of the 11 cysteine cathepsins belonging to the family of papain-like cysteine peptidases [221,222,223,224]. Cathepsin K is the only one able to cleave the triple helix of collagen molecules at multiple locations [225]. During bone remodeling, its activity is crucial, even if it is supplemented by the collagenases of the MMP family [226,227,228]. Cathepsin K activity was reviewed in detail [222,224]. For bone matrix resorption, its main substrate is type I collagen [229,230], but in the context of OA, cathepsin K is a potent catalytic enzyme of cartilage degradation by the cleavage of type II collagen [207,231,232,233,234]. This proteolytic activity can be evaluated by the detection of the C-terminal neo-epitope generated. Such cartilage breakdown products are found in the lesion sites of OA cartilage [207,232,233], but also in the urine in a guinea pig OA model [235]. The stability and collagenolytic activity of cathepsin K is enhanced by complex formation with glycosaminoglycans [236,237,238]. These glycosaminoglycans, especially chondroitin [239,240,241,242,243] and keratan sulfates [244,245], are fragments of aggrecan aggregates, which are particularly present in the cartilage extracellular matrix. They are produced by self-activation through the cleavage of aggrecan by cathepsin K [246]. Another mechanism for amplifying the degradation process is that cathepsin K is also activated by the N-terminal telopeptides of type II collagen [231].

7. Design and In Vitro Effects of Cathepsin K Inhibitors

For many years, the strong development of cathepsin K inhibitors has occurred with the aim of using them as therapeutic agents to treat osteoporosis [219,247,248,249,250,251,252,253]; OA [3,217,254,255]; and other diseases, including atherosclerosis, blood pressure disregulation, obesity, and cancer [223]. According to the ChEMBL database, there are around 280 compounds identified as cathepsin K inhibitors with a Ki ≤ 50 nM. One of the main problems with these compounds is their lack of selectivity against other cathepsins, such as cathepsins B, L, and S, which stimulated the development of selective inhibitors specific to cathepsin K [256,257]. There are several methods used to screen the inhibitors of cathepsin K, including the determination of enzymatic activity [258], cytochemical assays [259], ELISA detection of cleavage of type II collagen [260], and in vivo fluorescence reflectance imaging in animal models [261]. A short overview of the most promising cathepsin K inhibitors, with their potential applications to treat OA, is presented (Figure 3). Cathepsin K inhibitors are usually tested on chondrocytes to assess their eventual therapeutic effect to prevent cartilage degradation [262]. 6-shogaol, the most active ginger derivative, blocked TLR4-mediated innate immune responses and MMP induction in chondrocytes [262]. These findings suggest the potential for ginger derivatives’ use against cartilage and bone degradation [262]. Racemic cathepsin K inhibitors inhibited the cathepsin K activity in dedifferentiated chondrocytes [263]. A cathepsin K inhibitor obtained after a lead optimization of MK-1256 (Figure 3) reduced the levels of urinary C-telopeptide of collagen type I in a dog model of OA.
Derivatives of dipeptide- and peptide-containing groups, such as ketone, aldehyde, ketoamide, nitrile, and azanitrile, were developed as inhibitors of cathepsin K [264,265]. Among these electrophilic groups, the addition of a nitrile group to form a thioimidate adduct after a liaison with the catalytic residue Cys-25 of cathepsin K allows for reversible inhibition of the enzyme [263,266]. Another strategy was implemented using an alkyne molecule as a modified electrophile to induce an irreversible inhibition [267]. In addition, 1,3,4-oxadiazole derivatives have many applications in medicinal chemistry, including anti-inflammatory activity [268,269], analgesics [269], antimicrobial activity [270], antiparasitic activity [271], and anti-tumor activity [272,273,274]. For instance, raltegravir (antiretroviral) [274] and nesapidil (vasodilator) [275] are available on the market as drugs. To date, only one article has reported keto1,3,4-oxadiazole derivatives as cathepsin K inhibitors [276]. Heterocyclic building blocks allowed for designing effective cathepsin K inhibitors [277,278,279].
A series of piperidamide-3-carboxamide derivatives were synthesized as inhibitors of cathepsin K with an IC50 value of 0.08 μM [280]. Molecular docking analyses showed that one of the best compounds, H-9, reacts thanks to several hydrogen bonds and hydrophobic interactions with the main active residues of the active site of cathepsin K [280]. Using osteoclast RAW264.7 cells, the H-9 compound has anti-resorption effects on bone slices similar to those of MIV-711 [280].
Proline-based peptidomimetic inhibitors selectively blocking cathepsin K were developed [281]. The most active had a high affinity (Ki = 7.3–50.1 nM) for cathepsin K and did not inhibit other cathepsins [281]. This specific inhibitor has two substituents: trifluoromethylpyrazole and 4-methylproline in positions P3 and P2 [281]. Basic lysosomotropic inhibitors of cathepsin K can accumulate in the cells with a high lysosome content due to their basic and lyophilic properties [282]. Lysosomotropic cathepsin K inhibitors were able to inhibit the cathepsin K activity in synovial fibroblasts and stimulate periosteal bone formation in monkeys, suggesting that these molecules can prevent cartilage degradation [283]. Odanacatib (ODN, MK-0822) (Figure 3) acts as a reversible inhibitor: its action is on the cysteine part of the active site [284]. In vitro and in cellulo ODN is highly selective for cathepsin K, with values ~300-fold higher than cathepsin S and >1000-fold higher than other human cathepsins, including cathepsins B and L [284]. Due to its potency and selectivity, ODN is highly effective in humans [285]. Several structurally different cathepsin K inhibitors were developed, such as SB331750 (Figure 3) [286] and ONO-5334 (Figure 3) [287]. These inhibitors are also effective at increasing the bone mass in the ovariectomized rat model (OVX) at relatively high doses.

8. Pre-Clinical and Clinical Trials on Cathepsin K Inhibitors

The cathepsin K inhibitors could be a therapeutic option for the treatment of several bone and joint diseases where an osteoclast dysfunction occurs, especially osteoporosis [288]. There is also the possibility to use cathepsin K inhibitors to treat OA or cancer-derived osteolytic bone metastasis induced by breast cancer or colon cancer [219,289]. Currently, there are no FDA-approved cathepsin K inhibitors, but several molecules have been tested in pre-clinical studies and/or clinical trials [290,291,292]. Here is a summary of the most studied molecules through the last 15 years that reached clinical trials (Table 3 and Figure 3).
One of the oldest tested inhibitors is ODN (MK-0822), which was initially designed to treat osteoporosis and significantly reduced bone fracture rates in a 5-year trial (Table 3) [293]. However, it was associated with an increased risk of cardiovascular events, specifically stroke in postmenopausal women with osteoporosis [294]. Similar clinical phase III findings were also observed for men [295]. Further development on ODN to treat osteoporosis was thus stopped. One of the most studied cathepsin K inhibitors for the treatment of OA is balicatib (AAE581) (Table 3). Balicatib was tested in patients that suffered from knee OA. Even if an improvement of bone and cartilage structure was observed, the study was suspended due to important side effects in patients, such as skin rashes or dermal fibrosis (NCT00170911, NCT00100607, and NCT00371670) (Table 3) [296]. Moreover, skin-related side effects were also observed in a multicenter clinical trial in North America and Europe that evaluated balicatib for the treatment of osteoporosis. A total of 9 patients out of 709 (1.3%) experienced morphea-like symptoms (skin hardening and dermal fibrosis). These symptoms were dose-related and completely disappeared in eight patients and partially in one patient after treatment discontinuation [297]. Of note, balicatib was able to induce bone formation (spine and femur) in ovariectomized monkeys, an experimental model of osteoporosis [298].
Two other cathepsin K inhibitors were efficient at treating OA symptoms in non-murine in vivo models. SB-553484, a strong cathepsin K inhibitor (Ki = 0.14 nM for human-cathepsin K), was able to significantly reduce cartilage degradation in female beagle dogs after a partial medial meniscectomy (Table 4) [299].
The cathepsin K inhibitor AZ12606133 efficiently decreased joint pain and the urine levels of CTXII (cross-linked C-telopeptides of type II) in a spontaneous model of OA in guinea pigs (Table 4) [235]. Other approaches, such as the intra-articular delivery of disease-modifying OA drugs, are expected to be among the most successful in the treatment of early post-traumatic OA. For example, it was recently demonstrated that soft materials, such as hydrogel, are able to encapsulate a cathepsin K inhibitor, L-006235 [300], and showed sustained drug release in the knee joint of DMM mice. Notably, L-006235 hydrogel significantly reduced the cartilage degeneration in both control and running mice (Table 4) [301]. In agreement with these results, the oral administration of L-006235 to ACLT-mice and rabbits protected them from cartilage damage (Table 4) [204].
Recently, a strong and selective inhibitor of cathepsin K, MIV-711, attenuated joint degradation in rabbits and dogs subjected to ACLT (Table 4) [302]. MIV-711 was considered as a good candidate to treat OA because of its oral availability, safety, and high tolerance by healthy subjects (Table 4) [303]. A first phase IIa clinical trial significantly reduced the medial femoral cartilage thickness after 26 weeks of treatment, while NRS pain scores with MIV-711 were not statistically significant with respect to the placebo (Table 3) [304]. This was challenged by another trial investigation with 119 patients and by looking predominantly at unilateral knee pain [305] in contrast with the inclusion of pain from non-joints [304]. There was a significant reduction in OA unilateral knee pain due to the MIV-711 treatment, with beneficial effects on the cartilage (Table 3) [305]. Recently, MIV-711 received a rare pediatric disease designation and orphan drug designation by the FDA for the treatment of the rare childhood Legg–Calvé–Perthes disease [301,302,306].
Table 3. Clinical trials on cathepsin K inhibitors. INN: international nonproprietary name, NRS: numeric rating scale for pain, OA: osteoarthritis.
Table 3. Clinical trials on cathepsin K inhibitors. INN: international nonproprietary name, NRS: numeric rating scale for pain, OA: osteoarthritis.
InhibitorsINNTarget
Diseases
Clinical TrialBenefitsSide EffectsRef.
OdanacatibMK-0822OsteoporosisNCT00620113
NCT00729183
NCT00529373
NCT01120600
Reduction in bone
fracture rates
Increased risk of
cardiovascular events
[293,294,295]
BalicatibAAE581Knee OA or osteoporosisNCT00371670
NCT00170911
NCT00100607
Improvement of bone and cartilage structure Skin rashes and dermal fibrosis[296,297]
MIV-711 Knee OANCT02705625Reduction in medial femoral cartilage
thickness
No change in NRS pain scores compared with placebo[303,304]
MIV-711 Knee OANCT03037489Reduced change in bone area
Greater reduction in unilateral knee joint pain
No difference in
cartilage thickness
[305]
Table 4. In vivo findings on cathepsin K inhibitors. ACLT: anterior cruciate ligament transection, CTX-I: C-telopeptide collagen type I, CTX-II: C-telopeptide collagen type II, DMM: destabilization of medial meniscus, INN: international nonproprietary name, OA: osteoarthritis.
Table 4. In vivo findings on cathepsin K inhibitors. ACLT: anterior cruciate ligament transection, CTX-I: C-telopeptide collagen type I, CTX-II: C-telopeptide collagen type II, DMM: destabilization of medial meniscus, INN: international nonproprietary name, OA: osteoarthritis.
Inhibitors/
INN
Target
Diseases
Admnist. In Vivo Models BenefitsSide EffectsRef.
Balicatib/AAE581OsteoporosisGavageOvariectomized
monkeys
Stimulation of
periosteal bone

formation (spine and femur)
Not described[298]
SB-553484Knee OAOralFemale beagle dogs with partial medial meniscectomyReduction of
cartilage
degradation;
reduced urine
levels of CTX-I and CTX-II
Not described[299]
AZ12606133OAOralGuinea pig
(spontaneous model)
Decreased joint pain; reduced urine
levels of CTX-II
Not described[235]
L-006235 Knee OAEncapsulated in hydrogel and
knee insertion
DMM miceReduced cartilage degenerationNot described[300]
L-006235 Knee OAOralACLT mice and
rabbits
Protection of
cartilage damage
Not described[301]
MIV-711Knee OAOralACLT rabbits and dogsAttenuation of joint degradationWell tolerated[302]

9. Concluding Remarks

The facts that chondrocytes express cathepsin K [213,214], that the cartilage surface pH is more acidic (around 6.2–5.5) in the fissured cartilage surface than that on the normal cartilage surface (around 7.1) [196], and that cathepsin K can degrade type II collagen [207,231,232,233,234] indicate that a cathepsin K inhibitor may be a suitable drug therapy to prevent cartilage degradation during OA. It is still unclear whether the secreted cathepsin K found in the OA joint cartilage originate mostly from chondrocytes; from chondroclasts; or from osteoclasts, which can penetrate into the damaged cartilage [306]. To date, there are no cathepsin K inhibitors that have entered the drug market, despite the fact that a few molecules reached up to phase III and other clinical trials [291]. The design of cathepsin K inhibitors could serve to treat OA. In addition, the possibility that cathepsin K inhibition could have an analgesic effect shall be further explored to extend the drug arsenal to treat OA pain [307].

Author Contributions

Conceptualization, R.B. and S.M.; writing—original draft preparation, L.B., C.B., R.B. and S.M.; writing—review and editing, L.B., C.B., R.B. and S.M.; visualization, L.B., C.B., R.B. and S.M.; supervision, S.M.; funding acquisition, S.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflicts of interest. The funders had no role in the design of this study; in the collection, analyses, or interpretation of the data; in the writing of this manuscript; or in the decision to publish the results.

