The Identification of Novel Therapeutic Biomarkers in Rheumatoid Arthritis: A Combined Bioinformatics and Integrated Multi-Omics Approach
Abstract
:1. Introduction
2. Results
2.1. Dataset Selection
2.2. Integrating Transcriptomics and Epigenomics Datasets for Rheumatoid Arthritis
2.3. Protein–Protein Interaction Network
2.4. Pathways Analysis
2.5. Micro-RNA Analysis
3. Discussion
4. Materials and Methods
4.1. Data Collection
4.2. Data Processing and Analysis
4.3. Data Integration and Venn Analysis
4.4. Protein–Protein Interaction Network Analysis
4.5. Pathway Analysis of Multi-Evidence Genes
4.6. Gene-miRNA Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finckh, A.; Gilbert, B.; Hodkinson, B.; Bae, S.C.; Thomas, R.; Deane, K.D.; Alpizar-Rodriguez, D.; Lauper, K. Global epidemiology of rheumatoid arthritis. Nat. Rev. Rheumatol. 2022, 18, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.E.; Dianatinasab, M.; Khodamoradi, F.; Tabrizi, R.; Esmaeili, R.; Sadeghi, E.; Soltani, S.; Azami, M.; Rezaei, S. The burden of rheumatoid arthritis in the Middle East and North Africa region, 1990–2019. Sci. Rep. 2022, 12, 19297. [Google Scholar] [CrossRef] [PubMed]
- Puente, A.D.; Knowler, W.C.; Pettitt, D.J.; Bennett, P.H. High incidence and prevalence of rheumatoid arthritis in Pima Indians. Am. J. Epidemiol. 1989, 129, 1170–1178. [Google Scholar] [CrossRef]
- Harvey, J.; Lotze, M.; Stevens, M.B.; Jacobson, D. Rheumatoid arthritis in a Chippewa Band. Arthritis Rheum. 1981, 24, 717–721. [Google Scholar] [CrossRef]
- Alivernini, S.; Firestein, G.S.; McInnes, I.B. The pathogenesis of rheumatoid arthritis. Immunity 2022, 55, 2255–2270. [Google Scholar] [CrossRef]
- Choy, E. Understanding the dynamics: Pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology 2012, 51, v3–v11. [Google Scholar] [CrossRef]
- Chen, Z.; Bozec, A.; Ramming, A.; Schett, G. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat. Rev. Rheumatol. 2019, 15, 9–17. [Google Scholar] [CrossRef]
- Venetsanopoulou, A.I.; Alamanos, Y.; Voulgari, P.V.; Drosos, A.A. Epidemiology and risk factors for rheumatoid arthritis development. Mediterr. J. Rheumatol. 2023, 34, 404. [Google Scholar] [CrossRef]
- Cojocaru, M.; Cojocaru, I.M.; Silosi, I.; Vrabie, C.D.; Tanasescu, R. Extra-articular manifestations in rheumatoid arthritis. Maedica 2010, 5, 286. [Google Scholar]
- Smolen, J.S.; Landewé, R.; Bijlsma, J.; Burmester, G.; Chatzidionysiou, K.; Dougados, M.; Nam, J.; Ramiro, S.; Voshaar, M.; Van Vollenhoven, R.; et al. EULAR Recommendations for the Management of Rheumatoid Arthritis with Synthetic and Biological Disease-Modifying Antirheumatic Drugs: 2016 Update. Ann. Rheum. Dis. 2017, 76, 960–977. [Google Scholar] [CrossRef]
- Taylor, P.C.; Moore, A.; Vasilescu, R.; Alvir, J.; Tarallo, M. A Structured Literature Review of the Burden of Illness and Unmet Needs in Patients with Rheumatoid Arthritis: A Current Perspective. Rheumatol. Int. 2016, 36, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, D.; Teng, D.; Zhou, Y.; Zhang, L.; Zhong, Z.; Yang, G.J. Epigenetic regulation in the pathogenesis of rheumatoid arthritis. Front. Immunol. 2022, 13, 859400. [Google Scholar] [CrossRef] [PubMed]
