Prediction of 57Fe Mössbauer Nuclear Quadrupole Splittings with Hybrid and Double-Hybrid Density Functionals
Abstract
:1. Introduction
- The electric monopole interactions between protons in atomic nuclei and electrons (primarily s-electrons and, to a lesser extent, p- or -electrons caused by relativistic effects) extend into the nuclear region, which can be measured through the isomer shifts ().
- The NQM of a nucleus with 1/2 interacts with the EFG generated by asymmetric environmental charges (mainly composed of p- and d-electrons from the target atom as well as nuclei and electrons from neighboring atoms), leading to the aforementioned NQS.
- The interactions between the atomic nuclear magnetic dipole moment and the surrounding magnetic field contribute to the Mössbauer magnetic hyperfine Zeeman splitting.
2. Results
2.1. Preliminary Evaluation of Density Functionals
2.2. Comparison of Density Functionals
3. Discussion
- The parameter approaches the critical threshold of 0.75, particularly illustrated by molecule 19. Notably, the values predicted by certain standard and truncated hybrid functionals even exceed the critical threshold.
- An improper proportion of the PT2 term contributes to overcorrection, as evidenced by the results of molecule 29 obtained from several double-hybrid functionals.
- The self-consistent field (SCF) iterations utilizing some (truncated) hybrid functionals converge to distinct occupation patterns within the Fe 3d-shell. For instance, in molecule 7, the contributions of electrons in 3d to the EFG tensor are minimal in the elements and (depending on the coordinate orientation employed in our calculations); however, these contributions are erroneously calculated as −1.2 a.u. by SCAN38, SCAN50, and SCAN38, leading to an incorrect sign reversal upon diagonalization. A comparable case is also observed in molecule 25, where the contributions of electrons in 3d to and are −1.0 a.u. but are significantly underestimated to be 0.1 a.u. by the truncated hybrid functional components in SCAN0-2 and DSD-PBEP86.
- 1.
- The exclusion of scalar relativistic effects in DFT calculations.
- 2.
- The electronic correlations present in the dataset, which may be relatively straightforward to manage or distinctly unique.
- 3.
- The systematic exclusion of pure functionals alongside the inclusion of newly developed hybrid and, particularly, double-hybrid functionals in the evaluation.
- 4.
- The optimized basis sets for contact density calculations may be inadequate for EFG.
- 5.
- The neglect of the sign of .
- 6.
- The SCF iterations converge towards a specific excited state.
- 7.
- The molecular structures optimized by different methods may affect the errors, among other factors.
4. Materials and Methods
4.1. Electric Field Gradients and Nuclear Quadrupole Interactions
- If is very small or even zero (for example, the sulfur nucleus in SF6 with symmetry), some minor theoretical errors may result in a swap between and , so the absolute value of the new (i.e., the old ) remains nearly unchanged but with an opposite sign. The suggested effective range for is > 0.25 a.u., which approximately corresponds to > 0.4 mm/s for 57Fe, as indicated by Equation (4).
- approaches one, i.e., 0 and , which leads to an uncertainty regarding the sign of since and may be interchanged by theoretical errors (cf. page 95 of Reference [1]). The schematic structure for the case of 1 is the Ge nucleus in the model molecule “GeHe2F4” with symmetry, as illustrated in Figure 3. In this model system, the central Ge nucleus experiences a symmetrical charge distribution along the z-axis while the x- and y-directions show asymmetric charge distributions of equal magnitude. Consequently, 0. It has been found in real systems that even a minor adjustment in the dihedral angle can cause a reversal of the sign of when the value surpasses a specific critical point [39]. In this work, is suggested to make the sign of valid (that is, or equivalently ).
4.2. Hybrid and Double-Hybrid Density Functionals
4.3. Computational Methods
5. Conclusions
- The double-hybrid functional PBE-0DH demonstrates strong agreement with experimental results, outperforming other functionals with an MAE of 0.20 mm/s.
- If computational cost is a primary concern, the hybrid functional rSCAN38 is recommended, as it exhibits a slightly larger MAE of 0.25 mm/s, while still delivering satisfactory results for most molecules.