References

  1. Salman, L.A.; Ahmed, G.; Dakin, S.G.; Kendrick, B.; Price, A. Osteoarthritis: A Narrative Review of Molecular Approaches to Disease Management. Arthritis Res. Ther. 2023, 25, 27. [Google Scholar] [CrossRef] [PubMed]
  2. Belluzzi, E.; Todros, S.; Pozzuoli, A.; Ruggieri, P.; Carniel, E.L.; Berardo, A. Human Cartilage Biomechanics: Experimental and Theoretical Approaches towards the Identification of Mechanical Properties in Healthy and Osteoarthritic Conditions. Processes 2023, 11, 1014. [Google Scholar] [CrossRef]
  3. Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA 2021, 325, 568–578. [Google Scholar] [CrossRef] [PubMed]
  4. Kloppenburg, M.; Namane, M.; Cicuttini, F. Osteoarthritis. Lancet 2025, 405, 71–85. [Google Scholar] [CrossRef]
  5. Moseng, T.; Vliet Vlieland, T.P.M.; Battista, S.; Beckwée, D.; Boyadzhieva, V.; Conaghan, P.G.; Costa, D.; Doherty, M.; Finney, A.G.; Georgiev, T.; et al. EULAR Recommendations for the Non-Pharmacological Core Management of Hip and Knee Osteoarthritis: 2023 Update. Ann. Rheum. Dis. 2024, 83, 730–740. [Google Scholar] [CrossRef]
  6. Arruda, A.; Katsoula, G.; Chen, S.; Reimann, E.; Kreitmaier, P.; Zeggini, E. The Genetics and Functional Genomics of Osteoarthritis. Annu. Rev. Genom. Hum. Genet. 2024, 25, 239–257. [Google Scholar] [CrossRef]
  7. Roemer, F.W.; Kwoh, C.K.; Hayashi, D.; Felson, D.T.; Guermazi, A. The Role of Radiography and MRI for Eligibility Assessment in DMOAD Trials of Knee OA. Nat. Rev. Rheumatol. 2018, 14, 372–380. [Google Scholar] [CrossRef]
  8. Jenei-Lanzl, Z.; Zaucke, F. Osteoarthritis Year in Review 2024: Biology. Osteoarthr. Cartil. 2025, 33, 58–66. [Google Scholar] [CrossRef]
  9. van den Bosch, M.H.J.; Blom, A.B.; van der Kraan, P.M. Inflammation in Osteoarthritis: Our View on Its Presence and Involvement in Disease Development over the Years. Osteoarthr. Cartil. 2024, 32, 355–364. [Google Scholar] [CrossRef]
  10. Peshkova, M.; Lychagin, A.; Lipina, M.; Di Matteo, B.; Anzillotti, G.; Ronzoni, F.; Kosheleva, N.; Shpichka, A.; Royuk, V.; Fomin, V.; et al. Gender-Related Aspects in Osteoarthritis Development and Progression: A Review. Int. J. Mol. Sci. 2022, 23, 2767. [Google Scholar] [CrossRef] [PubMed]
  11. Binvignat, M.; Sellam, J.; Berenbaum, F.; Felson, D.T. The Role of Obesity and Adipose Tissue Dysfunction in Osteoarthritis Pain. Nat. Rev. Rheumatol. 2024, 20, 565–584. [Google Scholar] [CrossRef] [PubMed]
  12. Fu, K.; Robbins, S.R.; McDougall, J.J. Osteoarthritis: The Genesis of Pain. Rheumatology 2018, 57, iv43–iv50. [Google Scholar] [CrossRef] [PubMed]
  13. Spector, T.D.; Cooper, C. Radiographic Assessment of Osteoarthritis in Population Studies: Whither Kellgren and Lawrence? Osteoarthr. Cartil. 1993, 1, 203–206. [Google Scholar] [CrossRef]
  14. Pelletier, J.-P.; Cooper, C.; Peterfy, C.; Reginster, J.-Y.; Brandi, M.-L.; Bruyère, O.; Chapurlat, R.; Cicuttini, F.; Conaghan, P.G.; Doherty, M.; et al. What Is the Predictive Value of MRI for the Occurrence of Knee Replacement Surgery in Knee Osteoarthritis? Ann. Rheum. Dis. 2013, 72, 1594–1604. [Google Scholar] [CrossRef]
  15. Yao, Q.; Wu, X.; Tao, C.; Gong, W.; Chen, M.; Qu, M.; Zhong, Y.; He, T.; Chen, S.; Xiao, G. Osteoarthritis: Pathogenic Signaling Pathways and Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 56. [Google Scholar] [CrossRef]
  16. Conaghan, P.G.; Cook, A.D.; Hamilton, J.A.; Tak, P.P. Therapeutic Options for Targeting Inflammatory Osteoarthritis Pain. Nat. Rev. Rheumatol. 2019, 15, 355–363. [Google Scholar] [CrossRef] [PubMed]
  17. Knights, A.J.; Redding, S.J.; Maerz, T. Inflammation in Osteoarthritis: The Latest Progress and Ongoing Challenges. Curr. Opin. Rheumatol. 2023, 35, 128–134. [Google Scholar] [CrossRef]
  18. Wang, M.G.; Seale, P.; Furman, D. The Infrapatellar Fat Pad in Inflammaging, Knee Joint Health, and Osteoarthritis. NPJ Aging 2024, 10, 34. [Google Scholar] [CrossRef]
  19. Wood, M.J.; Miller, R.E.; Malfait, A.-M. The Genesis of Pain in Osteoarthritis: Inflammation as a Mediator of Osteoarthritis Pain. Clin. Geriatr. Med. 2022, 38, 221–238. [Google Scholar] [CrossRef]
  20. Yu, H.; Huang, T.; Lu, W.W.; Tong, L.; Chen, D. Osteoarthritis Pain. Int. J. Mol. Sci. 2022, 23, 4642. [Google Scholar] [CrossRef]
  21. Abramoff, B.; Caldera, F.E. Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Med. Clin. 2020, 104, 293–311. [Google Scholar] [CrossRef]
  22. Dodds, R.A.; Connor, J.R.; Drake, F.H.; Gowen, M. Expression of Cathepsin K Messenger RNA in Giant Cells and Their Precursors in Human Osteoarthritic Synovial Tissues. Arthritis Rheum. 1999, 42, 1588–1593. [Google Scholar] [CrossRef]
  23. Morko, J.P.; Söderström, M.; Säämänen, A.-M.K.; Salminen, H.J.; Vuorio, E.I. Up Regulation of Cathepsin K Expression in Articular Chondrocytes in a Transgenic Mouse Model for Osteoarthritis. Ann. Rheum. Dis. 2004, 63, 649–655. [Google Scholar] [CrossRef]
  24. Goldring, M.B.; Berenbaum, F. Emerging Targets in Osteoarthritis Therapy. Curr. Opin. Pharmacol. 2015, 22, 51–63. [Google Scholar] [CrossRef] [PubMed]
  25. Wilken, F.; Buschner, P.; Benignus, C.; Behr, A.-M.; Rieger, J.; Beckmann, J. Pharmatherapeutic Treatment of Osteoarthrosis-Does the Pill against Already Exist? A Narrative Review. J. Pers. Med. 2023, 13, 1087. [Google Scholar] [CrossRef] [PubMed]
  26. Fujii, Y.; Inoue, H.; Arai, Y.; Shimomura, S.; Nakagawa, S.; Kishida, T.; Tsuchida, S.; Kamada, Y.; Kaihara, K.; Shirai, T.; et al. Treadmill Running in Established Phase Arthritis Inhibits Joint Destruction in Rat Rheumatoid Arthritis Models. Int. J. Mol. Sci. 2019, 20, 5100. [Google Scholar] [CrossRef]
  27. Drummen, S.J.J.; Balogun, S.; Lahham, A.; Bennell, K.; Hinman, R.S.; Callisaya, M.; Cai, G.; Otahal, P.; Winzenberg, T.; Wang, Z.; et al. A Pilot Randomized Controlled Trial Evaluating Outdoor Community Walking for Knee Osteoarthritis: Walk. Clin. Rheumatol. 2023, 42, 1409–1421. [Google Scholar] [CrossRef]
  28. Gibbs, A.J.; Gray, B.; Wallis, J.A.; Taylor, N.F.; Kemp, J.L.; Hunter, D.J.; Barton, C.J. Recommendations for the Management of Hip and Knee Osteoarthritis: A Systematic Review of Clinical Practice Guidelines. Osteoarthr. Cartil. 2023, 31, 1280–1292. [Google Scholar] [CrossRef]
  29. Pelletier, J.-P.; Raynauld, J.-P.; Dorais, M.; Bessette, L.; Dokoupilova, E.; Morin, F.; Pavelka, K.; Paiement, P.; Martel-Pelletier, J. DISSCO Trial Investigator Group An International, Multicentre, Double-Blind, Randomized Study (DISSCO): Effect of Diacerein vs Celecoxib on Symptoms in Knee Osteoarthritis. Rheumatology 2020, 59, 3858–3868. [Google Scholar] [CrossRef]
  30. van Walsem, A.; Pandhi, S.; Nixon, R.M.; Guyot, P.; Karabis, A.; Moore, R.A. Relative Benefit-Risk Comparing Diclofenac to Other Traditional Non-Steroidal Anti-Inflammatory Drugs and Cyclooxygenase-2 Inhibitors in Patients with Osteoarthritis or Rheumatoid Arthritis: A Network Meta-Analysis. Arthritis Res. Ther. 2015, 17, 66. [Google Scholar] [CrossRef]
  31. da Costa, B.R.; Pereira, T.V.; Saadat, P.; Rudnicki, M.; Iskander, S.M.; Bodmer, N.S.; Bobos, P.; Gao, L.; Kiyomoto, H.D.; Montezuma, T.; et al. Effectiveness and Safety of Non-Steroidal Anti-Inflammatory Drugs and Opioid Treatment for Knee and Hip Osteoarthritis: Network Meta-Analysis. BMJ 2021, 375, n2321. [Google Scholar] [CrossRef] [PubMed]
  32. Wolff, D.G.; Christophersen, C.; Brown, S.M.; Mulcahey, M.K. Topical Nonsteroidal Anti-Inflammatory Drugs in the Treatment of Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Phys. Sport. 2021, 49, 381–391. [Google Scholar] [CrossRef]
  33. Richard, M.J.; Driban, J.B.; McAlindon, T.E. Pharmaceutical Treatment of Osteoarthritis. Osteoarthr. Cartil. 2023, 31, 458–466. [Google Scholar] [CrossRef]
  34. Nissen, S.E.; Yeomans, N.D.; Solomon, D.H.; Lüscher, T.F.; Libby, P.; Husni, M.E.; Graham, D.Y.; Borer, J.S.; Wisniewski, L.M.; Wolski, K.E.; et al. Cardiovascular Safety of Celecoxib, Naproxen, or Ibuprofen for Arthritis. N. Engl. J. Med. 2016, 375, 2519–2529. [Google Scholar] [CrossRef]
  35. Martel-Pelletier, J.; Wildi, L.M.; Pelletier, J.-P. Future Therapeutics for Osteoarthritis. Bone 2012, 51, 297–311. [Google Scholar] [CrossRef]
  36. Chavda, S.; Rabbani, S.A.; Wadhwa, T. Role and Effectiveness of Intra-Articular Injection of Hyaluronic Acid in the Treatment of Knee Osteoarthritis: A Systematic Review. Cureus 2022, 14, e24503. [Google Scholar] [CrossRef]
  37. Webner, D.; Huang, Y.; Hummer, C.D. Intraarticular Hyaluronic Acid Preparations for Knee Osteoarthritis: Are Some Better Than Others? Cartilage 2021, 13, 1619S–1636S. [Google Scholar] [CrossRef] [PubMed]
  38. Gelber, A.C. Knee Osteoarthritis. Ann. Intern. Med. 2024, 177, ITC129–ITC144. [Google Scholar] [CrossRef]
  39. Madry, H. Surgical Therapy in Osteoarthritis. Osteoarthr. Cartil. 2022, 30, 1019–1034. [Google Scholar] [CrossRef]
  40. Zaballa, E.; Dennison, E.; Walker-Bone, K. Function and Employment after Total Hip Replacement in Older Adults: A Narrative Review. Maturitas 2023, 167, 8–16. [Google Scholar] [CrossRef]
  41. Martina, K.; Hunter, D.J.; Salmon, L.J.; Roe, J.P.; Dowsey, M.M. Surgery for Osteoarthritis: Total Joint Arthroplasty, Realistic Expectations of Rehabilitation and Surgical Outcomes: A Narrative Review. Clin. Geriatr. Med. 2022, 38, 385–396. [Google Scholar] [CrossRef]
  42. Konnyu, K.J.; Pinto, D.; Cao, W.; Aaron, R.K.; Panagiotou, O.A.; Bhuma, M.R.; Adam, G.P.; Balk, E.M.; Thoma, L.M. Rehabilitation for Total Hip Arthroplasty: A Systematic Review. Am. J. Phys. Med. Rehabil. 2023, 102, 11–18. [Google Scholar] [CrossRef] [PubMed]
  43. De Nanteuil, G.; Portevin, B.; Benoist, A. Disease-Modifying Anti-Osteoarthritic Drugs: Current Therapies and New Prospects around Protease Inhibition. Farmaco 2001, 56, 107–112. [Google Scholar] [CrossRef]
  44. Fuggle, N.R.; Cooper, C.; Oreffo, R.O.C.; Price, A.J.; Kaux, J.F.; Maheu, E.; Cutolo, M.; Honvo, G.; Conaghan, P.G.; Berenbaum, F.; et al. Alternative and Complementary Therapies in Osteoarthritis and Cartilage Repair. Aging Clin. Exp. Res. 2020, 32, 547–560. [Google Scholar] [CrossRef] [PubMed]
  45. Mukherjee, A.; Das, B. The Role of Inflammatory Mediators and Matrix Metalloproteinases (MMPs) in the Progression of Osteoarthritis. Biomater. Biosyst. 2024, 13, 100090. [Google Scholar] [CrossRef]
  46. Minoretti, P.; Santiago Sáez, A.; Liaño Riera, M.; Gómez Serrano, M.; García Martín, Á. Efficacy and Safety of Two Chondroprotective Supplements in Patients With Knee Osteoarthritis: A Randomized, Single-Blind, Pilot Study. Cureus 2024, 16, e57579. [Google Scholar] [CrossRef]
  47. Uebelhart, D. Clinical Review of Chondroitin Sulfate in Osteoarthritis. Osteoarthr. Cartil. 2008, 16 (Suppl. S3), S19–S21. [Google Scholar] [CrossRef]
  48. Hu, P.; Chen, W.; Bao, J.; Jiang, L.; Wu, L. Cordycepin Modulates Inflammatory and Catabolic Gene Expression in Interleukin-1beta-Induced Human Chondrocytes from Advanced-Stage Osteoarthritis: An in Vitro Study. Int. J. Clin. Exp. Pathol. 2014, 7, 6575–6584. [Google Scholar]
  49. Pelletier, J.-P.; Kapoor, M.; Fahmi, H.; Lajeunesse, D.; Blesius, A.; Maillet, J.; Martel-Pelletier, J. Strontium Ranelate Reduces the Progression of Experimental Dog Osteoarthritis by Inhibiting the Expression of Key Proteases in Cartilage and of IL-1β in the Synovium. Ann. Rheum. Dis. 2013, 72, 250–257. [Google Scholar] [CrossRef]