- Scherer, H.U.; Häupl, T.; Burmester, G.R. The etiology of rheumatoid arthritis. J. Autoimmun. 2020, 110, 102400. [Google Scholar] [CrossRef] [PubMed]
- Ivanisevic, T.; Sewduth, R.N. Multi-omics integration for the design of novel therapies and the identification of novel biomarkers. Proteomes 2023, 11, 34. [Google Scholar] [CrossRef]
- Babu, M.; Snyder, M. Multi-omics profiling for health. Mol. Cell. Proteomics 2023, 22, 6. [Google Scholar] [CrossRef]
- Mohammadi-Shemirani, P.; Sood, T.; Paré, G. From ‘omics to multi-omics technologies: The discovery of novel causal mediators. Curr. Atheroscler. Rep. 2023, 25, 55–65. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, Y.; Wang, X.; Xu, Z.; Tian, Y.; Chen, H.; Jiang, J.; Wang, J.; Zhang, F.; Zhang, C. Applications of multi-omics analysis in human diseases. MedComm 2023, 4, e315. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; Chen, S.; Huang, Y.; Fan, M.; Su, J.; Jin, X.; Zhang, M. Multi-omics profiling reveals potential alterations in rheumatoid arthritis with different disease activity levels. Arthritis Res. Ther. 2023, 25, 74. [Google Scholar] [CrossRef]
- Suzuki, A.; Terao, C.; Yamamoto, K. Linking of genetic risk variants to disease-specific gene expression via multi-omics studies in rheumatoid arthritis. Semin. Arthritis Rheum. 2019, 49, 3. [Google Scholar] [CrossRef]
- Penn, K.; Jensen, P.R. Comparative genomics reveals evidence of marine adaptation in Salinispora species. BMC Genomics 2012, 13, 86. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Gong, A. Integrated bioinformatics analysis for differentially expressed genes and signaling pathways identification in gastric cancer. Int. J. Med. Sci. 2021, 18, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, J.; Ritchie, G.R.; Roumeliotis, T.I.; Jayasuriya, R.L.; Clark, M.J.; Brooks, R.A.; Binch, A.L.; Shah, K.M.; Coyle, R.; Pardo, M.; et al. Integrative epigenomics, transcriptomics, and proteomics of patient chondrocytes reveal genes and pathways involved in osteoarthritis. Sci. Rep. 2017, 7, 111. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Wei, Y.; Zhang, C.; Nian, H.; Du, B.; Wei, R. Integrated DNA methylation and transcriptomics analyses of lacrimal glands identify the potential genes implicated in the development of Sjögren’s syndrome-related dry eye. J. Inflamm. Res. 2023, 16, 5697–5714. [Google Scholar] [CrossRef]
- Ahmmed, R.; Hossen, M.B.; Ajadee, A.; Mahmud, S.; Ali, M.A.; Mollah, M.M.; Reza, M.S.; Islam, M.A.; Mollah, M.N. Bioinformatics analysis to disclose shared molecular mechanisms between type-2 diabetes and clear-cell renal-cell carcinoma, and therapeutic indications. Sci. Rep. 2024, 14, 19133. [Google Scholar] [CrossRef]
- Guo, K.; Eid, S.A.; Elzinga, S.E.; Pacut, C.; Feldman, E.L.; Hur, J. Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy. Clin. Epigenet. 2020, 12, 123. [Google Scholar] [CrossRef]
- Hall, B.E.; Mazhar, K.; Macdonald, E.; Cassidy, M.; Doty, M.; Judkins, C.; Terse, A.; Shiers, S.; Tadros, S.; Yun, S.; et al. Transcriptome analysis of rheumatoid arthritis uncovers genes linked to inflammation-induced pain. Res. Sq. 2024, 14, 25893. [Google Scholar] [CrossRef]