- In cases where the quantum chemistry program does not support the aforementioned functionals, the older hybrid functionals BH&HLYP and M06-2X can be utilized, albeit with a greater MAE of 0.33 mm/s.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CASSCF | complete active space self-consistent field |
CCSD(T) | coupled-cluster with single, double, and perturbative triple excitations |
DFT | density functional theory |
EFG | electric field gradient |
HF | Hartree–Fock |
MRAQCC | multi-reference averaged quadratic coupled-cluster with single and double excitations |
MRCI | multi-reference configuration interaction with single and double excitations |
NBO | natural bond orbital |
NQCC | nuclear quadrupole coupling constant |
NQI | nuclear quadrupole interaction |
NQM | nuclear quadrupole moment |
NQS | nuclear quadrupole splitting |
PCM | polarizable continuum model |
SCF | self consistent field |
X2C | exact two-component |
References
- Gütlich, P.; Bill, E.; Trautwein, A.X. Mössbauer Spectroscopy and Transition Metal Chemistry; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Zhu, H.; Gao, C.; Filatov, M.; Zou, W. Mössbauer isomer shifts and effective contact densities obtained by the exact two-component (X2C) relativistic method and its local variants. Phys. Chem. Chem. Phys. 2020, 22, 26776–26786. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Filatov, M.; Zou, W. Calculation of electric field gradients with the exact two-component (X2C) quasi-relativistic method and its local approximations. Phys. Chem. Chem. Phys. 2024, 26, 18333–18342. [Google Scholar] [CrossRef] [PubMed]
- Hait, D.; Head-Gordon, M. How accurate is density functional theory at predicting dipole moments? An assessment using a new database of 200 benchmark values. J. Chem. Theory Comput. 2018, 14, 1969–1981. [Google Scholar] [CrossRef] [PubMed]
- Stoychev, G.L.; Auer, A.A.; Neese, F. Efficient and accurate prediction of nuclear magnetic resonance shielding tensors with double-hybrid density functional theory. J. Chem. Theory Comput. 2018, 14, 4756–4771. [Google Scholar] [CrossRef]
- Santra, G.; Sylvetsky, N.; Martin, J.M.L. Minimally empirical double-hybrid functionals trained against the GMTKN55 database: revDSD-PBEP86-D4, revDOD-PBE-D4, and DOD-SCAN-D4. J. Phys. Chem. A 2019, 123, 5129–5143. [Google Scholar] [CrossRef]
- Casanova-Páez, M.; Goerigk, L. Time-dependent long-range-corrected double-hybrid density functionals with spin-component and spin-opposite scaling: A comprehensive analysis of singlet-singlet and singlet-triplet excitation energies. J. Chem. Theory Comput. 2021, 17, 5165–5186. [Google Scholar] [CrossRef]
- Santra, G.; Martin, J.M.L. What types of chemical problems benefit from density-corrected DFT? A probe using an extensive and chemically diverse test suite. J. Chem. Theory Comput. 2021, 17, 1368–1379. [Google Scholar] [CrossRef]
- Santra, G.; Martin, J.M.L. Pure and hybrid SCAN, rSCAN, and r2SCAN: Which one is preferred in KS- and HF-DFT calculations, and how does D4 dispersion correction affect this ranking? Molecules 2022, 27, 141. [Google Scholar] [CrossRef]
- Domagała, M.; Jabłoński, M.; Dubis, A.T.; Zabel, M.; Pfitzner, A.; Palusiak, M. Testing of exchange-correlation functionals of DFT for a reliable description of the electron density distribution in organic molecules. Int. J. Mol. Sci. 2022, 23, 14719. [Google Scholar] [CrossRef]
- Schwalbe, S.; Trepte, K.; Lehtola, S. How good are recent density functionals for ground and excited states of one-electron systems? J. Chem. Phys. 2022, 157, 174113. [Google Scholar] [CrossRef]