  50. Beyer, C.; Schett, G. Pharmacotherapy: Concepts of Pathogenesis and Emerging Treatments. Novel Targets in Bone and Cartilage. Best. Pract. Res. Clin. Rheumatol. 2010, 24, 489–496. [Google Scholar] [CrossRef]
  51. Zhai, G. Clinical Relevance of Biochemical and Metabolic Changes in Osteoarthritis. Adv. Clin. Chem. 2021, 101, 95–120. [Google Scholar] [CrossRef] [PubMed]
  52. Kihara, S.; Hayashi, S.; Hashimoto, S.; Kanzaki, N.; Takayama, K.; Matsumoto, T.; Chinzei, N.; Iwasa, K.; Haneda, M.; Takeuchi, K.; et al. Cyclin-Dependent Kinase Inhibitor-1-Deficient Mice Are Susceptible to Osteoarthritis Associated with Enhanced Inflammation. J. Bone Miner. Res. 2017, 32, 991–1001. [Google Scholar] [CrossRef] [PubMed]
  53. Kumar, A.; Palit, P.; Thomas, S.; Gupta, G.; Ghosh, P.; Goswami, R.P.; Kumar Maity, T.; Dutta Choudhury, M. Osteoarthritis: Prognosis and Emerging Therapeutic Approach for Disease Management. Drug Dev. Res. 2021, 82, 49–58. [Google Scholar] [CrossRef] [PubMed]
  54. Lu, K.; Liao, Z.; Li, J.; Wang, Y.; Zhang, Y.; Cai, L.; Lu, W.W.; Yang, F.; Pan, H.; Chen, D. MSAB Limits Osteoarthritis Development and Progression through Inhibition of β-Catenin-DDR2 Signaling. Bioact. Mater. 2025, 46, 259–272. [Google Scholar] [CrossRef]
  55. Zhang, Y.; Liu, T.; Yang, H.; He, F.; Zhu, X. Melatonin: A Novel Candidate for the Treatment of Osteoarthritis. Ageing Res. Rev. 2022, 78, 101635. [Google Scholar] [CrossRef]
  56. Li, Z.; Dai, A.; Yang, M.; Chen, S.; Deng, Z.; Li, L. p38MAPK Signaling Pathway in Osteoarthritis: Pathological and Therapeutic Aspects. J. Inflamm. Res. 2022, 15, 723–734. [Google Scholar] [CrossRef]
  57. Alharbi, K.S.; Afzal, O.; Altamimi, A.S.A.; Almalki, W.H.; Kazmi, I.; Al-Abbasi, F.A.; Alzarea, S.I.; Makeen, H.A.; Albratty, M. Potential Role of Nutraceuticals via Targeting a Wnt/β-Catenin and NF-κB Pathway in Treatment of Osteoarthritis. J. Food Biochem. 2022, 46, e14427. [Google Scholar] [CrossRef]
  58. Wu, Z.; Yang, Z.; Liu, L.; Xiao, Y. Natural Compounds Protect against the Pathogenesis of Osteoarthritis by Mediating the NRF2/ARE Signaling. Front. Pharmacol. 2023, 14, 1188215. [Google Scholar] [CrossRef]
  59. Mathieu, S.; Soubrier, M.; Peirs, C.; Monfoulet, L.-E.; Boirie, Y.; Tournadre, A. A Meta-Analysis of the Impact of Nutritional Supplementation on Osteoarthritis Symptoms. Nutrients 2022, 14, 1607. [Google Scholar] [CrossRef]
  60. Swallow, J.; Seidler, K.; Barrow, M. The Mechanistic Role of Curcumin on Matrix Metalloproteinases in Osteoarthritis. Fitoterapia 2024, 174, 105870. [Google Scholar] [CrossRef]
  61. Ye, Y.; Zhou, J. The Protective Activity of Natural Flavonoids against Osteoarthritis by Targeting NF-κB Signaling Pathway. Front. Endocrinol. 2023, 14, 1117489. [Google Scholar] [CrossRef]
  62. Naselli, F.; Bellavia, D.; Costa, V.; De Luca, A.; Raimondi, L.; Giavaresi, G.; Caradonna, F. Osteoarthritis in the Elderly Population: Preclinical Evidence of Nutrigenomic Activities of Flavonoids. Nutrients 2023, 16, 112. [Google Scholar] [CrossRef]
  63. Zhang, J.; Fan, F.; Liu, A.; Zhang, C.; Li, Q.; Zhang, C.; He, F.; Shang, M. Icariin: A Potential Molecule for Treatment of Knee Osteoarthritis. Front. Pharmacol. 2022, 13, 811808. [Google Scholar] [CrossRef]
  64. Chen, J.; Huang, L.; Liao, X. Protective Effects of Ginseng and Ginsenosides in the Development of Osteoarthritis (Review). Exp. Ther. Med. 2023, 26, 465. [Google Scholar] [CrossRef] [PubMed]
  65. Alazragi, R.S.; Baeissa, H.M. Chondroprotective Effects of Grapefruit (Citrus Paradisi Macfad.) Juice in a Complete Freund’s Adjuvant Rat Model of Knee Osteoarthritis. Nutrients 2023, 15, 798. [Google Scholar] [CrossRef]
  66. Cordingley, D.M.; Cornish, S.M. Omega-3 Fatty Acids for the Management of Osteoarthritis: A Narrative Review. Nutrients 2022, 14, 3362. [Google Scholar] [CrossRef]
  67. Valsamidou, E.; Gioxari, A.; Amerikanou, C.; Zoumpoulakis, P.; Skarpas, G.; Kaliora, A.C. Dietary Interventions with Polyphenols in Osteoarthritis: A Systematic Review Directed from the Preclinical Data to Randomized Clinical Studies. Nutrients 2021, 13, 1420. [Google Scholar] [CrossRef]
  68. Zhao, Z.-X.; He, Y.; Peng, L.-H.; Luo, X.; Liu, M.; He, C.-S.; Chen, J. Does Vitamin D Improve Symptomatic and Structural Outcomes in Knee Osteoarthritis? A Systematic Review and Meta-Analysis. Aging Clin. Exp. Res. 2021, 33, 2393–2403. [Google Scholar] [CrossRef] [PubMed]
  69. Yu, Y.; Liu, D.; Feng, D.; Zhao, J. Association between Vitamin D and Knee Osteoarthritis: A PRISMA-Compliant Meta-Analysis. Z. Orthop. Unfall. 2021, 159, 281–287. [Google Scholar] [CrossRef]
  70. Chevalley, T.; Brandi, M.L.; Cashman, K.D.; Cavalier, E.; Harvey, N.C.; Maggi, S.; Cooper, C.; Al-Daghri, N.; Bock, O.; Bruyère, O.; et al. Role of Vitamin D Supplementation in the Management of Musculoskeletal Diseases: Update from an European Society of Clinical and Economical Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) Working Group. Aging Clin. Exp. Res. 2022, 34, 2603–2623. [Google Scholar] [CrossRef]
  71. Wang, T.; Guo, Y.; Shi, X.-W.; Gao, Y.; Zhang, J.-Y.; Wang, C.-J.; Yang, X.; Shu, Q.; Chen, X.-L.; Fu, X.-Y.; et al. Acupotomy Contributes to Suppressing Subchondral Bone Resorption in KOA Rabbits by Regulating the OPG/RANKL Signaling Pathway. Evid. Based Complement. Altern. Med. 2021, 2021, 8168657. [Google Scholar] [CrossRef] [PubMed]
  72. Chen, X.; Guo, Y.; Lu, J.; Qin, L.; Hu, T.; Zeng, X.; Wang, X.; Zhang, A.; Zhuang, Y.; Zhong, H.; et al. Acupotomy Ameliorates Subchondral Bone Absorption and Mechanical Properties in Rabbits with Knee Osteoarthritis by Regulating Bone Morphogenetic Protein 2-Smad1 Pathway. J. Tradit. Chin. Med. 2023, 43, 734–743. [Google Scholar] [CrossRef]
  73. Di Matteo, B.; Vandenbulcke, F.; Vitale, N.D.; Iacono, F.; Ashmore, K.; Marcacci, M.; Kon, E. Minimally Manipulated Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis: A Systematic Review of Clinical Evidence. Stem Cells Int. 2019, 2019, 1735242. [Google Scholar] [CrossRef]
  74. Najar, M.; Melki, R.; Khalife, F.; Lagneaux, L.; Bouhtit, F.; Moussa Agha, D.; Fahmi, H.; Lewalle, P.; Fayyad-Kazan, M.; Merimi, M. Therapeutic Mesenchymal Stem/Stromal Cells: Value, Challenges and Optimization. Front. Cell Dev. Biol. 2021, 9, 716853. [Google Scholar] [CrossRef]
  75. Wei, P.; Bao, R. Intra-Articular Mesenchymal Stem Cell Injection for Knee Osteoarthritis: Mechanisms and Clinical Evidence. Int. J. Mol. Sci. 2022, 24, 59. [Google Scholar] [CrossRef]
  76. Wu, Q.; Wu, Z.; Lu, Z. Clinical Efficacy and Safety of the Combination of Mesenchymal Stem Cells and Scaffolds in the Treatment of Knee Osteoarthritis: Protocol for Systematic Review and Meta-Analysis. Medicine 2022, 101, e31638. [Google Scholar] [CrossRef] [PubMed]
  77. Shegos, C.J.; Chaudhry, A.F. A Narrative Review of Mesenchymal Stem Cells Effect on Osteoarthritis. Ann. Jt. 2022, 7, 26. [Google Scholar] [CrossRef]
  78. Wong, K.L.; Lee, K.B.L.; Tai, B.C.; Law, P.; Lee, E.H.; Hui, J.H.P. Injectable Cultured Bone Marrow-Derived Mesenchymal Stem Cells in Varus Knees with Cartilage Defects Undergoing High Tibial Osteotomy: A Prospective, Randomized Controlled Clinical Trial with 2 Years’ Follow-Up. Arthroscopy 2013, 29, 2020–2028. [Google Scholar] [CrossRef]
  79. Giorgino, R.; Albano, D.; Fusco, S.; Peretti, G.M.; Mangiavini, L.; Messina, C. Knee Osteoarthritis: Epidemiology, Pathogenesis, and Mesenchymal Stem Cells: What Else Is New? An Update. Int. J. Mol. Sci. 2023, 24, 6405. [Google Scholar] [CrossRef]
  80. Entessari, M.; Oliveira, L.P. Current Evidence on Mesenchymal Stem Cells for Hip Osteoarthritis: A Narrative Review. Regen. Med. 2023, 18, 749–758. [Google Scholar] [CrossRef]
  81. Lv, Z.; Cai, X.; Bian, Y.; Wei, Z.; Zhu, W.; Zhao, X.; Weng, X. Advances in Mesenchymal Stem Cell Therapy for Osteoarthritis: From Preclinical and Clinical Perspectives. Bioengineering 2023, 10, 195. [Google Scholar] [CrossRef]
  82. Carneiro, D.d.C.; Araújo, L.T.d.; Santos, G.C.; Damasceno, P.K.F.; Vieira, J.L.; Santos, R.R.D.; Barbosa, J.D.V.; Soares, M.B.P. Clinical Trials with Mesenchymal Stem Cell Therapies for Osteoarthritis: Challenges in the Regeneration of Articular Cartilage. Int. J. Mol. Sci. 2023, 24, 9939. [Google Scholar] [CrossRef] [PubMed]
  83. Kyriakidis, T.; Pitsilos, C.; Iosifidou, M.; Tzaveas, A.; Gigis, I.; Ditsios, K.; Iosifidis, M. Stem Cells for the Treatment of Early to Moderate Osteoarthritis of the Knee: A Systematic Review. J. Exp. Orthop. 2023, 10, 102. [Google Scholar] [CrossRef]
  84. Razak, H.R.B.A.; Corona, K.; Totlis, T.; Chan, L.Y.T.; Salreta, J.F.; Sleiman, O.; Vasso, M.; Baums, M.H. Mesenchymal Stem Cell Implantation Provides Short-Term Clinical Improvement and Satisfactory Cartilage Restoration in Patients with Knee Osteoarthritis but the Evidence Is Limited: A Systematic Review Performed by the Early-Osteoarthritis Group of ESSKA-European Knee Associates Section. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 5306–5318. [Google Scholar] [CrossRef] [PubMed]
  85. Tian, R.; Su, S.; Yu, Y.; Liang, S.; Ma, C.; Jiao, Y.; Xing, W.; Tian, Z.; Jiang, T.; Wang, J. Revolutionizing Osteoarthritis Treatment: How Mesenchymal Stem Cells Hold the Key. Biomed. Pharmacother. 2024, 173, 116458. [Google Scholar] [CrossRef]
  86. Ehioghae, M.; Vippa, T.K.; Askins, D.; Slusarczyk, S.; Bobo, E.; Montoya, A.; Anderson, D.; Robinson, C.L.; Kaye, A.D.; Urits, I. Exploring Orthopedic Stem-Cell Approaches for Osteoarthritis Management: Current Trends and Future Horizons. Curr. Pain Headache Rep. 2024, 28, 27–35. [Google Scholar] [CrossRef]
  87. Huang, Z.; Zhang, S.; Cao, M.; Lin, Z.; Kong, L.; Wu, X.; Guo, Q.; Ouyang, Y.; Song, Y. What Is the Optimal Dose of Adipose-Derived Mesenchymal Stem Cells Treatment for Knee Osteoarthritis? A Conventional and Network Meta-Analysis of Randomized Controlled Trials. Stem Cell Res. Ther. 2023, 14, 245. [Google Scholar] [CrossRef]
  88. Kim, K.-I.; Kim, M.-S.; Kim, J.-H. Intra-Articular Injection of Autologous Adipose-Derived Stem Cells or Stromal Vascular Fractions: Are They Effective for Patients With Knee Osteoarthritis? A Systematic Review With Meta-Analysis of Randomized Controlled Trials. Am. J. Sports Med. 2023, 51, 837–848. [Google Scholar] [CrossRef]
  89. Nogueira, L.F.B.; Maniglia, B.C.; Buchet, R.; Millán, J.L.; Ciancaglini, P.; Bottini, M.; Ramos, A.P. Three-Dimensional Cell-Laden Collagen Scaffolds: From Biochemistry to Bone Bioengineering. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 110, 967–983. [Google Scholar] [CrossRef]
  90. Albrecht, C.; Tichy, B.; Nürnberger, S.; Hosiner, S.; Zak, L.; Aldrian, S.; Marlovits, S. Gene Expression and Cell Differentiation in Matrix-Associated Chondrocyte Transplantation Grafts: A Comparative Study. Osteoarthr. Cartil. 2011, 19, 1219–1227. [Google Scholar] [CrossRef]
  91. Dai, W.; Kawazoe, N.; Lin, X.; Dong, J.; Chen, G. The Influence of Structural Design of PLGA/Collagen Hybrid Scaffolds in Cartilage Tissue Engineering. Biomaterials 2010, 31, 2141–2152. [Google Scholar] [CrossRef] [PubMed]
  92. Kim, G.B.; Shon, O.-J.; Seo, M.-S.; Choi, Y.; Park, W.T.; Lee, G.W. Mesenchymal Stem Cell-Derived Exosomes and Their Therapeutic Potential for Osteoarthritis. Biology 2021, 10, 285. [Google Scholar] [CrossRef]