- Platzer, A.; Nussbaumer, T.; Karonitsch, T.; Smolen, J.S.; Aletaha, D. Analysis of gene expression in rheumatoid arthritis and related conditions offers insights into sex-bias, gene biotypes, and co-expression patterns. PLoS ONE 2019, 14, e0219698. [Google Scholar] [CrossRef]
- Chen, Q.; Li, H.; Liu, Y.; Zhao, M. Epigenetic regulation of immune and inflammatory responses in rheumatoid arthritis. Front. Immunol. 2022, 13, 881191. [Google Scholar] [CrossRef]
- Whitaker, J.W.; Boyle, D.L.; Bartok, B.; Ball, S.T.; Gay, S.; Wang, W.; Firestein, G.S. Integrative omics analysis of rheumatoid arthritis identifies non-obvious therapeutic targets. PLoS ONE 2015, 10, e0124254. [Google Scholar] [CrossRef]
- Paranjape, A.R.; Ryan, J.J. An antagonistic role for Fyn and Lyn kinases in autoimmune arthritis. J. Immunol. 2016, 196, 59.26. [Google Scholar] [CrossRef]
- Julià, A.; Pinto, J.A.; Gratacós, J.; Queiró, R.; Ferrándiz, C.; Fonseca, E.; Montilla, C.; Torre-Alonso, J.C.; Puig, L.; Venegas, J.J.; et al. A deletion at the ADAMTS9-MAGI1 locus is associated with psoriatic arthritis risk. Ann. Rheum. Dis. 2015, 74, 1875–1881. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.R.; Danis, V.; Lassere, M.; Edmonds, J.; Manolios, N. Evaluation of a new Apo-1/Fas promoter polymorphism in rheumatoid arthritis and systemic lupus erythematosus patients. Rheumatology 1999, 38, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lu, Y.; Chu, Y.; Xie, J.; Wang, F. Tissue factor expression in rheumatoid synovium: A potential role in pannus invasion of rheumatoid arthritis. Acta Histochem. 2013, 115, 692–697. [Google Scholar] [CrossRef]
- Qu, F.; Zhang, H.; Zhang, M.; Hu, P. Sphingolipidomic profiling of rat serum by UPLC-Q-TOF-MS: Application to rheumatoid arthritis study. Molecules 2018, 23, 1324. [Google Scholar] [CrossRef]
- Verma, N.; Perie, L.; Corciulo, C.; Leucht, P.; Ramkhelawon, B.; Cronstein, B.N.; Mueller, E. Browning of adipose tissue and increased thermogenesis induced by methotrexate. FASEB Bioadv. 2021, 3, 877. [Google Scholar] [CrossRef]
- Laurindo, L.F.; de Maio, M.C.; Barbalho, S.M.; Guiguer, E.L.; Araújo, A.C.; de Alvares Goulart, R.; Flato, U.A.; Júnior, E.B.; Detregiachi, C.R.; dos Santos Haber, J.F.; et al. Organokines in rheumatoid arthritis: A critical review. Int. J. Mol. Sci. 2022, 23, 6193. [Google Scholar] [CrossRef]
- Xu, L.; Chang, C.; Jiang, P.; Wei, K.; Zhang, R.; Jin, Y.; Zhao, J.; Xu, L.; Shi, Y.; Guo, S.; et al. Metabolomics in rheumatoid arthritis: Advances and review. Front. Immunol. 2022, 13, 961708. [Google Scholar] [CrossRef]
- Su, J.; Li, S.; Chen, J.; Jian, C.; Hu, J.; Du, H.; Hai, H.; Wu, J.; Zeng, F.; Zhu, J.; et al. Glycerophospholipid metabolism is involved in rheumatoid arthritis pathogenesis by regulating the IL-6/JAK signaling pathway. Biochem. Biophys. Res. Commun. 2022, 600, 130–135. [Google Scholar] [CrossRef]