- Pantaleone, S.; Gho, C.I.; Ferrero, R.; Brunella, V.; Corno, M. Exploration of the conformational scenario for α-, β-, and γ-cyclodextrins in dry and wet conditions, from monomers to crystal structures: A quantum-mechanical study. Int. J. Mol. Sci. 2023, 24, 16826. [Google Scholar] [CrossRef] [PubMed]
- Santra, G.; Neese, F.; Pantazis, D.A. Extensive reference set and refined computational protocol for calculations of 57Fe Mössbauer parameters. Phys. Chem. Chem. Phys. 2024, 26, 23322–23334. [Google Scholar] [CrossRef] [PubMed]
- Fransson, T.; Pettersson, L.G.M. TDDFT and the x-ray absorption spectrum of liquid water: Finding the “best” functional. J. Chem. Phys. 2024, 160, 234105. [Google Scholar] [CrossRef] [PubMed]
- Sitkiewicz, S.P.; Ferradás, R.R.; Ramos-Cordoba, E.; Zaleśny, R.; Matito, E.; Luis, J.M. Spurious oscillations caused by density functional approximations: Who is to blame? Exchange or correlation? J. Chem. Theory Comput. 2024, 20, 3144–3153. [Google Scholar]
- Schwerdtfeger, P.; Pernpointner, M.; Laerdahl, J.K. The accuracy of current density functionals for the calculation of electric field gradients: A comparison with ab initio methods for HCl and CuCl. J. Chem. Phys. 1999, 111, 3357–3364. [Google Scholar] [CrossRef]
- Bast, R.; Schwerdtfeger, P. The accuracy of density functionals for electric field gradients. Test calculations for ScX, CuX and GaX (X=F, Cl, Br, I, H and Li). J. Chem. Phys. 2003, 119, 5988–5994. [Google Scholar]
- Thierfelder, C.; Schwerdtfeger, P.; Saue, T. 63Cu and 197Au nuclear quadrupole moments from four-component relativistic density-functional calculations using correct long-range exchange. Phys. Rev. A 2007, 76, 034502. [Google Scholar]
- Srebro, M.; Autschbach, J. Does a molecule-specific density functional give an accurate electron density? The challenging case of the CuCl electric field gradient. J. Phys. Chem. Lett. 2012, 3, 576–581. [Google Scholar]
- Santiago, R.T.; Teodoro, T.Q.; Haiduke, R.L.A. The nuclear electric quadrupole moment of copper. Phys. Chem. Chem. Phys. 2014, 16, 11590–11596. [Google Scholar]
- Dyall, K.G. Interfacing relativistic and nonrelativistic methods. I. Normalized elimination of the small component in the modified Dirac equation. J. Chem. Phys. 1997, 106, 9618–9626. [Google Scholar]
- Peng, D.; Liu, W.; Xiao, Y.; Cheng, L. Making four- and two-component relativistic density functional methods fully equivalent based on the idea of “from atoms to molecule”. J. Chem. Phys. 2007, 127, 104106. [Google Scholar]
- Liu, W.; Peng, D. Exact two-component Hamiltonians revisited. J. Chem. Phys. 2009, 131, 031104. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Reiher, M. Exact decoupling of the relativistic Fock operator. Theor. Chem. Acc. 2012, 131, 1081. [Google Scholar]
- Schwerdtfeger, P.; Söhnel, T.; Pernpointner, M.; Laerdahl, J.K.; Wagner, F.E. Comparison of ab initio and density functional calculations of electric field gradients: The 57Fe nuclear quadrupole moment from Mössbauer data. J. Chem. Phys. 2001, 115, 5913–5924. [Google Scholar]
- Cheng, L.; Stopkowicz, S.; Stanton, J.F.; Gauss, J. The route to high accuracy in ab initio calculations of Cu quadrupole-coupling constants. J. Chem. Phys. 2012, 137, 224302. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.R.; Becke, A.D. DFT treatment of strong correlation in 3d transition-metal diatomics. J. Chem. Phys. 2017, 146, 211105. [Google Scholar]