  93. Chen, A.; Chen, Y.; Rong, X.; You, X.; Wu, D.; Zhou, X.; Zeng, W.; Zhou, Z. The Application of Exosomes in the Early Diagnosis and Treatment of Osteoarthritis. Front. Pharmacol. 2023, 14, 1154135. [Google Scholar] [CrossRef]
  94. Zhou, Q.; Cai, Y.; Jiang, Y.; Lin, X. Exosomes in Osteoarthritis and Cartilage Injury: Advanced Development and Potential Therapeutic Strategies. Int. J. Biol. Sci. 2020, 16, 1811–1820. [Google Scholar] [CrossRef] [PubMed]
  95. Lin, J.; Wang, L.; Lin, J.; Liu, Q. The Role of Extracellular Vesicles in the Pathogenesis, Diagnosis, and Treatment of Osteoarthritis. Molecules 2021, 26, 4987. [Google Scholar] [CrossRef] [PubMed]
  96. Maehara, M.; Toyoda, E.; Takahashi, T.; Watanabe, M.; Sato, M. Potential of Exosomes for Diagnosis and Treatment of Joint Disease: Towards a Point-of-Care Therapy for Osteoarthritis of the Knee. Int. J. Mol. Sci. 2021, 22, 2666. [Google Scholar] [CrossRef]
  97. Liu, Z.; Zhuang, Y.; Fang, L.; Yuan, C.; Wang, X.; Lin, K. Breakthrough of Extracellular Vesicles in Pathogenesis, Diagnosis and Treatment of Osteoarthritis. Bioact. Mater. 2023, 22, 423–452. [Google Scholar] [CrossRef]
  98. Zhuang, Y.; Jiang, S.; Yuan, C.; Lin, K. The Potential Therapeutic Role of Extracellular Vesicles in Osteoarthritis. Front. Bioeng. Biotechnol. 2022, 10, 1022368. [Google Scholar] [CrossRef]
  99. Bryk, M.; Karnas, E.; Mlost, J.; Zuba-Surma, E.; Starowicz, K. Mesenchymal Stem Cells and Extracellular Vesicles for the Treatment of Pain: Current Status and Perspectives. Br. J. Pharmacol. 2022, 179, 4281–4299. [Google Scholar] [CrossRef]
  100. Ruiz, M.; Cosenza, S.; Maumus, M.; Jorgensen, C.; Noël, D. Therapeutic Application of Mesenchymal Stem Cells in Osteoarthritis. Expert Opin. Biol. Ther. 2016, 16, 33–42. [Google Scholar] [CrossRef]
  101. Toh, W.S.; Lai, R.C.; Hui, J.H.P.; Lim, S.K. MSC Exosome as a Cell-Free MSC Therapy for Cartilage Regeneration: Implications for Osteoarthritis Treatment. Semin. Cell Dev. Biol. 2017, 67, 56–64. [Google Scholar] [CrossRef] [PubMed]
  102. Ke, Z.; Zhu, J. Stem-Cell Derived Exosomes for the Treatment of Osteoarthritis. Curr. Stem Cell Res. Ther. 2020, 15, 597–601. [Google Scholar] [CrossRef]
  103. Ng, C.Y.; Chai, J.Y.; Foo, J.B.; Mohamad Yahaya, N.H.; Yang, Y.; Ng, M.H.; Law, J.X. Potential of Exosomes as Cell-Free Therapy in Articular Cartilage Regeneration: A Review. Int. J. Nanomed. 2021, 16, 6749–6781. [Google Scholar] [CrossRef]
  104. Jousheghan, S.S.; Sajjadi, M.M.; Jousheghan, S.S.; Hosseininejad, S.-M.; Maleki, A. Extracellular Vesicles as Novel Approaches for the Treatment of Osteoarthritis: A Narrative Review on Potential Mechanisms. J. Mol. Histol. 2021, 52, 879–891. [Google Scholar] [CrossRef]
  105. Boulestreau, J.; Maumus, M.; Jorgensen, C.; Noël, D. Extracellular Vesicles from Mesenchymal Stromal Cells: Therapeutic Perspectives for Targeting Senescence in Osteoarthritis. Adv. Drug Deliv. Rev. 2021, 175, 113836. [Google Scholar] [CrossRef]
  106. Hormozi, A.; Hasanzadeh, S.; Ebrahimi, F.; Daei, N.; Hajimortezayi, Z.; Mehdizadeh, A.; Zamani, M. Treatment with Exosomes Derived from Mesenchymal Stem Cells: A New Window of Healing Science in Regenerative Medicine. Curr. Stem Cell Res. Ther. 2024, 19, 879–893. [Google Scholar] [CrossRef] [PubMed]
  107. Pourakbari, R.; Khodadadi, M.; Aghebati-Maleki, A.; Aghebati-Maleki, L.; Yousefi, M. The Potential of Exosomes in the Therapy of the Cartilage and Bone Complications; Emphasis on Osteoarthritis. Life Sci. 2019, 236, 116861. [Google Scholar] [CrossRef]
  108. Torrecillas-Baena, B.; Pulido-Escribano, V.; Dorado, G.; Gálvez-Moreno, M.Á.; Camacho-Cardenosa, M.; Casado-Díaz, A. Clinical Potential of Mesenchymal Stem Cell-Derived Exosomes in Bone Regeneration. J. Clin. Med. 2023, 12, 4385. [Google Scholar] [CrossRef]
  109. Miyaki, S.; Lotz, M.K. Extracellular Vesicles in Cartilage Homeostasis and Osteoarthritis. Curr. Opin. Rheumatol. 2018, 30, 129–135. [Google Scholar] [CrossRef]
  110. Li, J.J.; Hosseini-Beheshti, E.; Grau, G.E.; Zreiqat, H.; Little, C.B. Stem Cell-Derived Extracellular Vesicles for Treating Joint Injury and Osteoarthritis. Nanomaterials 2019, 9, 261. [Google Scholar] [CrossRef]
  111. Mustonen, A.-M.; Nieminen, P. Extracellular Vesicles and Their Potential Significance in the Pathogenesis and Treatment of Osteoarthritis. Pharmaceuticals 2021, 14, 315. [Google Scholar] [CrossRef]
  112. Nguyen, T.H.; Duong, C.M.; Nguyen, X.-H.; Than, U.T.T. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Osteoarthritis Treatment: Extracellular Matrix Protection, Chondrocyte and Osteocyte Physiology, Pain and Inflammation Management. Cells 2021, 10, 2887. [Google Scholar] [CrossRef] [PubMed]
  113. To, K.; Romain, K.; Mak, C.; Kamaraj, A.; Henson, F.; Khan, W. The Treatment of Cartilage Damage Using Human Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Systematic Review of in Vivo Studies. Front. Bioeng. Biotechnol. 2020, 8, 580. [Google Scholar] [CrossRef]
  114. Jiang, Y.; Lv, H.; Shen, F.; Fan, L.; Zhang, H.; Huang, Y.; Liu, J.; Wang, D.; Pan, H.; Yang, J. Strategies in Product Engineering of Mesenchymal Stem Cell-Derived Exosomes: Unveiling the Mechanisms Underpinning the Promotive Effects of Mesenchymal Stem Cell-Derived Exosomes. Front. Bioeng. Biotechnol. 2024, 12, 1363780. [Google Scholar] [CrossRef]
  115. Zhang, Z.; Zhao, S.; Sun, Z.; Zhai, C.; Xia, J.; Wen, C.; Zhang, Y.; Zhang, Y. Enhancement of the Therapeutic Efficacy of Mesenchymal Stem Cell-Derived Exosomes in Osteoarthritis. Cell Mol. Biol. Lett. 2023, 28, 75. [Google Scholar] [CrossRef]
  116. van de Looij, S.M.; de Jong, O.G.; Vermonden, T.; Lorenowicz, M.J. Injectable Hydrogels for Sustained Delivery of Extracellular Vesicles in Cartilage Regeneration. J. Control Release 2023, 355, 685–708. [Google Scholar] [CrossRef]
  117. Amizuka, N.; Hasegawa, T.; Oda, K.; Luiz de Freitas, P.H.; Hoshi, K.; Li, M.; Ozawa, H. Histology of Epiphyseal Cartilage Calcification and Endochondral Ossification. Front. Biosci. Elite Ed. 2012, 4, 2085–2100. [Google Scholar] [CrossRef]
  118. Poole, A.R. The Growth Plate: Cellular Physiology, Cartilage Assembly and Mineralization. In Cartilage: Molecular Aspects; Hall, B., Newman, S., Eds.; CRC Press: Boca Raton, FL, USA, 1991; pp. 179–211. Available online: https://www.google.com/search?client=firefox-b-e&sca_esv=776364c56d1effde&sxsrf=ADLYWIK0FRK44fN_x5DQeziYou79nTurfw:1735066871249&q=Poole,+A.R.+(1991)+The+Growth+Plate:+Cellular+Physiology,+Cartilage+Assembly+and+Mineralization.+In:+Hall,+B.+and+Newman,+S.,+Eds.,+Cartilage:+Molecular+Aspects,+CRC+Press,+Boca+Raton,+FL,+179-211&source=lnms&fbs=AEQNm0CbCVgAZ5mWEJDg6aoPVcBgTlosgQSuzBMlnAdio07UCCJug3WzoI_0_7bcYmDUufwL4h0h9JsKaCFDU5b_RnWAz4amEGUtY-9QgtLUxVwALu4YzL6k1GV8L0y209eXy6wQPk0bFkwMnygY6tpmF9UkDDoT7Ro4RiUTMjqWyIaEvMfCrPbhkhjpTW5YBEuVTmi8BtT1&sa=X&ved=2ahUKEwixxJbki8GKAxXJdqQEHcz1HfgQ0pQJegQIDRAB&biw=1271&bih=550&dpr=1.5 (accessed on 24 December 2024).
  119. Anderson, H.C. Molecular Biology of Matrix Vesicles. Clin. Orthop. Relat. Res. 1995, 314, 266–280. [Google Scholar] [CrossRef]
  120. Żylińska, B.; Sobczyńska-Rak, A.; Lisiecka, U.; Stodolak-Zych, E.; Jarosz, Ł.; Szponder, T. Structure and Pathologies of Articular Cartilage. In Vivo 2021, 35, 1355–1363. [Google Scholar] [CrossRef]
  121. Bhosale, A.M.; Richardson, J.B. Articular Cartilage: Structure, Injuries and Review of Management. Br. Med. Bull. 2008, 87, 77–95. [Google Scholar] [CrossRef]
  122. Ge, Z.; Li, C.; Heng, B.C.; Cao, G.; Yang, Z. Functional Biomaterials for Cartilage Regeneration. J. Biomed. Mater. Res. A 2012, 100, 2526–2536. [Google Scholar] [CrossRef]
  123. Mollenhauer, J.A. Perspectives on Articular Cartilage Biology and Osteoarthritis. Injury 2008, 39 (Suppl. S1), S5–S12. [Google Scholar] [CrossRef] [PubMed]
  124. Buchet, R.; Mebarek, S.; Pikula, S.; Strzelecka-Kiliszek, A.; Magne, D.; Duffles, L.F.; Taira, T.M.; Bottini, M.; Ciancaglini, P.; Millán, J.L.; et al. Chapter 2—Physiological Biomineralization. The Properties and Role of Matrix Vesicles in Skeletal and Dental Calcifications. In Mineralizing Vesicles; Bottini, M., Ramos, A.P., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 29–59. ISBN 978-0-323-99158-2. [Google Scholar]
  125. Hunziker, E.B. Mechanism of Longitudinal Bone Growth and Its Regulation by Growth Plate Chondrocytes. Microsc. Res. Tech. 1994, 28, 505–519. [Google Scholar] [CrossRef] [PubMed]
  126. Ali, S.Y. Analysis of Matrix Vesicles and Their Role in the Calcification of Epiphyseal Cartilage. Fed. Proc. 1976, 35, 135–142. [Google Scholar]
  127. Anderson, H.C. Vesicles Associated with Calcification in the Matrix of Epiphyseal Cartilage. J. Cell Biol. 1969, 41, 59–72. [Google Scholar] [CrossRef]
  128. Bonucci, E. Fine Structure of Early Cartilage Calcification. J. Ultrastruct. Res. 1967, 20, 33–50. [Google Scholar] [CrossRef]
  129. Anderson, H.C. Electron Microscopic Studies of Induced Cartilage Development and Calcification. J. Cell Biol. 1967, 35, 81–101. [Google Scholar] [CrossRef]
  130. Boskey, A.L. Mineral-Matrix Interactions in Bone and Cartilage. Clin. Orthop. Relat. Res. 1992, 281, 244–274. [Google Scholar]
  131. Anderson, H.C. Matrix Vesicles and Calcification. Curr. Rheumatol. Rep. 2003, 5, 222–226. [Google Scholar] [CrossRef]
  132. Golub, E.E. Role of Matrix Vesicles in Biomineralization. Biochim. Biophys. Acta 2009, 1790, 1592–1598. [Google Scholar] [CrossRef]
  133. Wuthier, R.E.; Lipscomb, G.F. Matrix Vesicles: Structure, Composition, Formation and Function in Calcification. Front. Biosci. 2011, 16, 2812–2902. [Google Scholar] [CrossRef]
  134. Bottini, M.; Mebarek, S.; Anderson, K.L.; Strzelecka-Kiliszek, A.; Bozycki, L.; Simão, A.M.S.; Bolean, M.; Ciancaglini, P.; Pikula, J.B.; Pikula, S.; et al. Matrix Vesicles from Chondrocytes and Osteoblasts: Their Biogenesis, Properties, Functions and Biomimetic Models. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 532–546. [Google Scholar] [CrossRef] [PubMed]
  135. Mebarek, S.; Buchet, R.; Pikula, S.; Strzelecka-Kiliszek, A.; Brizuela, L.; Corti, G.; Collacchi, F.; Anghieri, G.; Magrini, A.; Ciancaglini, P.; et al. Do Media Extracellular Vesicles and Extracellular Vesicles Bound to the Extracellular Matrix Represent Distinct Types of Vesicles? Biomolecules 2023, 14, 42. [Google Scholar] [CrossRef] [PubMed]
  136. Kirsch, T.; von der Mark, K. Remodelling of Collagen Types I, II and X and Calcification of Human Fetal Cartilage. Bone Miner. 1992, 18, 107–117. [Google Scholar] [CrossRef] [PubMed]
  137. Descalzi Cancedda, F.; Gentili, C.; Manduca, P.; Cancedda, R. Hypertrophic Chondrocytes Undergo Further Differentiation in Culture. J. Cell Biol. 1992, 117, 427–435. [Google Scholar] [CrossRef]
  138. Gentili, C.; Bianco, P.; Neri, M.; Malpeli, M.; Campanile, G.; Castagnola, P.; Cancedda, R.; Cancedda, F.D. Cell Proliferation, Extracellular Matrix Mineralization, and Ovotransferrin Transient Expression during in Vitro Differentiation of Chick Hypertrophic Chondrocytes into Osteoblast-like Cells. J. Cell Biol. 1993, 122, 703–712. [Google Scholar] [CrossRef]
  139. Aghajanian, P.; Xing, W.; Cheng, S.; Mohan, S. Epiphyseal Bone Formation Occurs via Thyroid Hormone Regulation of Chondrocyte to Osteoblast Transdifferentiation. Sci. Rep. 2017, 7, 10432. [Google Scholar] [CrossRef]