- Remans, P.H.; Reedquist, K.A.; Bos, J.L.; Verweij, C.L.; Breedveld, F.C.; van Laar, J.M.; Gringhuis, S.I. Deregulated Ras and Rap1 signaling in rheumatoid arthritis T cells leads to persistent production of free radicals. Arthritis Res. Ther. 2002, 4, 52. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, S.; Schrodi, S.J.; He, D. Molecular and cellular heterogeneity in rheumatoid arthritis: Mechanisms and clinical implications. Front. Immunol. 2021, 12, 790122. [Google Scholar] [CrossRef] [PubMed]
- Mi, Z.; Lu, X.; Mai, J.C.; Ng, B.G.; Wang, G.; Lechman, E.R.; Watkins, S.C.; Rabinowich, H.; Robbins, P.D. Identification of a synovial fibroblast-specific protein transduction domain for delivery of apoptotic agents to hyperplastic synovium. Mol. Ther. 2003, 8, 295–305. [Google Scholar] [CrossRef]
- Ding, Q.; Hu, W.; Wang, R.; Yang, Q.; Zhu, M.; Li, M.; Cai, J.; Rose, P.; Mao, J.; Zhu, Y.Z. Signaling pathways in rheumatoid arthritis: Implications for targeted therapy. Signal Transduct. Target. Ther. 2023, 8, 68. [Google Scholar] [CrossRef]
- Furer, V.; Greenberg, J.D.; Attur, M.; Abramson, S.B.; Pillinger, M.H. The role of microRNA in rheumatoid arthritis and other autoimmune diseases. Clin. Immunol. 2010, 136, 1–5. [Google Scholar] [CrossRef]
- Doghish, A.S.; Ismail, A.; El-Mahdy, H.A.; Elkhawaga, S.Y.; Elsakka, E.G.; Mady, E.A.; Elrebehy, M.A.; Khalil, M.A.; El-Husseiny, H.M. miRNAs insights into rheumatoid arthritis: Favorable and detrimental aspects of key performers. Life Sci. 2023, 314, 121321. [Google Scholar] [CrossRef]
- Wilhelm, G.; Mertowska, P.; Mertowski, S.; Przysucha, A.; Strużyna, J.; Grywalska, E.; Torres, K. The Crossroads of the Coagulation System and the Immune System: Interactions and Connections. Int. J. Mol. Sci. 2023, 24, 12563. [Google Scholar] [CrossRef]
- Lopez-Pedrera, C.; Cerdó, T.; Jury, E.C.; Munoz-Barrera, L.; Escudero-Contreras, A.; Aguirre, M.A.; Perez-Sanchez, C. New Advances in Genomics and Epigenetics in Antiphospholipid Syndrome. Rheumatology 2024, 63, SI14–SI23. [Google Scholar] [CrossRef]
- Tang, X.; Qi, C.; Zhou, H.; Liu, Y. Critical Roles of PTPN Family Members Regulated by Non-Coding RNAs in Tumorigenesis and Immunotherapy. Front. Oncol. 2022, 12, 972906. [Google Scholar] [CrossRef]
- Freiss, G.; Chalbos, D. PTPN13/PTPL1: An Important Regulator of Tumor Aggressiveness. Anti-Cancer Agents. Med. Chem. 2011, 11, 78–88. [Google Scholar]
- Li, C.; Chu, T.; Zhang, Z.; Zhang, Y. Single Cell RNA-Seq Analysis Identifies Differentially Expressed Genes of Treg Cell in Early Treatment-Naive Rheumatoid Arthritis by Arsenic Trioxide. Front. Pharmacol. 2021, 12, 656124. [Google Scholar] [CrossRef]
- Zaric, J.; Joseph, J.M.; Tercier, S.; Sengstag, T.; Ponsonnet, L.; Delorenzi, M.; Rüegg, C. Identification of MAGI1 as a Tumor-Suppressor Protein Induced by Cyclooxygenase-2 Inhibitors in Colorectal Cancer Cells. Oncogene 2012, 31, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Elias, D.; Ditzel, H.J. Fyn Is an Important Molecule in Cancer Pathogenesis and Drug Resistance. Pharmacol. Res. 2015, 100, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Gebuhr, T.C.; Kovalev, G.I.; Bultman, S.; Godfrey, V.; Su, L.; Magnuson, T. The Role of Brg1, a Catalytic Subunit of Mammalian Chromatin-Remodeling Complexes, in T Cell Development. J. Exp. Med. 2003, 198, 1937–1949. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wu, L.; Sun, Y.; Li, J.; Mao, N.; Yang, Y.; Ren, S. CCL5 might be a prognostic biomarker and associated with immuno-therapeutic efficacy in cancers: A pan-cancer analysis. Heliyon 2023, 9, e18215. [Google Scholar] [CrossRef] [PubMed]