- de Moraes, M.M.F.; Aoto, Y.A. Multi-d-occupancy as an alternative definition for the double d-shell effect. J. Phys. Chem. A 2023, 127, 10075–10090. [Google Scholar]
- Verma, P.; Truhlar, D.G. Does DFT+U mimic hybrid density functionals? Theor. Chem. Acc. 2016, 135, 182. [Google Scholar] [CrossRef]
- Sousa, C.; De Jong, W.A.; Broer, R.; Nieuwpoort, W.C. Charge transfer and relativistic effects in the low-lying electronic states of CuCl, CuBr and CuI. Mol. Phys. 1997, 92, 677–686. [Google Scholar] [CrossRef]
- Sharma, S.; Sivalingam, K.; Neese, F.; Chan, G.K.L. Low-energy spectrum of iron-sulfur clusters directly from many-particle quantum mechanics. Nat. Chem. 2014, 6, 927–933. [Google Scholar] [CrossRef]
- Evans, C.J.; Gerry, M.C.L. Noble gas-metal chemical bonding? The microwave spectra, structures, and hyperfine constants of Ar-CuX (X = F, Cl, Br). J. Chem. Phys. 2000, 112, 9363–9374. [Google Scholar] [CrossRef]
- Pyykkö, P. Year-2017 nuclear quadrupole moments. Mol. Phys. 2018, 116, 1328–1338. [Google Scholar] [CrossRef]
- Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C.M.; Landis, C.R.; Weinhold, F. NBO, Version 6.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 2013. [Google Scholar]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Gubler, J.; Finkelmann, A.R.; Reiher, M. Theoretical 57Fe Mössbauer spectroscopy for structure elucidation of [Fe] hydrogenase active site intermediates. Inorg. Chem. 2013, 52, 14205–14215. [Google Scholar] [CrossRef]
- Sandala, G.M.; Hopmann, K.H.; Ghosh, A.; Noodleman, L. Calibration of DFT functionals for the prediction of 57Fe Mössbauer spectral parameters in iron-nitrosyl and iron-sulfur complexes: Accurate geometries prove essential. J. Chem. Theory Comput. 2011, 7, 3232–3247. [Google Scholar] [CrossRef]
- McWilliams, S.F.; Brennan-Wydra, E.; MacLeod, K.C.; Holland, P.L. Density functional calculations for prediction of 57Fe Mössbauer isomer shifts and quadrupole splittings in β-diketiminate complexes. ACS Omega 2017, 2, 2594–2606. [Google Scholar] [CrossRef]
- Stoian, S.A.; Moshari, M.; Ferentinos, E.; Grigoropoulos, A.; Krzystek, J.; Telser, J.; Kyritsis, P. Electronic structure of tetrahedral, S = 2, [Fe{(EPiPr2)2N}2], E = S, Se, complexes: Investigation by high-frequency and -field electron paramagnetic resonance, 57Fe Mössbauer spectroscopy, nd quantum chemical studies. Inorg. Chem. 2021, 60, 10990–11005. [Google Scholar] [CrossRef]
- Haaland, A.; Nilsson, J.E. The Determination of the barrier to internal rotation in ferrocene and ruthenocene by means of electron diffraction. Chem. Commun. 1968, 88–89. [Google Scholar] [CrossRef]
- Drabik, G.; Szklarzewicz, J.; Radoń, M. Spin-state energetics of metallocenes: How do best wave function and density functional theory results compare with the experimental data? Phys. Chem. Chem. Phys. 2021, 23, 151–172. [Google Scholar] [CrossRef]
- Wanat, A.; Schneppensieper, T.; Stochel, G.; van Eldik, R.; Bill, E.; Wieghardt, K. Kinetics, mechanism, and spectroscopy of the reversible binding of nitric oxide to aquated iron(II). An undergraduate text book reaction revisited. Inorg. Chem. 2002, 41, 4–10. [Google Scholar] [CrossRef]
- Coucouvanis, D.; Swenson, D.; Baenziger, N.C.; Murphy, C.; Holah, D.G.; Sfarnas, N.; Simopoulos, A.; Kostikas, A. Tetrahedral complexes containing the FeIIS4 core. The syntheses, ground-state electronic structures and crystal and molecular structures of the [P(C6H5)4]2Fe(SC6H5)4 and [P(C6H5)4]2Fe(S2C4O2)2 complexes. An analog for the active site in reducd rubredoxins (Rdred). J. Am. Chem. Soc. 1981, 103, 3350–3362. [Google Scholar]