  140. Roach, H.I.; Erenpreisa, J.; Aigner, T. Osteogenic Differentiation of Hypertrophic Chondrocytes Involves Asymmetric Cell Divisions and Apoptosis. J. Cell Biol. 1995, 131, 483–494. [Google Scholar] [CrossRef]
  141. Gerber, H.P.; Vu, T.H.; Ryan, A.M.; Kowalski, J.; Werb, Z.; Ferrara, N. VEGF Couples Hypertrophic Cartilage Remodeling, Ossification and Angiogenesis during Endochondral Bone Formation. Nat. Med. 1999, 5, 623–628. [Google Scholar] [CrossRef]
  142. Zeyland, J.; Lipiński, D.; Juzwa, W.; Pławski, A.; Słomski, R. Structure and Application of Select Glycosaminoglycans. Med. Weter. 2006, 62, 139–144. [Google Scholar]
  143. Wilusz, R.E.; Sanchez-Adams, J.; Guilak, F. The Structure and Function of the Pericellular Matrix of Articular Cartilage. Matrix Biol. 2014, 39, 25–32. [Google Scholar] [CrossRef] [PubMed]
  144. Hodgkinson, T.; Kelly, D.C.; Curtin, C.M.; O’Brien, F.J. Mechanosignalling in Cartilage: An Emerging Target for the Treatment of Osteoarthritis. Nat. Rev. Rheumatol. 2022, 18, 67–84. [Google Scholar] [CrossRef] [PubMed]
  145. Andriacchi, T.P.; Favre, J. The Nature of in Vivo Mechanical Signals That Influence Cartilage Health and Progression to Knee Osteoarthritis. Curr. Rheumatol. Rep. 2014, 16, 463. [Google Scholar] [CrossRef]
  146. Guo, H.; Maher, S.A.; Torzilli, P.A. A Biphasic Finite Element Study on the Role of the Articular Cartilage Superficial Zone in Confined Compression. J. Biomech. 2015, 48, 166–170. [Google Scholar] [CrossRef] [PubMed]
  147. Segarra-Queralt, M.; Crump, K.; Pascuet-Fontanet, A.; Gantenbein, B.; Noailly, J. The Interplay between Biochemical Mediators and Mechanotransduction in Chondrocytes: Unravelling the Differential Responses in Primary Knee Osteoarthritis. Phys. Life Rev. 2024, 48, 205–221. [Google Scholar] [CrossRef]
  148. Mow, V.C.; Ratcliffe, A.; Poole, A.R. Cartilage and Diarthrodial Joints as Paradigms for Hierarchical Materials and Structures. Biomaterials 1992, 13, 67–97. [Google Scholar] [CrossRef] [PubMed]
  149. Arokoski, J.P.; Jurvelin, J.S.; Väätäinen, U.; Helminen, H.J. Normal and Pathological Adaptations of Articular Cartilage to Joint Loading. Scand. J. Med. Sci. Sports 2000, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
  150. Chwastek, J.; Kędziora, M.; Borczyk, M.; Korostyński, M.; Starowicz, K. Inflammation-Driven Secretion Potential Is Upregulated in Osteoarthritic Fibroblast-Like Synoviocytes. Int. J. Mol. Sci. 2022, 23, 11817. [Google Scholar] [CrossRef]
  151. Arora, D.; Taneja, Y.; Sharma, A.; Dhingra, A.; Guarve, K. Role of Apoptosis in the Pathogenesis of Osteoarthritis: An Explicative Review. Curr. Rheumatol. Rev. 2024, 20, 2–13. [Google Scholar] [CrossRef]
  152. O’Neill, T.W.; Felson, D.T. Mechanisms of Osteoarthritis (OA) Pain. Curr. Osteoporos. Rep. 2018, 16, 611–616. [Google Scholar] [CrossRef]
  153. Zhou, S.; Thornhill, T.S.; Meng, F.; Xie, L.; Wright, J.; Glowacki, J. Influence of Osteoarthritis Grade on Molecular Signature of Human Cartilage. J. Orthop. Res. 2016, 34, 454–462. [Google Scholar] [CrossRef]
  154. Lotz, M. Cytokines in Cartilage Injury and Repair. Clin. Orthop. Relat. Res. 2001, 391, S108–S115. [Google Scholar] [CrossRef]
  155. Goldring, M.B. The Role of the Chondrocyte in Osteoarthritis. Arthritis Rheum. 2000, 43, 1916–1926. [Google Scholar] [CrossRef] [PubMed]
  156. Hayami, T.; Pickarski, M.; Zhuo, Y.; Wesolowski, G.A.; Rodan, G.A.; Duong, L.T. Characterization of Articular Cartilage and Subchondral Bone Changes in the Rat Anterior Cruciate Ligament Transection and Meniscectomized Models of Osteoarthritis. Bone 2006, 38, 234–243. [Google Scholar] [CrossRef]
  157. Rim, Y.A.; Nam, Y.; Ju, J.H. The Role of Chondrocyte Hypertrophy and Senescence in Osteoarthritis Initiation and Progression. Int. J. Mol. Sci. 2020, 21, 2358. [Google Scholar] [CrossRef]
  158. Ko, F.C.; Dragomir, C.L.; Plumb, D.A.; Hsia, A.W.; Adebayo, O.O.; Goldring, S.R.; Wright, T.M.; Goldring, M.B.; van der Meulen, M.C.H. Progressive Cell-Mediated Changes in Articular Cartilage and Bone in Mice Are Initiated by a Single Session of Controlled Cyclic Compressive Loading. J. Orthop. Res. 2016, 34, 1941–1949. [Google Scholar] [CrossRef] [PubMed]
  159. He, Y.; Manon-Jensen, T.; Arendt-Nielsen, L.; Petersen, K.K.; Christiansen, T.; Samuels, J.; Abramson, S.; Karsdal, M.A.; Attur, M.; Bay-Jensen, A.C. Potential Diagnostic Value of a Type X Collagen Neo-Epitope Biomarker for Knee Osteoarthritis. Osteoarthr. Cartil. 2019, 27, 611–620. [Google Scholar] [CrossRef]
  160. Bouaziz, W.; Funck-Brentano, T.; Lin, H.; Marty, C.; Ea, H.-K.; Hay, E.; Cohen-Solal, M. Loss of Sclerostin Promotes Osteoarthritis in Mice via β-Catenin-Dependent and -Independent Wnt Pathways. Arthritis Res. Ther. 2015, 17, 24. [Google Scholar] [CrossRef]
  161. Wu, J.; Ma, L.; Wu, L.; Jin, Q. Wnt-β-Catenin Signaling Pathway Inhibition by Sclerostin May Protect against Degradation in Healthy but Not Osteoarthritic Cartilage. Mol. Med. Rep. 2017, 15, 2423–2432. [Google Scholar] [CrossRef]
  162. Niu, Q.; Li, F.; Zhang, L.; Xu, X.; Liu, Y.; Gao, J.; Feng, X. Role of the Wnt/β-Catenin Signaling Pathway in the Response of Chondrocytes to Mechanical Loading. Int. J. Mol. Med. 2016, 37, 755–762. [Google Scholar] [CrossRef]
  163. Dell’accio, F.; De Bari, C.; Eltawil, N.M.; Vanhummelen, P.; Pitzalis, C. Identification of the Molecular Response of Articular Cartilage to Injury, by Microarray Screening: Wnt-16 Expression and Signaling after Injury and in Osteoarthritis. Arthritis Rheum. 2008, 58, 1410–1421. [Google Scholar] [CrossRef]
  164. Nalesso, G.; Thomas, B.L.; Sherwood, J.C.; Yu, J.; Addimanda, O.; Eldridge, S.E.; Thorup, A.-S.; Dale, L.; Schett, G.; Zwerina, J.; et al. WNT16 Antagonises Excessive Canonical WNT Activation and Protects Cartilage in Osteoarthritis. Ann. Rheum. Dis. 2017, 76, 218–226. [Google Scholar] [CrossRef] [PubMed]
  165. Weng, L.-H.; Wang, C.-J.; Ko, J.-Y.; Sun, Y.-C.; Su, Y.-S.; Wang, F.-S. Inflammation Induction of Dickkopf-1 Mediates Chondrocyte Apoptosis in Osteoarthritic Joint. Osteoarthr. Cartil. 2009, 17, 933–943. [Google Scholar] [CrossRef]
  166. Voorzanger-Rousselot, N.; Ben-Tabassi, N.C.; Garnero, P. Opposite Relationships between Circulating Dkk-1 and Cartilage Breakdown in Patients with Rheumatoid Arthritis and Knee Osteoarthritis. Ann. Rheum. Dis. 2009, 68, 1513–1514. [Google Scholar] [CrossRef] [PubMed]
  167. Salter, D.M.; Millward-Sadler, S.J.; Nuki, G.; Wright, M.O. Integrin-Interleukin-4 Mechanotransduction Pathways in Human Chondrocytes. Clin. Orthop. Relat. Res. 2001, 391, S49–S60. [Google Scholar] [CrossRef]
  168. Zhang, Y.; Wang, F.; Bao, L.; Li, J.; Shi, Z.; Wang, J. Cyclic Hydrostatic Compress Force Regulates Apoptosis of Meniscus Fibrochondrocytes via Integrin Alpha5beta1. Physiol. Res. 2019, 68, 639–649. [Google Scholar] [CrossRef] [PubMed]
  169. Han, S. Osteoarthritis Year in Review 2022: Biology. Osteoarthr. Cartil. 2022, 30, 1575–1582. [Google Scholar] [CrossRef]
  170. Del Carlo, M.; Schwartz, D.; Erickson, E.A.; Loeser, R.F. Endogenous Production of Reactive Oxygen Species Is Required for Stimulation of Human Articular Chondrocyte Matrix Metalloproteinase Production by Fibronectin Fragments. Free Radic. Biol. Med. 2007, 42, 1350–1358. [Google Scholar] [CrossRef]
  171. Fang, T.; Zhou, X.; Jin, M.; Nie, J.; Li, X. Molecular Mechanisms of Mechanical Load-Induced Osteoarthritis. Int. Orthop. 2021, 45, 1125–1136. [Google Scholar] [CrossRef]
  172. Burr, D.B. Anatomy and Physiology of the Mineralized Tissues: Role in the Pathogenesis of Osteoarthrosis. Osteoarthr. Cartil. 2004, 12 (Suppl. A), S20–S30. [Google Scholar] [CrossRef]
  173. Burr, D.B.; Schaffler, M.B. The Involvement of Subchondral Mineralized Tissues in Osteoarthrosis: Quantitative Microscopic Evidence. Microsc. Res. Tech. 1997, 37, 343–357. [Google Scholar] [CrossRef]
  174. Imhof, H.; Sulzbacher, I.; Grampp, S.; Czerny, C.; Youssefzadeh, S.; Kainberger, F. Subchondral Bone and Cartilage Disease: A Rediscovered Functional Unit. Investig. Radiol. 2000, 35, 581–588. [Google Scholar] [CrossRef]
  175. Mebarek, S.; Hamade, E.; Thouverey, C.; Bandorowicz-Pikula, J.; Pikula, S.; Magne, D.; Buchet, R. Ankylosing Spondylitis, Late Osteoarthritis, Vascular Calcification, Chondrocalcinosis and Pseudo Gout: Toward a Possible Drug Therapy. Curr. Med. Chem. 2011, 18, 2196–2203. [Google Scholar] [CrossRef]
  176. Zhang, W.; Doherty, M.; Bardin, T.; Barskova, V.; Guerne, P.-A.; Jansen, T.L.; Leeb, B.F.; Perez-Ruiz, F.; Pimentao, J.; Punzi, L.; et al. European League Against Rheumatism Recommendations for Calcium Pyrophosphate Deposition. Part I: Terminology and Diagnosis. Ann. Rheum. Dis. 2011, 70, 563–570. [Google Scholar] [CrossRef] [PubMed]
  177. Rosenthal, A.K.; Ryan, L.M. Calcium Pyrophosphate Deposition Disease. N. Engl. J. Med. 2016, 374, 2575–2584. [Google Scholar] [CrossRef]
  178. Pritzker, K.P.H. Counterpoint: Hydroxyapatite Crystal Deposition Is Not Intimately Involved in the Pathogenesis and Progression of Human Osteoarthritis. Curr. Rheumatol. Rep. 2009, 11, 148–153. [Google Scholar] [CrossRef] [PubMed]
  179. Beckmann, R.; Houben, A.; Tohidnezhad, M.; Kweider, N.; Fragoulis, A.; Wruck, C.J.; Brandenburg, L.O.; Hermanns-Sachweh, B.; Goldring, M.B.; Pufe, T.; et al. Mechanical Forces Induce Changes in VEGF and VEGFR-1/sFlt-1 Expression in Human Chondrocytes. Int. J. Mol. Sci. 2014, 15, 15456–15474. [Google Scholar] [CrossRef]
  180. Ashraf, S.; Wibberley, H.; Mapp, P.I.; Hill, R.; Wilson, D.; Walsh, D.A. Increased Vascular Penetration and Nerve Growth in the Meniscus: A Potential Source of Pain in Osteoarthritis. Ann. Rheum. Dis. 2011, 70, 523–529. [Google Scholar] [CrossRef] [PubMed]
  181. Chen, Y.; Wang, T.; Guan, M.; Zhao, W.; Leung, F.-K.-L.; Pan, H.; Cao, X.; Guo, X.E.; Lu, W.W. Bone Turnover and Articular Cartilage Differences Localized to Subchondral Cysts in Knees with Advanced Osteoarthritis. Osteoarthr. Cartil. 2015, 23, 2174–2183. [Google Scholar] [CrossRef]
  182. Tonna, S.; Poulton, I.J.; Taykar, F.; Ho, P.W.M.; Tonkin, B.; Crimeen-Irwin, B.; Tatarczuch, L.; McGregor, N.E.; Mackie, E.J.; Martin, T.J.; et al. Chondrocytic Ephrin B2 Promotes Cartilage Destruction by Osteoclasts in Endochondral Ossification. Development 2016, 143, 648–657. [Google Scholar] [CrossRef]
  183. Li, Z.; Huang, Z.; Bai, L. Cell Interplay in Osteoarthritis. Front. Cell Dev. Biol. 2021, 9, 720477. [Google Scholar] [CrossRef]
  184. Walsh, D.A.; McWilliams, D.F.; Turley, M.J.; Dixon, M.R.; Fransès, R.E.; Mapp, P.I.; Wilson, D. Angiogenesis and Nerve Growth Factor at the Osteochondral Junction in Rheumatoid Arthritis and Osteoarthritis. Rheumatology 2010, 49, 1852–1861. [Google Scholar] [CrossRef] [PubMed]
  185. Fransès, R.E.; McWilliams, D.F.; Mapp, P.I.; Walsh, D.A. Osteochondral Angiogenesis and Increased Protease Inhibitor Expression in OA. Osteoarthr. Cartil. 2010, 18, 563–571. [Google Scholar] [CrossRef]
  186. Walsh, D.A.; Bonnet, C.S.; Turner, E.L.; Wilson, D.; Situ, M.; McWilliams, D.F. Angiogenesis in the Synovium and at the Osteochondral Junction in Osteoarthritis. Osteoarthr. Cartil. 2007, 15, 743–751. [Google Scholar] [CrossRef]