- Alturaiki, W.; Alhamad, A.; Alturaiqy, M.; Mir, S.A.; Iqbal, D.; Bin Dukhyil, A.A.; Mubarak, A. Assessment of IL-1β, IL-6, TNF-α, IL-8, and CCL5 levels in newly diagnosed Saudi patients with rheumatoid arthritis. Int. J. Rheum. Dis. 2022, 25, 1013–1019. [Google Scholar] [CrossRef]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2012, 41, D991–D995. [Google Scholar] [CrossRef]
- UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016, 54, 1–30. [Google Scholar] [CrossRef]
- Piñero, J.; Bravo, À.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2016, 44, D569–D574. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models. Genome Res. 2003, 13, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Li, J.; Miao, B.; Wang, S.; Dong, W.; Xu, H.; Si, C.; Wang, W.; Duan, S.; Lou, J.; Bao, Z.; et al. Hiplot: A comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization. Brief. Bioinform. 2022, 23, bbac261. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Sticht, C.; De La Torre, C.; Parveen, A.; Gretz, N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS ONE 2018, 13, e0206239. [Google Scholar] [CrossRef]
- Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef]
Cluster | Number of Nodes | Number of Edges | MCODE Score |
---|---|---|---|
1 | 17 | 115 | 14.375 |
2 | 10 | 42 | 9.333 |
3 | 14 | 45 | 6.923 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tariq, M.H.; Advani, D.; Almansoori, B.M.; AlSamahi, M.E.; Aldhaheri, M.F.; Alkaabi, S.E.; Mousa, M.; Kohli, N. The Identification of Novel Therapeutic Biomarkers in Rheumatoid Arthritis: A Combined Bioinformatics and Integrated Multi-Omics Approach. Int. J. Mol. Sci. 2025, 26, 2757. https://doi.org/10.3390/ijms26062757
Tariq MH, Advani D, Almansoori BM, AlSamahi ME, Aldhaheri MF, Alkaabi SE, Mousa M, Kohli N. The Identification of Novel Therapeutic Biomarkers in Rheumatoid Arthritis: A Combined Bioinformatics and Integrated Multi-Omics Approach. International Journal of Molecular Sciences. 2025; 26(6):2757. https://doi.org/10.3390/ijms26062757
Chicago/Turabian StyleTariq, Muhammad Hamza, Dia Advani, Buttia Mohamed Almansoori, Maithah Ebraheim AlSamahi, Maitha Faisal Aldhaheri, Shahad Edyen Alkaabi, Mira Mousa, and Nupur Kohli. 2025. "The Identification of Novel Therapeutic Biomarkers in Rheumatoid Arthritis: A Combined Bioinformatics and Integrated Multi-Omics Approach" International Journal of Molecular Sciences 26, no. 6: 2757. https://doi.org/10.3390/ijms26062757
APA StyleTariq, M. H., Advani, D., Almansoori, B. M., AlSamahi, M. E., Aldhaheri, M. F., Alkaabi, S. E., Mousa, M., & Kohli, N. (2025). The Identification of Novel Therapeutic Biomarkers in Rheumatoid Arthritis: A Combined Bioinformatics and Integrated Multi-Omics Approach. International Journal of Molecular Sciences, 26(6), 2757. https://doi.org/10.3390/ijms26062757