- Weser, O.; Alavi, A.; Manni, G.L. Exploiting locality in full configuration interaction quantum Monte Carlo for fast excitation generation. J. Chem. Theory Comput. 2023, 19, 9118–9135. [Google Scholar] [CrossRef] [PubMed]
- Safari, A.A.; Anderson, R.J.; Alavi, A.; Li Manni, G. FCIQMC-CASPT2 with imaginary-time-averaged wave functions. J. Chem. Theory Comput. 2025, 21, 1029–1038. [Google Scholar]
- Weser, O.; Guther, K.; Ghanem, K.; Manni, G.L. Stochastic generalized active space self-consistent field: Theory and application. J. Chem. Theory Comput. 2022, 18, 251–272. [Google Scholar]
- Phung, Q.M.; Nam, H.N.; Ghosh, A. Local oxidation states in {FeNO}6–8 porphyrins: Insights from DMRG/CASSCF-CASPT2 calculations. Inorg. Chem. 2023, 62, 20496–20505. [Google Scholar] [PubMed]
- Levine, D.S.; Hait, D.; Tubman, N.M.; Lehtola, S.; Whaley, K.B.; Head-Gordon, M. CASSCF with extremely large active spaces using the adaptive sampling configuration interaction method. J. Chem. Theory Comput. 2020, 16, 2340–2354. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, N.; Lei, Y.; Liu, W. iCISCF: An iterative configuration interaction-based multiconfigurational self-consistent field theory for large active spaces. J. Chem. Theory Comput. 2021, 17, 7545–7561. [Google Scholar] [PubMed]
- Boguslawski, K.; Marti, K.H.; Legeza, O.; Reiher, M. Accurate ab initio spin densities. J. Chem. Theory Comput. 2012, 8, 1970–1982. [Google Scholar]
- Tóth, Z.; Pulay, P. Comparison of methods for active orbital selection in multiconfigurational calculations. J. Chem. Theory Comput. 2020, 16, 7328–7341. [Google Scholar]
- Pápai, M.; Vankó, G. On predicting Mössbauer parameters of iron-containing molecules with density-functional theory. J. Chem. Theory Comput. 2013, 9, 5004–5020. [Google Scholar]
- Nemykin, V.N.; Nevonen, D.E.; Ferch, L.S.; Shepit, M.; Herbert, D.E.; van Lierop, J. Accurate prediction of Mössbauer hyperfine parameters in bis-axially coordinated iron(II) phthalocyanines using density functional theory calculations: A story of a single orbital revealed by natural bond orbital analysis. Inorg. Chem. 2021, 60, 3690–3706. [Google Scholar] [PubMed]
- Banerjee, A.; Liu, Q.; Shanklin, J.; Ertem, M.Z. Predicting Mössbauer parameters of nonheme diiron complexes with density functional theory. Inorg. Chem. 2023, 62, 11402–11413. [Google Scholar] [CrossRef]
- Wang, C.; Chen, H. Convergent theoretical prediction of reactive oxidant structures in diiron arylamine oxygenases AurF and CmlI: Peroxo or hydroperoxo? J. Am. Chem. Soc. 2017, 139, 13038–13046. [Google Scholar] [CrossRef] [PubMed]
- Gregorovič, A. The many-body expansion approach to ab initio calculation of electric field gradients in molecular crystals. J. Chem. Phys. 2020, 152, 124105. [Google Scholar] [CrossRef]
- Casassa, S.; Ferrari, A.M. Calibration of 57Fe Mössbauer constants by first principles. Phys. Chem. Chem. Phys. 2016, 18, 10201–10206. [Google Scholar] [CrossRef]
- Joosten, M.; Repisky, M.; Kadek, M.; Pyykkö, P.; Ruud, K. Electric field gradients at the nuclei from all-electron four-component relativistic density functional theory using Gaussian-type orbitals. Phys. Rev. B 2024, 110, 045141. [Google Scholar] [CrossRef]
- Stone, N.J. Table of Nuclear Electric Quadrupole Moments; Technical Report No. INDC(NDS)-0833; International Atomic Energy Agency, INDC International Nuclear Data Committee: Vienna, Austria, 2021; Available online: https://www-nds.iaea.org/publications/indc/indc-nds-0833/ (accessed on 17 March 2025).