  187. Hamilton, J.L.; Nagao, M.; Levine, B.R.; Chen, D.; Olsen, B.R.; Im, H.-J. Targeting VEGF and Its Receptors for the Treatment of Osteoarthritis and Associated Pain. J. Bone Miner. Res. 2016, 31, 911–924. [Google Scholar] [CrossRef]
  188. Fernandes, T.L.; Gomoll, A.H.; Lattermann, C.; Hernandez, A.J.; Bueno, D.F.; Amano, M.T. Macrophage: A Potential Target on Cartilage Regeneration. Front. Immunol. 2020, 11, 111. [Google Scholar] [CrossRef]
  189. Nagase, H.; Kashiwagi, M. Aggrecanases and Cartilage Matrix Degradation. Arthritis Res. Ther. 2003, 5, 94–103. [Google Scholar] [CrossRef]
  190. Bondeson, J.; Wainwright, S.; Hughes, C.; Caterson, B. The Regulation of the ADAMTS4 and ADAMTS5 Aggrecanases in Osteoarthritis: A Review. Clin. Exp. Rheumatol. 2008, 26, 139–145. [Google Scholar]
  191. Verma, P.; Dalal, K. ADAMTS-4 and ADAMTS-5: Key Enzymes in Osteoarthritis. J. Cell Biochem. 2011, 112, 3507–3514. [Google Scholar] [CrossRef]
  192. Yang, C.-Y.; Chanalaris, A.; Troeberg, L. ADAMTS and ADAM Metalloproteinases in Osteoarthritis—Looking beyond the “Usual Suspects”. Osteoarthr. Cartil. 2017, 25, 1000–1009. [Google Scholar] [CrossRef]
  193. Dean, D.D.; Martel-Pelletier, J.; Pelletier, J.P.; Howell, D.S.; Woessner, J.F. Evidence for Metalloproteinase and Metalloproteinase Inhibitor Imbalance in Human Osteoarthritic Cartilage. J. Clin. Investig. 1989, 84, 678–685. [Google Scholar] [CrossRef] [PubMed]
  194. Karila, T.; Tervahartiala, T.; Cohen, B.; Sorsa, T. The Collagenases: Are They Tractable Targets for Preventing Cartilage Destruction in Osteoarthritis? Expert Opin. Ther. Targets 2022, 26, 93–105. [Google Scholar] [CrossRef]
  195. Salminen-Mankonen, H.J.; Morko, J.; Vuorio, E. Role of Cathepsin K in Normal Joints and in the Development of Arthritis. Curr. Drug Targets 2007, 8, 315–323. [Google Scholar] [CrossRef]
  196. Lis, K.; Odrowaz-Sypniewska, G. Role of Cathepsin K in the Pathogenesis of Degenerative Changes in Joints. Ortop. Traumatol. Rehabil. 2005, 7, 361–364. [Google Scholar]
  197. Miller, R.E.; Lu, Y.; Tortorella, M.D.; Malfait, A.-M. Genetically Engineered Mouse Models Reveal the Importance of Proteases as Osteoarthritis Drug Targets. Curr. Rheumatol. Rep. 2013, 15, 350. [Google Scholar] [CrossRef] [PubMed]
  198. Gallagher, J.A.; Ranganath, L.R.; Boyde, A. Lessons from Rare Diseases of Cartilage and Bone. Curr. Opin. Pharmacol. 2015, 22, 107–114. [Google Scholar] [CrossRef]
  199. Hou, W.S.; Li, Z.; Gordon, R.E.; Chan, K.; Klein, M.J.; Levy, R.; Keysser, M.; Keyszer, G.; Brömme, D. Cathepsin k Is a Critical Protease in Synovial Fibroblast-Mediated Collagen Degradation. Am. J. Pathol. 2001, 159, 2167–2177. [Google Scholar] [CrossRef] [PubMed]
  200. Kiviranta, R.; Morko, J.; Uusitalo, H.; Aro, H.T.; Vuorio, E.; Rantakokko, J. Accelerated Turnover of Metaphyseal Trabecular Bone in Mice Overexpressing Cathepsin K. J. Bone Miner. Res. 2001, 16, 1444–1452. [Google Scholar] [CrossRef]
  201. Morko, J.; Kiviranta, R.; Joronen, K.; Säämänen, A.-M.; Vuorio, E.; Salminen-Mankonen, H. Spontaneous Development of Synovitis and Cartilage Degeneration in Transgenic Mice Overexpressing Cathepsin K. Arthritis Rheum. 2005, 52, 3713–3717. [Google Scholar] [CrossRef]
  202. Morko, J.; Kiviranta, R.; Hurme, S.; Rantakokko, J.; Vuorio, E. Differential Turnover of Cortical and Trabecular Bone in Transgenic Mice Overexpressing Cathepsin K. Bone 2005, 36, 854–865. [Google Scholar] [CrossRef]
  203. Kozawa, E.; Nishida, Y.; Cheng, X.W.; Urakawa, H.; Arai, E.; Futamura, N.; Shi, G.-P.; Kuzuya, M.; Hu, L.; Sasaki, T.; et al. Osteoarthritic Change Is Delayed in a Ctsk-Knockout Mouse Model of Osteoarthritis. Arthritis Rheum. 2012, 64, 454–464. [Google Scholar] [CrossRef] [PubMed]
  204. Hayami, T.; Zhuo, Y.; Wesolowski, G.A.; Pickarski, M.; Duong, L.T. Inhibition of Cathepsin K Reduces Cartilage Degeneration in the Anterior Cruciate Ligament Transection Rabbit and Murine Models of Osteoarthritis. Bone 2012, 50, 1250–1259. [Google Scholar] [CrossRef] [PubMed]
  205. Soki, F.N.; Yoshida, R.; Paglia, D.N.; Duong, L.T.; Hansen, M.F.; Drissi, H. Articular Cartilage Protection in Ctsk-/- Mice Is Associated with Cellular and Molecular Changes in Subchondral Bone and Cartilage Matrix. J. Cell Physiol. 2018, 233, 8666–8676. [Google Scholar] [CrossRef]
  206. Vinardell, T.; Dejica, V.; Poole, A.R.; Mort, J.S.; Richard, H.; Laverty, S. Evidence to Suggest That Cathepsin K Degrades Articular Cartilage in Naturally Occurring Equine Osteoarthritis. Osteoarthr. Cartil. 2009, 17, 375–383. [Google Scholar] [CrossRef] [PubMed]
  207. Mort, J.S.; Beaudry, F.; Théroux, K.; Emmott, A.A.; Richard, H.; Fisher, W.D.; Lee, E.R.; Poole, A.R.; Laverty, S. Early Cathepsin K Degradation of Type II Collagen in Vitro and in Vivo in Articular Cartilage. Osteoarthr. Cartil. 2016, 24, 1461–1469. [Google Scholar] [CrossRef]
  208. Rantakokko, J.; Aro, H.T.; Savontaus, M.; Vuorio, E. Mouse Cathepsin K: cDNA Cloning and Predominant Expression of the Gene in Osteoclasts, and in Some Hypertrophying Chondrocytes during Mouse Development. FEBS Lett. 1996, 393, 307–313. [Google Scholar] [CrossRef]
  209. Dodds, R.A.; James, I.E.; Rieman, D.; Ahern, R.; Hwang, S.M.; Connor, J.R.; Thompson, S.D.; Veber, D.F.; Drake, F.H.; Holmes, S.; et al. Human Osteoclast Cathepsin K Is Processed Intracellularly Prior to Attachment and Bone Resorption. J. Bone Miner. Res. 2001, 16, 478–486. [Google Scholar] [CrossRef]
  210. Söderström, M.; Salminen, H.; Glumoff, V.; Kirschke, H.; Aro, H.; Vuorio, E. Cathepsin Expression during Skeletal Development. Biochim. Biophys. Acta 1999, 1446, 35–46. [Google Scholar] [CrossRef]
  211. Uusitalo, H.; Hiltunen, A.; Söderström, M.; Aro, H.T.; Vuorio, E. Expression of Cathepsins B, H, K, L, and S and Matrix Metalloproteinases 9 and 13 during Chondrocyte Hypertrophy and Endochondral Ossification in Mouse Fracture Callus. Calcif. Tissue Int. 2000, 67, 382–390. [Google Scholar] [CrossRef]
  212. Nakase, T.; Kaneko, M.; Tomita, T.; Myoui, A.; Ariga, K.; Sugamoto, K.; Uchiyama, Y.; Ochi, T.; Yoshikawa, H. Immunohistochemical Detection of Cathepsin D, K, and L in the Process of Endochondral Ossification in the Human. Histochem. Cell Biol. 2000, 114, 21–27. [Google Scholar] [CrossRef]
  213. Kozawa, E.; Cheng, X.W.; Urakawa, H.; Arai, E.; Yamada, Y.; Kitamura, S.; Sato, K.; Kuzuya, M.; Ishiguro, N.; Nishida, Y. Increased Expression and Activation of Cathepsin K in Human Osteoarthritic Cartilage and Synovial Tissues. J. Orthop. Res. 2016, 34, 127–134. [Google Scholar] [CrossRef] [PubMed]
  214. Konttinen, Y.T.; Mandelin, J.; Li, T.-F.; Salo, J.; Lassus, J.; Liljeström, M.; Hukkanen, M.; Takagi, M.; Virtanen, I.; Santavirta, S. Acidic Cysteine Endoproteinase Cathepsin K in the Degeneration of the Superficial Articular Hyaline Cartilage in Osteoarthritis. Arthritis Rheum. 2002, 46, 953–960. [Google Scholar] [CrossRef]
  215. Khoshdel, A.; Forootan, M.; Afsharinasab, M.; Rezaian, M.; Abbasifard, M. Assessment of the Circulatory Concentrations of Cathepsin D, Cathepsin K, and Alpha-1 Antitrypsin in Patients with Knee Osteoarthritis. Ir. J. Med. Sci. 2023, 192, 1191–1196. [Google Scholar] [CrossRef]
  216. Zhang, Y.; Li, J.; Zhu, J.; Zhou, G.; Zhang, W.J.; Cao, Y.; Liu, W. Enhanced Cartilage Formation by Inhibiting Cathepsin K Expression in Chondrocytes Expanded in Vitro. Biomaterials 2012, 33, 7394–7404. [Google Scholar] [CrossRef]
  217. Dai, R.; Wu, Z.; Chu, H.Y.; Lu, J.; Lyu, A.; Liu, J.; Zhang, G. Cathepsin K: The Action in and Beyond Bone. Front. Cell Dev. Biol. 2020, 8, 433. [Google Scholar] [CrossRef]
  218. Li, H.; Xiao, Z.; Quarles, L.D.; Li, W. Osteoporosis: Mechanism, Molecular Target and Current Status on Drug Development. Curr. Med. Chem. 2021, 28, 1489–1507. [Google Scholar] [CrossRef] [PubMed]
  219. Mijanović, O.; Jakovleva, A.; Branković, A.; Zdravkova, K.; Pualic, M.; Belozerskaya, T.A.; Nikitkina, A.I.; Parodi, A.; Zamyatnin, A.A. Cathepsin K in Pathological Conditions and New Therapeutic and Diagnostic Perspectives. Int. J. Mol. Sci. 2022, 23, 13762. [Google Scholar] [CrossRef] [PubMed]
  220. Anish, R.J.; Nair, A. Osteoporosis Management-Current and Future Perspectives—A Systemic Review. J. Orthop. 2024, 53, 101–113. [Google Scholar] [CrossRef]
  221. Turk, B.; Turk, V.; Turk, D. Structural and Functional Aspects of Papain-like Cysteine Proteinases and Their Protein Inhibitors. Biol. Chem. 1997, 378, 141–150. [Google Scholar]
  222. Lecaille, F.; Brömme, D.; Lalmanach, G. Biochemical Properties and Regulation of Cathepsin K Activity. Biochimie 2008, 90, 208–226. [Google Scholar] [CrossRef]
  223. Brömme, D.; Lecaille, F. Cathepsin K Inhibitors for Osteoporosis and Potential Off-Target Effects. Expert Opin. Investig. Drugs 2009, 18, 585–600. [Google Scholar] [CrossRef] [PubMed]
  224. Novinec, M.; Lenarčič, B. Cathepsin K: A Unique Collagenolytic Cysteine Peptidase. Biol. Chem. 2013, 394, 1163–1179. [Google Scholar] [CrossRef]
  225. Kafienah, W.; Brömme, D.; Buttle, D.J.; Croucher, L.J.; Hollander, A.P. Human Cathepsin K Cleaves Native Type I and II Collagens at the N-Terminal End of the Triple Helix. Biochem. J. 1998, 331 Pt 3, 727–732. [Google Scholar] [CrossRef] [PubMed]
  226. Delaissé, J.-M.; Andersen, T.L.; Engsig, M.T.; Henriksen, K.; Troen, T.; Blavier, L. Matrix Metalloproteinases (MMP) and Cathepsin K Contribute Differently to Osteoclastic Activities. Microsc. Res. Tech. 2003, 61, 504–513. [Google Scholar] [CrossRef] [PubMed]
  227. Amar, S.; Smith, L.; Fields, G.B. Matrix Metalloproteinase Collagenolysis in Health and Disease. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 1940–1951. [Google Scholar] [CrossRef] [PubMed]
  228. Delaissé, J.M.; Engsig, M.T.; Everts, V.; del Carmen Ovejero, M.; Ferreras, M.; Lund, L.; Vu, T.H.; Werb, Z.; Winding, B.; Lochter, A.; et al. Proteinases in Bone Resorption: Obvious and Less Obvious Roles. Clin. Chim. Acta 2000, 291, 223–234. [Google Scholar] [CrossRef]
  229. Demeuse, J.; Massonnet, P.; Schoumacher, M.; Grifnée, E.; Huyghebaert, L.; Dubrowski, T.; Peeters, S.; Le Goff, C.; Cavalier, E. Innovative Workflow for the Identification of Cathepsin K Cleavage Sites in Type I Collagen. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2023, 1228, 123864. [Google Scholar] [CrossRef]
  230. Helali, A.M.; Iti, F.M.; Mohamed, I.N. Cathepsin K Inhibitors: A Novel Target but Promising Approach in the Treatment of Osteoporosis. Curr. Drug Targets 2013, 14, 1591–1600. [Google Scholar] [CrossRef]
  231. Ruettger, A.; Schueler, S.; Mollenhauer, J.A.; Wiederanders, B. Cathepsins B, K, and L Are Regulated by a Defined Collagen Type II Peptide via Activation of Classical Protein Kinase C and P38 MAP Kinase in Articular Chondrocytes. J. Biol. Chem. 2008, 283, 1043–1051. [Google Scholar] [CrossRef]
  232. Dejica, V.M.; Mort, J.S.; Laverty, S.; Percival, M.D.; Antoniou, J.; Zukor, D.J.; Poole, A.R. Cleavage of Type II Collagen by Cathepsin K in Human Osteoarthritic Cartilage. Am. J. Pathol. 2008, 173, 161–169. [Google Scholar] [CrossRef]
  233. Dejica, V.M.; Mort, J.S.; Laverty, S.; Antoniou, J.; Zukor, D.J.; Tanzer, M.; Poole, A.R. Increased Type II Collagen Cleavage by Cathepsin K and Collagenase Activities with Aging and Osteoarthritis in Human Articular Cartilage. Arthritis Res. Ther. 2012, 14, R113. [Google Scholar] [CrossRef] [PubMed]