- Jönsson, P.; Wahlström, C.G.; Fischer, C.F. A program for computing magnetic dipole and electric quadrupole hyperfine constants from MCHF wavefunctions. Comput. Phys. Commun. 1993, 74, 399–414. [Google Scholar] [CrossRef]
- Becke, A.D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J. Phys. Chem. A 2005, 109, 5656–5667. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 2006, 125, 194101. [Google Scholar] [PubMed]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Bernard, Y.A.; Shao, Y.; Krylov, A.I. General formulation of spin-flip time-dependent density functional theory using non-collinear kernels: Theory, implementation, and benchmarks. J. Chem. Phys. 2012, 136, 204103. [Google Scholar] [PubMed]
- Staroverov, V.N.; Scuseria, G.E.; Tao, J.; Perdew, J.P. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. J. Chem. Phys. 2003, 119, 12129–12137. [Google Scholar] [CrossRef]
- Hui, K.; Chai, J.D. SCAN-based hybrid and double-hybrid density functionals from models without fitted parameters. J. Chem. Phys. 2016, 144, 044114. [Google Scholar]
- Bursch, M.; Neugebauer, H.; Ehlert, S.; Grimme, S. Dispersion corrected r2SCAN based global hybrid functionals: r2SCANh, r2SCAN0, and r2SCAN50. J. Chem. Phys. 2022, 156, 134105. [Google Scholar]
- Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 2006, 124, 034108. [Google Scholar]
- Zhang, Y.; Xu, X.; Goddard, W.A. Doubly hybrid density functional for accurate descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics. Proc. Natl. Acad. Sci. USA 2009, 106, 4963–4968. [Google Scholar] [CrossRef] [PubMed]
- Hait, D.; Head-Gordon, M. xDH double hybrid functionals can be qualitatively incorrect for non-equilibrium geometries: Dipole moment inversion and barriers to radical-radical association using XYG3 and XYGJ-OS. J. Chem. Phys. 2018, 148, 171102. [Google Scholar]
- Schwabe, T.; Grimme, S. Towards chemical accuracy for the thermodynamics of large molecules: New hybrid density functionals including non-local correlation effects. Phys. Chem. Chem. Phys. 2006, 8, 4398–4401. [Google Scholar] [CrossRef] [PubMed]
- Tarnopolsky, A.; Karton, A.; Sertchook, R.; Vuzman, D.; Martin, J.M.L. Double-hybrid functionals for thermochemical kinetics. J. Phys. Chem. A 2008, 112, 3–8. [Google Scholar]
- Karton, A.; Tarnopolsky, A.; Lamère, J.F.; Schatz, G.C.; Martin, J.M.L. Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics. J. Phys. Chem. A 2008, 112, 12868–12886. [Google Scholar] [PubMed]
- Chai, J.D.; Head-Gordon, M. Long-range corrected double-hybrid density functionals. J. Chem. Phys. 2009, 131, 174105. [Google Scholar]
- Kozuch, S.; Gruzman, D.; Martin, J.M.L. DSD-BLYP: A general purpose double hybrid density functional including spin component scaling and dispersion correction. J. Phys. Chem. C 2010, 114, 20801–20808. [Google Scholar]
- Kozuch, S.; Martin, J.M.L. DSD-PBEP86: In search of the best double-hybrid DFT with spin-component scaled MP2 and dispersion corrections. Phys. Chem. Chem. Phys. 2011, 13, 20104–20107. [Google Scholar]
- Brémond, E.; Adamo, C. Seeking for parameter-free double-hybrid functionals: The PBE0-DH model. J. Chem. Phys. 2011, 135, 024106. [Google Scholar]
- Brémond, E.; Pérez-Jiménez, A.J.; Sancho-García, J.C.; Adamo, C. Range-separated hybrid density functionals made simple. J. Chem. Phys. 2019, 150, 201102. [Google Scholar]
- Goerigk, L.; Grimme, S. Efficient and accurate double-hybrid-meta-GGA density functionals—Evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2011, 7, 291–309. [Google Scholar] [CrossRef] [PubMed]
- Kozuch, S.; Martin, J.M.L. Spin-component-scaled double hybrids: An extensive search for the best fifth-rung functionals blending DFT and perturbation theory. J. Comput. Chem. 2013, 34, 2327–2344. [Google Scholar] [CrossRef] [PubMed]
- Brémond, E.; Sancho-García, J.C.; Pérez-Jiménez, A.J.; Adamo, C. Double-hybrid functionals from adiabatic-connection: The QIDH model. J. Chem. Phys. 2014, 141, 031101. [Google Scholar] [CrossRef]
- Brémond, E.; Savarese, M.; Pérez-Jiménez, A.J.; Sancho-García, J.C.; Adamo, C. Range-separated double-hybrid functional from nonempirical constraints. J. Chem. Theory Comput. 2018, 14, 4052–4062. [Google Scholar] [CrossRef]
- Casanova-Páez, M.; Dardis, M.B.; Goerigk, L. ωB2PLYP and ωB2GPPLYP: The first two double-hybrid density functionals with long-range correction optimized for excitation energies. J. Chem. Theory Comput. 2019, 15, 4735–4744. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, L.; Neugebauer, H.; Grimme, S.; Bursch, M. Dispersion-corrected r2SCAN based double-hybrid functionals. J. Chem. Phys. 2023, 159, 224103. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system—Version 5.0. WIRES Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Zhang, Y.; Suo, B.; Wang, Z.; Zhang, N.; Li, Z.; Lei, Y.; Zou, W.; Gao, J.; Peng, D.; Pu, Z.; et al. BDF: A relativistic electronic structure program package. J. Chem. Phys. 2020, 152, 064113. [Google Scholar] [CrossRef]
- Visscher, L.; Dyall, K.G. Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions. At. Data Nucl. Data Tables 1997, 67, 207–224. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar]
- Comas-Vilà, G.; Salvador, P. Accurate 57Fe Mössbauer parameters from general Gaussian basis sets. J. Chem. Theory Comput. 2021, 17, 7724–7731. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, M.; Nakashima, S. Density functional theory study on the 193Ir Mössbauer spectroscopic parameters of Vaska’s complexes and their oxidative adducts. Inorg. Chem. 2021, 60, 12740–12752. [Google Scholar] [CrossRef] [PubMed]
- Kozlova, S.G.; Petrov, S.A.; Tikhonov, A.Y.; Lavrenova, L.G. A DFT and Mössbauer spectroscopy investigation of spin-crossover iron(II) complexes with 2,6-bis(1H-imidazol-2-yl)pyridines. Int. J. Quant. Chem. 2023, 123, e27201. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock exchange. Chem. Phys. 2009, 356, 98–109. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, R.; Suo, B.; Liu, W. Accelerating Fock build via hybrid analytical-numerical integration. J. Phys. Chem. A 2025, 129, 1492–1503. [Google Scholar] [CrossRef]
- Zou, J. Molecular Orbital Kit (MOKIT), Version 1.2.5. 2024. Available online: https://gitlab.com/jxzou/mokit (accessed on 12 January 2025).
- Pollak, P.; Weigend, F. Segmented contracted error-consistent basis sets of double- and triple-zeta valence quality for one- and two-component relativistic all-electron calculations. J. Chem. Theory Comput. 2017, 13, 3696–3705. [Google Scholar]
- Werner, H.J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R.; et al. MOLPRO, a Package of Ab Initio Programs, Version 2015.1. 2015. Available online: http://www.molpro.net (accessed on 17 March 2025).
- Deegan, M.J.O.; Knowles, P.J. Perturbative corrections to account for triple excitations in closed and open shell coupled cluster theories. Chem. Phys. Lett. 1994, 227, 321–326. [Google Scholar]
- Werner, H.J.; Knowles, P.J. An efficient internally contracted multiconfiguration-reference configuration interaction method. J. Chem. Phys. 1988, 89, 5803–5814. [Google Scholar]
- Werner, H.J.; Knowles, P.J. A comparison of variational and non-variational internally contracted multiconfiguration-reference configuration interaction calculations. Theor. Chim. Acta 1990, 78, 175–187. [Google Scholar]