  234. Panwar, P.; Du, X.; Sharma, V.; Lamour, G.; Castro, M.; Li, H.; Brömme, D. Effects of Cysteine Proteases on the Structural and Mechanical Properties of Collagen Fibers. J. Biol. Chem. 2013, 288, 5940–5950. [Google Scholar] [CrossRef] [PubMed]
  235. McDougall, J.J.; Schuelert, N.; Bowyer, J. Cathepsin K Inhibition Reduces CTXII Levels and Joint Pain in the Guinea Pig Model of Spontaneous Osteoarthritis. Osteoarthr. Cartil. 2010, 18, 1355–1357. [Google Scholar] [CrossRef]
  236. Li, Z.; Hou, W.S.; Brömme, D. Collagenolytic Activity of Cathepsin K Is Specifically Modulated by Cartilage-Resident Chondroitin Sulfates. Biochemistry 2000, 39, 529–536. [Google Scholar] [CrossRef]
  237. Li, Z.; Yasuda, Y.; Li, W.; Bogyo, M.; Katz, N.; Gordon, R.E.; Fields, G.B.; Brömme, D. Regulation of Collagenase Activities of Human Cathepsins by Glycosaminoglycans. J. Biol. Chem. 2004, 279, 5470–5479. [Google Scholar] [CrossRef]
  238. Tatara, Y.; Suto, S.; Itoh, K. Novel Roles of Glycosaminoglycans in the Degradation of Type I Collagen by Cathepsin K. Glycobiology 2017, 27, 1089–1098. [Google Scholar] [CrossRef]
  239. Brito, R.; Costa, D.; Dias, C.; Cruz, P.; Barros, P. Chondroitin Sulfate Supplements for Osteoarthritis: A Critical Review. Cureus 2023, 15, e40192. [Google Scholar] [CrossRef]
  240. Henrotin, Y.; Marty, M.; Mobasheri, A. What Is the Current Status of Chondroitin Sulfate and Glucosamine for the Treatment of Knee Osteoarthritis? Maturitas 2014, 78, 184–187. [Google Scholar] [CrossRef]
  241. Fernández-Martín, S.; González-Cantalapiedra, A.; Muñoz, F.; García-González, M.; Permuy, M.; López-Peña, M. Glucosamine and Chondroitin Sulfate: Is There Any Scientific Evidence for Their Effectiveness as Disease-Modifying Drugs in Knee Osteoarthritis Preclinical Studies?-A Systematic Review from 2000 to 2021. Animals 2021, 11, 1608. [Google Scholar] [CrossRef]
  242. Golovach, I.; Rekalov, D.; Akimov, O.Y.; Kostenko, H.; Kostenko, V.; Mishchenko, A.; Solovyova, N.; Kostenko, V. Molecular Mechanisms and Potential Applications of Chondroitin Sulphate in Managing Post-Traumatic Osteoarthritis. Reumatologia 2023, 61, 395–407. [Google Scholar] [CrossRef]
  243. Yang, W.; Sun, C.; He, S.Q.; Chen, J.Y.; Wang, Y.; Zhuo, Q. The Efficacy and Safety of Disease-Modifying Osteoarthritis Drugs for Knee and Hip Osteoarthritis-a Systematic Review and Network Meta-Analysis. J. Gen. Intern. Med. 2021, 36, 2085–2093. [Google Scholar] [CrossRef] [PubMed]
  244. Mankin, H.J.; Lippiello, L. The Glycosaminoglycans of Normal and Arthritic Cartilage. J. Clin. Investig. 1971, 50, 1712–1719. [Google Scholar] [CrossRef] [PubMed]
  245. Lipson, S.J.; Muir, H. Vertebral Osteophyte Formation in Experimental Disc Degeneration. Morphologic and Proteoglycan Changes over Time. Arthritis Rheum. 1980, 23, 319–324. [Google Scholar] [CrossRef] [PubMed]
  246. Hou, W.-S.; Li, Z.; Büttner, F.H.; Bartnik, E.; Brömme, D. Cleavage Site Specificity of Cathepsin K toward Cartilage Proteoglycans and Protease Complex Formation. Biol. Chem. 2003, 384, 891–897. [Google Scholar] [CrossRef]
  247. Yamashita, D.S.; Dodds, R.A. Cathepsin K and the Design of Inhibitors of Cathepsin K. Curr. Pharm. Des. 2000, 6, 1–24. [Google Scholar] [CrossRef]
  248. Gowen, M. Inhibition of Cathepsin K—A Novel Approach to Antiresorptive Therapy. Expert Opin. Investig. Drugs 1997, 6, 1199–1202. [Google Scholar] [CrossRef]
  249. Yasuda, Y.; Kaleta, J.; Brömme, D. The Role of Cathepsins in Osteoporosis and Arthritis: Rationale for the Design of New Therapeutics. Adv. Drug Deliv. Rev. 2005, 57, 973–993. [Google Scholar] [CrossRef]
  250. Costa, A.G.; Cusano, N.E.; Silva, B.C.; Cremers, S.; Bilezikian, J.P. Cathepsin K: Its Skeletal Actions and Role as a Therapeutic Target in Osteoporosis. Nat. Rev. Rheumatol. 2011, 7, 447–456. [Google Scholar] [CrossRef]
  251. Stone, J.A.; McCrea, J.B.; Witter, R.; Zajic, S.; Stoch, S.A. Clinical and Translational Pharmacology of the Cathepsin K Inhibitor Odanacatib Studied for Osteoporosis. Br. J. Clin. Pharmacol. 2019, 85, 1072–1083. [Google Scholar] [CrossRef]
  252. Elahmer, N.R.; Wong, S.K.; Mohamed, N.; Alias, E.; Chin, K.-Y.; Muhammad, N. Mechanistic Insights and Therapeutic Strategies in Osteoporosis: A Comprehensive Review. Biomedicines 2024, 12, 1635. [Google Scholar] [CrossRef]
  253. Vasiljeva, O.; Reinheckel, T.; Peters, C.; Turk, D.; Turk, V.; Turk, B. Emerging Roles of Cysteine Cathepsins in Disease and Their Potential as Drug Targets. Curr. Pharm. Des. 2007, 13, 387–403. [Google Scholar] [CrossRef] [PubMed]
  254. Lang, A.; Hörler, D.; Baici, A. The Relative Importance of Cysteine Peptidases in Osteoarthritis. J. Rheumatol. 2000, 27, 1970–1979. [Google Scholar] [PubMed]
  255. Alcaraz, M.J.; Guillén, M.I.; Ferrándiz, M.L. Emerging Therapeutic Agents in Osteoarthritis. Biochem. Pharmacol. 2019, 165, 4–16. [Google Scholar] [CrossRef] [PubMed]
  256. Guay, J.; Falgueyret, J.P.; Ducret, A.; Percival, M.D.; Mancini, J.A. Potency and Selectivity of Inhibition of Cathepsin K, L and S by Their Respective Propeptides. Eur. J. Biochem. 2000, 267, 6311–6318. [Google Scholar] [CrossRef]
  257. Goričan, T.; Ciber, L.; Petek, N.; Svete, J.; Novinec, M. Synthesis and Kinetic Characterization of Hyperbolic Inhibitors of Human Cathepsins K and S Based on a Succinimide Scaffold. Bioorg. Chem. 2021, 115, 105213. [Google Scholar] [CrossRef]
  258. Rüttger, A.; Mollenhauer, J.; Löser, R.; Gütschow, M.; Wiederanders, B. Microplate Assay for Quantitative Determination of Cathepsin Activities in Viable Cells Using Derivatives of 4-Methoxy-Beta-Naphthylamide. Biotechniques 2006, 41, 469–473. [Google Scholar] [CrossRef]
  259. Dodds, R.A. A Cytochemical Assay for Osteoclast Cathepsin K Activity. Cell Biochem. Funct. 2003, 21, 231–234. [Google Scholar] [CrossRef]
  260. Noé, B.; Poole, A.R.; Mort, J.S.; Richard, H.; Beauchamp, G.; Laverty, S. C2K77 ELISA Detects Cleavage of Type II Collagen by Cathepsin K in Equine Articular Cartilage. Osteoarthr. Cartil. 2017, 25, 2119–2126. [Google Scholar] [CrossRef]
  261. Satkunananthan, P.B.; Anderson, M.J.; De Jesus, N.M.; Haudenschild, D.R.; Ripplinger, C.M.; Christiansen, B.A. In Vivo Fluorescence Reflectance Imaging of Protease Activity in a Mouse Model of Post-Traumatic Osteoarthritis. Osteoarthr. Cartil. 2014, 22, 1461–1469. [Google Scholar] [CrossRef]
  262. Villalvilla, A.; da Silva, J.A.; Largo, R.; Gualillo, O.; Vieira, P.C.; Herrero-Beaumont, G.; Gómez, R. 6-Shogaol Inhibits Chondrocytes’ Innate Immune Responses and Cathepsin-K Activity. Mol. Nutr. Food Res. 2014, 58, 256–266. [Google Scholar] [CrossRef]
  263. Yuan, X.-Y.; Ren, Z.; Wu, Y.; Bougault, C.; Brizuela, L.; Magne, D.; Buchet, R.; Mebarek, S. Design, Synthesis and Biological Evaluation of Inhibitors of Cathepsin K on Dedifferentiated Chondrocytes. Bioorg Med. Chem. 2019, 27, 1034–1042. [Google Scholar] [CrossRef]
  264. Boyd, M.J.; Crane, S.N.; Robichaud, J.; Scheigetz, J.; Black, W.C.; Chauret, N.; Wang, Q.; Massé, F.; Oballa, R.M. Investigation of Ketone Warheads as Alternatives to the Nitrile for Preparation of Potent and Selective Cathepsin K Inhibitors. Bioorg Med. Chem. Lett. 2009, 19, 675–679. [Google Scholar] [CrossRef]
  265. Gontijo, T.B.; Lima, P.S.; Icimoto, M.Y.; Neves, R.L.; de Alvarenga, É.C.; Carmona, A.K.; de Castro, A.A.; Ramalho, T.C.; da Silva Júnior, E.N.; de Freitas, R.P. Cathepsin K Inhibitors Based on 2-Amino-1,3,4-Oxadiazole Derivatives. Bioorg Chem. 2021, 109, 104662. [Google Scholar] [CrossRef] [PubMed]
  266. Ren, Z.-Y.; Machuca-Gayet, I.; Domenget, C.; Buchet, R.; Wu, Y.; Jurdic, P.; Mebarek, S. Azanitrile Cathepsin K Inhibitors: Effects on Cell Toxicity, Osteoblast-Induced Mineralization and Osteoclast-Mediated Bone Resorption. PLoS ONE 2015, 10, e0132513. [Google Scholar] [CrossRef] [PubMed]
  267. Mons, E.; Jansen, I.D.C.; Loboda, J.; van Doodewaerd, B.R.; Hermans, J.; Verdoes, M.; van Boeckel, C.A.A.; van Veelen, P.A.; Turk, B.; Turk, D.; et al. The Alkyne Moiety as a Latent Electrophile in Irreversible Covalent Small Molecule Inhibitors of Cathepsin K. J. Am. Chem. Soc. 2019, 141, 3507–3514. [Google Scholar] [CrossRef]
  268. Bansal, S.; Bala, M.; Suthar, S.K.; Choudhary, S.; Bhattacharya, S.; Bhardwaj, V.; Singla, S.; Joseph, A. Design and Synthesis of Novel 2-Phenyl-5-(1,3-Diphenyl-1H-Pyrazol-4-Yl)-1,3,4-Oxadiazoles as Selective COX-2 Inhibitors with Potent Anti-Inflammatory Activity. Eur. J. Med. Chem. 2014, 80, 167–174. [Google Scholar] [CrossRef] [PubMed]
  269. Abd-Ellah, H.S.; Abdel-Aziz, M.; Shoman, M.E.; Beshr, E.A.M.; Kaoud, T.S.; Ahmed, A.-S.F.F. Novel 1,3,4-Oxadiazole/Oxime Hybrids: Synthesis, Docking Studies and Investigation of Anti-Inflammatory, Ulcerogenic Liability and Analgesic Activities. Bioorg Chem. 2016, 69, 48–63. [Google Scholar] [CrossRef]
  270. Hannoun, M.H.; Hagras, M.; Kotb, A.; El-Attar, A.-A.M.M.; Abulkhair, H.S. Synthesis and Antibacterial Evaluation of a Novel Library of 2-(Thiazol-5-Yl)-1,3,4-Oxadiazole Derivatives against Methicillin-Resistant Staphylococcus Aureus (MRSA). Bioorg Chem. 2020, 94, 103364. [Google Scholar] [CrossRef]
  271. SciELO. Brazil-1,2,4- and 1,3,4-Oxadiazoles as Scaffolds in the Development of Antiparasitic Agents 1,2,4- and 1,3,4-Oxadiazoles as Scaffolds in the Development of Antiparasitic Agents. Available online: https://www.scielo.br/j/jbchs/a/C3vbJtND6RKQB7KCDFRVFRr/?lang=en (accessed on 25 December 2024).
  272. Altıntop, M.D.; Sever, B.; Akalın Çiftçi, G.; Turan-Zitouni, G.; Kaplancıklı, Z.A.; Özdemir, A. Design, Synthesis, in Vitro and in Silico Evaluation of a New Series of Oxadiazole-Based Anticancer Agents as Potential Akt and FAK Inhibitors. Eur. J. Med. Chem. 2018, 155, 905–924. [Google Scholar] [CrossRef]
  273. Ahsan, M.J. 1,3,4-Oxadiazole Containing Compounds As Therapeutic Targets For Cancer Therapy. Mini Rev. Med. Chem. 2022, 22, 164–197. [Google Scholar] [CrossRef]
  274. de Miguel, R.; Montejano, R.; Stella-Ascariz, N.; Arribas, J.R. A Safety Evaluation of Raltegravir for the Treatment of HIV. Expert Opin. Drug Saf. 2018, 17, 217–223. [Google Scholar] [CrossRef]
  275. Hassan, A.; Khan, A.H.; Saleem, F.; Ahmad, H.; Khan, K.M. A Patent Review of Pharmaceutical and Therapeutic Applications of Oxadiazole Derivatives for the Treatment of Chronic Diseases (2013–2021). Expert Opin. Ther. Pat. 2022, 32, 969–1001. [Google Scholar] [CrossRef] [PubMed]
  276. Palmer, J.T.; Hirschbein, B.L.; Cheung, H.; McCarter, J.; Janc, J.W.; Yu, Z.W.; Wesolowski, G. Keto-1,3,4-Oxadiazoles as Cathepsin K Inhibitors. Bioorg Med. Chem. Lett. 2006, 16, 2909–2914. [Google Scholar] [CrossRef] [PubMed]
  277. Tavares, F.X.; Deaton, D.N.; Miller, A.B.; Miller, L.R.; Wright, L.L. Ketoheterocycle-Based Inhibitors of Cathepsin K: A Novel Entry into the Synthesis of Peptidic Ketoheterocycles. Bioorg Med. Chem. Lett. 2005, 15, 3891–3895. [Google Scholar] [CrossRef] [PubMed]
  278. Silva, T.L.; Bartolomeu, A.d.A.; Jesus, H.C.R.d.; Oliveira, K.T.d.; Fernandes, J.B.; Brömme, D.; Vieira, P.C. New Synthetic Quinolines as Cathepsin K Inhibitors. J. Braz. Chem. Soc. 2020, 31, 1605–1613. [Google Scholar] [CrossRef]
  279. Petek, N.; Štefane, B.; Novinec, M.; Svete, J. Synthesis and Biological Evaluation of 7-(Aminoalkyl)Pyrazolo [1,5-a]Pyrimidine Derivatives as Cathepsin K Inhibitors. Bioorg Chem. 2019, 84, 226–238. [Google Scholar] [CrossRef]