H-3 | H-4 | H-8 | DH-1 | DH-3 | DH-11 | Expt. | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
1 * | 0.50 | −0.32 | −0.24 | −1.16 | −0.44 | 0.33 | −0.32 | −0.40 | [36] | |
2 * | 0.79 | −0.43 | −0.38 | −0.38 | −0.29 | −0.29 | 0.21 | 0.29 | [36] | |
3 * | 0.79 | 0.74 | 0.73 | 0.72 | 0.74 | 0.73 | 0.74 | 0.69 | [36] | |
4 | 0.45 | 3.00 | 2.80 | 2.60 | 3.28 | 3.10 | 2.69 | 2.10 | [37] | |
5 | 0.45 | −0.94 | −0.91 | −0.92 | −0.98 | −0.95 | −0.98 | −0.74 | [36] | |
0.44 | −0.94 | −0.91 | −0.91 | −0.97 | −0.95 | −0.98 | ||||
6 | 0.34 | −1.19 | −1.19 | −1.20 | −1.36 | −1.32 | −1.39 | −1.14 | [36] | |
7 | 0.06 | −4.08 | −4.05 | −4.05 | −4.06 | −4.05 | −4.04 | −3.97 | [37] | |
8 | 0.02 | −0.33 | −0.35 | −0.35 | −0.35 | −0.36 | −0.39 | −0.62 | [37] | |
9 | 0.26 | −0.78 | −0.71 | −0.78 | −0.76 | −0.75 | −0.67 | −0.69 | [37] | |
10 * | 0.81 | −3.57 | −3.51 | −3.48 | −3.50 | −3.48 | −3.47 | −3.24 | [37] | |
11 | 0.11 | 3.79 | 3.73 | 3.73 | 3.73 | 3.72 | 3.71 | 3.62 | [39] | |
12 | 0.12 | 3.85 | 3.79 | 3.80 | 3.79 | 3.78 | 3.77 | 3.61 | [39] | |
13 | 0.12 | −1.59 | −1.54 | −1.56 | −1.68 | −1.63 | −1.64 | −1.34 | [36] | |
14 | 0.18 | −2.01 | −1.92 | −1.87 | −2.03 | −1.99 | −2.19 | −2.24 | [36] | |
15 | 0.63 | 2.52 | 2.25 | 2.14 | 2.33 | 2.25 | 2.06 | 0.62 | [36] | |
16 * | 0.76 | −1.59 | −1.58 | −1.58 | 2.05 | 1.93 | 2.06 | −1.63 | [36] | |
17 | 0.23 | 0.35 | 0.35 | 0.34 | 0.36 | 0.36 | 0.38 | 0.43 | [36] | |
18 * | 0.90 | −0.59 | −0.53 | −0.54 | −0.50 | −0.50 | 0.50 | 0.48 | [36] | |
19 | 0.64 | 0.51 | 0.52 | −0.55 | −0.69 | −0.67 | −0.76 | −0.83 | [36] | |
20 * | 0.62 | 0.55 | 0.49 | 0.49 | 0.38 | 0.39 | 0.36 | −0.35 | [36] | |
21 | 0.38 | 0.97 | 0.92 | 0.94 | 0.92 | 0.90 | 0.86 | 0.73 | [36] | |
22 | 0.58 | 1.13 | 1.09 | 1.10 | 1.10 | 1.08 | 1.04 | 0.89 | [36] | |
23 * | 0.98 | −1.87 | −1.82 | −1.84 | −1.83 | −1.85 | −1.82 | −1.42 | [38] | |
24 | 0.48 | −1.40 | −1.10 | −1.19 | −1.37 | −1.26 | −1.15 | −1.24 | [36] | |
25 | 0.49 | −2.65 | −2.66 | −2.67 | −2.73 | −2.72 | −2.76 | −2.05 | [38] | |
26 | 0.00 | 4.01 | 3.62 | 3.65 | 3.08 | 3.12 | 2.78 | 2.41 | [38] | |
27 | 0.42 | −0.85 | −0.90 | −0.87 | −0.86 | −0.87 | −0.92 | −1.23 | [38] | |
28 | 0.49 | −1.29 | −1.22 | −1.29 | −1.27 | −1.25 | −1.19 | −1.12 | [37] | |
29 | 0.11 | 0.79 | 0.68 | 0.81 | 0.43 | 0.61 | 0.53 | 0.89 | [37] | |
30 | 0.13 | 1.89 | 1.84 | 1.79 | 1.79 | 1.77 | 1.78 | 1.80 | [38] | |
31 | 0.34 | 2.56 | 2.50 | 2.46 | 2.54 | 2.45 | 2.44 | 2.10 | [38] | |
32 | 0.73 | 2.68 | 2.63 | 2.60 | 2.60 | 2.58 | 2.58 | 2.36 | [38] | |
1.60 | 1.35 | 1.24 | 1.18 | 1.00 | −0.71 | |||||
0.31 | 0.27 | 0.25 | 0.25 | 0.23 | 0.20 | |||||
0.28 | 0.24 | 0.25 | 0.25 | 0.23 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Tang, H.; Zou, W. Prediction of 57Fe Mössbauer Nuclear Quadrupole Splittings with Hybrid and Double-Hybrid Density Functionals. Int. J. Mol. Sci. 2025, 26, 2821. https://doi.org/10.3390/ijms26062821
Zhang Y, Tang H, Zou W. Prediction of 57Fe Mössbauer Nuclear Quadrupole Splittings with Hybrid and Double-Hybrid Density Functionals. International Journal of Molecular Sciences. 2025; 26(6):2821. https://doi.org/10.3390/ijms26062821
Chicago/Turabian StyleZhang, Yihao, Haonan Tang, and Wenli Zou. 2025. "Prediction of 57Fe Mössbauer Nuclear Quadrupole Splittings with Hybrid and Double-Hybrid Density Functionals" International Journal of Molecular Sciences 26, no. 6: 2821. https://doi.org/10.3390/ijms26062821
APA StyleZhang, Y., Tang, H., & Zou, W. (2025). Prediction of 57Fe Mössbauer Nuclear Quadrupole Splittings with Hybrid and Double-Hybrid Density Functionals. International Journal of Molecular Sciences, 26(6), 2821. https://doi.org/10.3390/ijms26062821