  280. Wang, Y.; Guan, T.; Xiong, H.; Hu, W.; Zhu, X.; Ma, Y.; Zhang, Z. Synthesis and Biological Evaluation of Novel Piperidine-3-Carboxamide Derivatives as Anti-Osteoporosis Agents Targeting Cathepsin K. Molecules 2024, 29, 4011. [Google Scholar] [CrossRef]
  281. Cardoso Prado Martins, F.; Dos Reis Rocho, F.; Bonatto, V.; Jatai Batista, P.H.; Lameira, J.; Leitão, A.; Montanari, C.A. Novel Selective Proline-Based Peptidomimetics for Human Cathepsin K Inhibition. Bioorg Med. Chem. Lett. 2024, 110, 129887. [Google Scholar] [CrossRef]
  282. Falgueyret, J.-P.; Desmarais, S.; Oballa, R.; Black, W.C.; Cromlish, W.; Khougaz, K.; Lamontagne, S.; Massé, F.; Riendeau, D.; Toulmond, S.; et al. Lysosomotropism of Basic Cathepsin K Inhibitors Contributes to Increased Cellular Potencies against Off-Target Cathepsins and Reduced Functional Selectivity. J. Med. Chem. 2005, 48, 7535–7543. [Google Scholar] [CrossRef]
  283. Wang, D.; Pechar, M.; Li, W.; Kopecková, P.; Brömme, D.; Kopecek, J. Inhibition of Cathepsin K with Lysosomotropic Macromolecular Inhibitors. Biochemistry 2002, 41, 8849–8859. [Google Scholar] [CrossRef]
  284. Gauthier, J.Y.; Chauret, N.; Cromlish, W.; Desmarais, S.; Duong, L.T.; Falgueyret, J.-P.; Kimmel, D.B.; Lamontagne, S.; Léger, S.; LeRiche, T.; et al. The Discovery of Odanacatib (MK-0822), a Selective Inhibitor of Cathepsin K. Bioorg Med. Chem. Lett. 2008, 18, 923–928. [Google Scholar] [CrossRef] [PubMed]
  285. Stoch, S.A.; Zajic, S.; Stone, J.A.; Miller, D.L.; van Bortel, L.; Lasseter, K.C.; Pramanik, B.; Cilissen, C.; Liu, Q.; Liu, L.; et al. Odanacatib, a Selective Cathepsin K Inhibitor to Treat Osteoporosis: Safety, Tolerability, Pharmacokinetics and Pharmacodynamics--Results from Single Oral Dose Studies in Healthy Volunteers. Br. J. Clin. Pharmacol. 2013, 75, 1240–1254. [Google Scholar] [CrossRef] [PubMed]
  286. Lark, M.W.; Stroup, G.B.; James, I.E.; Dodds, R.A.; Hwang, S.M.; Blake, S.M.; Lechowska, B.A.; Hoffman, S.J.; Smith, B.R.; Kapadia, R.; et al. A Potent Small Molecule, Nonpeptide Inhibitor of Cathepsin K (SB 331750) Prevents Bone Matrix Resorption in the Ovariectomized Rat. Bone 2002, 30, 746–753. [Google Scholar] [CrossRef] [PubMed]
  287. Ochi, Y.; Yamada, H.; Mori, H.; Kawada, N.; Kayasuga, R.; Nakanishi, Y.; Tanaka, M.; Imagawa, A.; Ohmoto, K.; Kawabata, K. ONO-5334, a Cathepsin K Inhibitor, Improves Bone Strength by Preferentially Increasing Cortical Bone Mass in Ovariectomized Rats. J. Bone Miner. Metab. 2014, 32, 645–652. [Google Scholar] [CrossRef]
  288. Yamashita, T.; Hagino, H.; Hayashi, I.; Hayashibara, M.; Tanida, A.; Nagira, K.; Fukui, R.; Nagashima, H. Effect of a Cathepsin K Inhibitor on Arthritis and Bone Mineral Density in Ovariectomized Rats with Collagen-Induced Arthritis. Bone Rep. 2018, 9, 1–10. [Google Scholar] [CrossRef]
  289. Vashum, Y.; Premsingh, R.; Kottaiswamy, A.; Soma, M.; Padmanaban, A.; Kalaiselvan, P.; Samuel, S. Inhibitory Effect of Cathepsin K Inhibitor (ODN-MK-0822) on Invasion, Migration and Adhesion of Human Breast Cancer Cells in Vitro. Mol. Biol. Rep. 2021, 48, 105–116. [Google Scholar] [CrossRef]
  290. Duong, L.T.; Leung, A.T.; Langdahl, B. Cathepsin K Inhibition: A New Mechanism for the Treatment of Osteoporosis. Calcif. Tissue Int. 2016, 98, 381–397. [Google Scholar] [CrossRef]
  291. Rocho, F.R.; Bonatto, V.; Lameiro, R.F.; Lameira, J.; Leitão, A.; Montanari, C.A. A Patent Review on Cathepsin K Inhibitors to Treat Osteoporosis (2011–2021). Expert Opin. Ther. Pat. 2022, 32, 561–573. [Google Scholar] [CrossRef]
  292. Liu, D.; Li, X.; Zhang, L.; Hu, B.; Hu, S.; Zhang, X.; Hu, J. Small Molecule Inhibitors of Osteoarthritis: Current Development and Future Perspective. Front. Physiol. 2023, 14, 1156913. [Google Scholar] [CrossRef]
  293. Brömme, D.; Panwar, P.; Turan, S. Cathepsin K Osteoporosis Trials, Pycnodysostosis and Mouse Deficiency Models: Commonalities and Differences. Expert Opin. Drug Discov. 2016, 11, 457–472. [Google Scholar] [CrossRef]
  294. McClung, M.R.; O’Donoghue, M.L.; Papapoulos, S.E.; Bone, H.; Langdahl, B.; Saag, K.G.; Reid, I.R.; Kiel, D.P.; Cavallari, I.; Bonaca, M.P.; et al. Odanacatib for the Treatment of Postmenopausal Osteoporosis: Results of the LOFT Multicentre, Randomised, Double-Blind, Placebo-Controlled Trial and LOFT Extension Study. Lancet Diabetes Endocrinol. 2019, 7, 899–911. [Google Scholar] [CrossRef]
  295. Binkley, N.; Orwoll, E.; Chapurlat, R.; Langdahl, B.L.; Scott, B.B.; Giezek, H.; Santora, A.C. Randomized, Controlled Trial to Assess the Safety and Efficacy of Odanacatib in the Treatment of Men with Osteoporosis. Osteoporos. Int. 2021, 32, 173–184. [Google Scholar] [CrossRef]
  296. Berenbaum, F. Targeted Therapies in Osteoarthritis: A Systematic Review of the Trials on www.Clinicaltrials.gov. Best Pract. Res. Clin. Rheumatol. 2010, 24, 107–119. [Google Scholar] [CrossRef] [PubMed]
  297. Peroni, A.; Zini, A.; Braga, V.; Colato, C.; Adami, S.; Girolomoni, G. Drug-Induced Morphea: Report of a Case Induced by Balicatib and Review of the Literature. J. Am. Acad. Dermatol. 2008, 59, 125–129. [Google Scholar] [CrossRef] [PubMed]
  298. Jerome, C.; Missbach, M.; Gamse, R. Balicatib, a Cathepsin K Inhibitor, Stimulates Periosteal Bone Formation in Monkeys. Osteoporos. Int. 2012, 23, 339–349. [Google Scholar] [CrossRef] [PubMed]
  299. Connor, J.R.; LePage, C.; Swift, B.A.; Yamashita, D.; Bendele, A.M.; Maul, D.; Kumar, S. Protective Effects of a Cathepsin K Inhibitor, SB-553484, in the Canine Partial Medial Meniscectomy Model of Osteoarthritis. Osteoarthr. Cartil. 2009, 17, 1236–1243. [Google Scholar] [CrossRef]
  300. Svelander, L.; Erlandsson-Harris, H.; Astner, L.; Grabowska, U.; Klareskog, L.; Lindstrom, E.; Hewitt, E. Inhibition of Cathepsin K Reduces Bone Erosion, Cartilage Degradation and Inflammation Evoked by Collagen-Induced Arthritis in Mice. Eur. J. Pharmacol. 2009, 613, 155–162. [Google Scholar] [CrossRef]
  301. Joshi, N.; Yan, J.; Dang, M.; Slaughter, K.; Wang, Y.; Wu, D.; Ung, T.; Pandya, V.; Chen, M.X.; Kaur, S.; et al. A Mechanically Resilient Soft Hydrogel Improves Drug Delivery for Treating Post-Traumatic Osteoarthritis in Physically Active Joints. bioRxiv 2024. 2024.05.16.594611. [Google Scholar] [CrossRef]
  302. Lindström, E.; Rizoska, B.; Tunblad, K.; Edenius, C.; Bendele, A.M.; Maul, D.; Larson, M.; Shah, N.; Yoder Otto, V.; Jerome, C.; et al. The Selective Cathepsin K Inhibitor MIV-711 Attenuates Joint Pathology in Experimental Animal Models of Osteoarthritis. J. Transl. Med. 2018, 16, 56. [Google Scholar] [CrossRef]
  303. Lindström, E.; Rizoska, B.; Henderson, I.; Terelius, Y.; Jerling, M.; Edenius, C.; Grabowska, U. Nonclinical and Clinical Pharmacological Characterization of the Potent and Selective Cathepsin K Inhibitor MIV-711. J. Transl. Med. 2018, 16, 125. [Google Scholar] [CrossRef]
  304. Conaghan, P.G.; Bowes, M.A.; Kingsbury, S.R.; Brett, A.; Guillard, G.; Rizoska, B.; Sjögren, N.; Graham, P.; Jansson, Å.; Wadell, C.; et al. Disease-Modifying Effects of a Novel Cathepsin K Inhibitor in Osteoarthritis: A Randomized Controlled Trial. Ann. Intern. Med. 2020, 172, 86–95. [Google Scholar] [CrossRef] [PubMed]
  305. Bihlet, A.R.; Byrjalsen, I.; Andersen, J.R.; Öberg, F.; Herder, C.; Bowes, M.A.; Conaghan, P.G. Symptomatic and Structural Benefit of Cathepsin K Inhibition by MIV-711 in a Subgroup with Unilateral Pain: Post-Hoc Analysis of a Randomised Phase 2a Clinical Trial. Clin. Exp. Rheumatol. 2022, 40, 1034–1037. [Google Scholar] [CrossRef] [PubMed]
  306. Hedström, H. Press Release. Available online: https://www.medivir.com/investors/press-releases/press-release (accessed on 6 March 2025).
  307. Nwosu, L.N.; Gowler, P.R.W.; Burston, J.J.; Rizoska, B.; Tunblad, K.; Lindström, E.; Grabowska, U.; Li, L.; McWilliams, D.F.; Walsh, D.A.; et al. Analgesic Effects of the Cathepsin K Inhibitor L-006235 in the Monosodium Iodoacetate Model of Osteoarthritis Pain. Pain Rep. 2018, 3, e685. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Knee joint scheme indicating, muscle, cartilage, synovial membrane, infrapatellar fat pad, tendon, and subchondral bone. Cartilage is not a vascularized tissue. Synovitis, tendon, muscle, infrapatellar fat pad, and subchondral bone are highly vascularized tissues, which can induce pain when they have lesions during OA.
Figure 1. Knee joint scheme indicating, muscle, cartilage, synovial membrane, infrapatellar fat pad, tendon, and subchondral bone. Cartilage is not a vascularized tissue. Synovitis, tendon, muscle, infrapatellar fat pad, and subchondral bone are highly vascularized tissues, which can induce pain when they have lesions during OA.
Ijms 26 02896 g001
Figure 2. The epiphyseal growth plate is divided into the reserve zone, proliferative zone, hypertrophic zone, calcifying zone, and bone metaphysis. In the proliferative zone, which is enriched in type II collagen, cells are divided and form columns called longitudinal septa, which are separated by adjacent cell columns called transverse matrix septa. Matrix vesicles (MVs) (as indicated by black filled circles) are secreted when chondrocytes become hypertrophic in the hypertrophic zone. The perichondrium and the developing bone center are within the border of the calcifying zone enriched in osteoblasts, osteoclast, and type I collagen. Taken from [124].
Figure 2. The epiphyseal growth plate is divided into the reserve zone, proliferative zone, hypertrophic zone, calcifying zone, and bone metaphysis. In the proliferative zone, which is enriched in type II collagen, cells are divided and form columns called longitudinal septa, which are separated by adjacent cell columns called transverse matrix septa. Matrix vesicles (MVs) (as indicated by black filled circles) are secreted when chondrocytes become hypertrophic in the hypertrophic zone. The perichondrium and the developing bone center are within the border of the calcifying zone enriched in osteoblasts, osteoclast, and type I collagen. Taken from [124].
Ijms 26 02896 g002
Figure 3. Chemical structures of the most promising cathepsin K inhibitors for treating OA.
Figure 3. Chemical structures of the most promising cathepsin K inhibitors for treating OA.
Ijms 26 02896 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Brizuela, L.; Buchet, R.; Bougault, C.; Mebarek, S. Cathepsin K Inhibitors as Potential Drugs for the Treatment of Osteoarthritis. Int. J. Mol. Sci. 2025, 26, 2896. https://doi.org/10.3390/ijms26072896

AMA Style

Brizuela L, Buchet R, Bougault C, Mebarek S. Cathepsin K Inhibitors as Potential Drugs for the Treatment of Osteoarthritis. International Journal of Molecular Sciences. 2025; 26(7):2896. https://doi.org/10.3390/ijms26072896

Chicago/Turabian Style

Brizuela, Leyre, Rene Buchet, Carole Bougault, and Saida Mebarek. 2025. "Cathepsin K Inhibitors as Potential Drugs for the Treatment of Osteoarthritis" International Journal of Molecular Sciences 26, no. 7: 2896. https://doi.org/10.3390/ijms26072896

APA Style

Brizuela, L., Buchet, R., Bougault, C., & Mebarek, S. (2025). Cathepsin K Inhibitors as Potential Drugs for the Treatment of Osteoarthritis. International Journal of Molecular Sciences, 26(7), 2896. https://doi.org/10.3390/ijms26072896

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop