A Metabolically Stable Apelin-13 Analog Acting as a Potent ITo Potassium Current Blocker with Potential Benefits for Brugada Syndrome
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Cell Isolation
4.2. Animal Care
4.3. Cell Culture and Transfection
4.4. Compound Synthesis
4.5. Electrophysiology Recordings
4.6. Electrophysiology Solutions
4.7. Materials
4.8. Data Analysis and Protocols
4.8.1. AP Recordings
4.8.2. Voltage-Dependent INa Channels Activation
4.8.3. INa Steady-State Inactivation
4.8.4. Voltage-Dependent ITo Channels’ Activation
4.8.5. ITo Steady-State Inactivation
4.9. Dose–Response Curves
4.10. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BrS | Brugada syndrome |
INa | Cardiac sodium current |
ARRIVE | Animal Research: Reporting In Vivo Experiments |
AP | action potential |
DMSO | dimethyl sulfoxide |
SEM | Standard Error Mean |
ANOVA | Analysis of Variance |
APD | action potential duration |
ITo | transient outward potassium current |
KB solution | Kraftbrühe solution |
References
- Japp, A.G.; Newby, D.E. The Apelin-APJ System in Heart Failure: Pathophysiologic Relevance and Therapeutic Potential. Biochem. Pharmacol. 2008, 75, 1882–1892. [Google Scholar] [CrossRef]
- Akcilar, R.; Turgut, S.; Caner, V.; Akcilar, A.; Ayada, C.; Elmas, L.; Ozcan, T.O. Apelin Effects on Blood Pressure and RAS in DOCA-Salt-Induced Hypertensive Rats. Clin. Exp. Hypertens. 2013, 35, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, B.; Dar, O.; McDonagh, T. The Role of Apelin in Cardiovascular Function and Heart Failure. Eur. J. Heart Fail. 2008, 10, 725–732. [Google Scholar] [CrossRef]
- Li, Y.; Lu, H.; Xu, W.; Shang, Y.; Zhao, C.; Wang, Y.; Yang, R.; Jin, S.; Wu, Y.; Wang, X.; et al. Apelin Ameliorated Acute Heart Failure via Inhibiting Endoplasmic Reticulum Stress in Rabbits. Amino Acids. 2021, 53, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Szymańczyk, S.; Kras, K.; Osiak-Wicha, C.; Kapica, M.; Puzio, I.; Antushevich, H.; Kuwahara, A.; Kato, I.; Arciszewski, M.B. Immunodetection of Selected Pancreatic Hormones under Intragastric Administration of Apelin-13, a Novel Endogenous Ligand for an Angiotensin-like Orphan G-Protein Coupled Receptor, in Unweaned Rats. J. Vet. Res. 2024, 68, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Arani Hessari, F.; Sharifi, M.; Yousefifard, M.; Gholamzadeh, R.; Nazarinia, D.; Aboutaleb, N. Apelin-13 Attenuates Cerebral Ischemia/Reperfusion Injury through Regulating Inflammation and Targeting the JAK2/STAT3 Signaling Pathway. J. Chem. Neuroanat. 2022, 126, 102171. [Google Scholar] [CrossRef]
- Zheng, X.-D.; Huang, Y.; Li, H. Regulatory Role of Apelin-13-Mediated PI3K/AKT Signaling Pathway in the Glucose and Lipid Metabolism of Mouse with Gestational Diabetes Mellitus. Immunobiology 2021, 226, 152135. [Google Scholar] [CrossRef]
- Kawamata, Y.; Habata, Y.; Fukusumi, S.; Hosoya, M.; Fujii, R.; Hinuma, S.; Nishizawa, N.; Kitada, C.; Onda, H.; Nishimura, O.; et al. Molecular Properties of Apelin: Tissue Distribution and Receptor Binding. Biochim. Biophys. Acta 2001, 1538, 162–171. [Google Scholar] [CrossRef]
- Hosoya, M.; Kawamata, Y.; Fukusumi, S.; Fujii, R.; Habata, Y.; Hinuma, S.; Kitada, C.; Honda, S.; Kurokawa, T.; Onda, H.; et al. Molecular and Functional Characteristics of APJ. Tissue Distribution of mRNA and Interaction with the Endogenous Ligand Apelin. J. Biol. Chem. 2000, 275, 21061–21067. [Google Scholar] [CrossRef]
- Maguire, J.J.; Kleinz, M.J.; Pitkin, S.L.; Davenport, A.P. [Pyr 1]Apelin-13 Identified as the Predominant Apelin Isoform in the Human Heart: Vasoactive Mechanisms and Inotropic Action in Disease. Hypertension 2009, 54, 598–604. [Google Scholar] [CrossRef]
- Hus-Citharel, A.; Bouby, N.; Frugiere, A.; Bodineau, L.; Gasc, J.M.; Llorens-Cortes, C. Effect of Apelin on Glomerular Hemodynamic Function in the Rat Kidney. Kidney Int. 2008, 74, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Ishida, J.; Hashimoto, T.; Hashimoto, Y.; Nishiwaki, S.; Iguchi, T.; Harada, S.; Sugaya, T.; Matsuzaki, H.; Yamamoto, R.; Shiota, N.; et al. Regulatory Roles for APJ, a Seven-Transmembrane Receptor Related to Angiotensin-Type 1 Receptor in Blood Pressure in Vivo. J. Biol. Chem. 2004, 279, 26274–26279. [Google Scholar] [CrossRef] [PubMed]
- Salcedo, A.; Garijo, J.; Monge, L.; Fernandez, N.; Luis Garcia-Villalon, A.; Sanchez, T.V.; Cuervas-Mons, V.; Dieguez, G. Apelin Effects in Human Splanchnic Arteries. Role of Nitric Oxide and Prostanoids. Regul. Pept. 2007, 144, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Brame, A.L.; Maguire, J.J.; Yang, P.; Dyson, A.; Torella, R.; Cheriyan, J.; Singer, M.; Glen, R.C.; Wilkinson, I.B.; Davenport, A.P. Design, Characterization, and First-In-Human Study of the Vascular Actions of a Novel Biased Apelin Receptor Agonist. Hypertension 2015, 65, 834–840. [Google Scholar] [CrossRef]
- Japp, A.G.; Cruden, N.L.; Amer, D.A.; Li, V.K.; Goudie, E.B.; Johnston, N.R.; Sharma, S.; Neilson, I.; Webb, D.J.; Megson, I.L.; et al. Vascular Effects of Apelin in Vivo in Man. J. Am. Coll. Cardiol. 2008, 52, 908–913. [Google Scholar] [CrossRef]
- Besserer-Offroy, É.; Bérubé, P.; Côté, J.; Murza, A.; Longpré, J.-M.; Dumaine, R.; Lesur, O.; Auger-Messier, M.; Leduc, R.; Marsault, É.; et al. The Hypotensive Effect of Activated Apelin Receptor Is Correlated with β-Arrestin Recruitment. Pharmacol. Res. 2018, 131, 7–16. [Google Scholar] [CrossRef]
- Chen, W.; Nan, L.; Ronghua, L.; Yan, L.; Dongjuan, W.; Wei, Z.; Ying, Z.; Ling, T.; Feng, C.; Haichang, W. Apelin Protects SR Function and Cardiac Performance in Ischemia-Reperfusion by Attenuating Oxidation of SERCA and RyR. Cardiovasc. Res. 2013; epub ahead of print. [Google Scholar]
- Farkasfalvi, K.; Stagg, M.A.; Coppen, S.R.; Siedlecka, U.; Lee, J.; Soppa, G.K.; Marczin, N.; Szokodi, I.; Yacoub, M.H.; Terracciano, C.M. Direct Effects of Apelin on Cardiomyocyte Contractility and Electrophysiology. Biochem. Biophys. Res. Commun. 2007, 357, 889–895. [Google Scholar] [CrossRef]
- Wang, C.; Du, J.F.; Wu, F.; Wang, H.C. Apelin Decreases the SR Ca2+ Content but Enhances the Amplitude of [Ca2+]i Transient and Contractions during Twitches in Isolated Rat Cardiac Myocytes. Am. J. Physiol Heart Circ. Physiol 2008, 294, H2540–H2546. [Google Scholar] [CrossRef]
- Szokodi, I.; Tavi, P.; Foldes, G.; Voutilainen-Myllyla, S.; Ilves, M.; Tokola, H.; Pikkarainen, S.; Piuhola, J.; Rysa, J.; Toth, M.; et al. Apelin, the Novel Endogenous Ligand of the Orphan Receptor APJ, Regulates Cardiac Contractility. Circ. Res. 2002, 91, 434–440. [Google Scholar] [CrossRef]
- Chamberland, C.; Barajas-Martinez, H.; Haufe, V.; Fecteau, M.-H.; Delabre, J.-F.; Burashnikov, A.; Antzelevitch, C.; Lesur, O.; Chraibi, A.; Sarret, P.; et al. Modulation of Canine Cardiac Sodium Current by Apelin. J. Mol. Cell. Cardiol. 2010, 48, 694–701. [Google Scholar] [CrossRef]
- Cheng, C.C.; Weerateerangkul, P.; Lu, Y.Y.; Chen, Y.C.; Lin, Y.K.; Chen, S.A.; Chen, Y.J. Apelin Regulates the Electrophysiological Characteristics of Atrial Myocytes. Eur. J. Clin. Investig. 2013, 43, 34–40. [Google Scholar] [CrossRef]
- Modgil, A.; Guo, L.; O’Rourke, S.T.; Sun, C. Apelin-13 Inhibits Large-Conductance Ca2+-Activated K+ Channels in Cerebral Artery Smooth Muscle Cells via a PI3-Kinase Dependent Mechanism. PLoS ONE 2013, 8, e83051. [Google Scholar] [CrossRef] [PubMed]
- Chagnon, F.; Coquerel, D.; Salvail, D.; Marsault, E.; Dumaine, R.; Auger-Messier, M.; Sarret, P.; Lesur, O. Apelin Compared with Dobutamine Exerts Cardioprotection and Extends Survival in a Rat Model of Endotoxin-Induced Myocardial Dysfunction. Crit. Care Med. 2017, 45, e391–e398. [Google Scholar] [CrossRef] [PubMed]
- Lesur, O.; Roussy, J.F.; Chagnon, F.; Gallo-Payet, N.; Dumaine, R.; Sarret, P.; Chraibi, A.; Chouinard, L.; Hogue, B. Proven Infection-Related Sepsis Induces a Differential Stress Response Early after ICU Admission. Crit. Care 2010, 14, R131. [Google Scholar] [CrossRef] [PubMed]
- Azizi, M.; Iturrioz, X.; Blanchard, A.; Peyrard, S.; De Mota, N.; Chartrel, N.; Vaudry, H.; Corvol, P.; Llorens-Cortes, C. Reciprocal Regulation of Plasma Apelin and Vasopressin by Osmotic Stimuli. JASN 2008, 19, 1015–1024. [Google Scholar] [CrossRef]
- Vickers, C.; Hales, P.; Kaushik, V.; Dick, L.; Gavin, J.; Tang, J.; Godbout, K.; Parsons, T.; Baronas, E.; Hsieh, F.; et al. Hydrolysis of Biological Peptides by Human Angiotensin-Converting Enzyme-Related Carboxypeptidase. J. Biol. Chem. 2002, 277, 14838–14843. [Google Scholar] [CrossRef]
- Murza, A.; Parent, A.; Besserer-Offroy, E.; Tremblay, H.; Karadereye, F.; Beaudet, N.; Leduc, R.; Sarret, P.; Marsault, É. Elucidation of the Structure-Activity Relationships of Apelin: Influence of Unnatural Amino Acids on Binding, Signaling, and Plasma Stability. ChemMedChem 2012, 7, 318–325. [Google Scholar] [CrossRef]
- Lee, D.K.; Saldivia, V.R.; Nguyen, T.; Cheng, R.; George, S.R.; O’Dowd, B.F. Modification of the Terminal Residue of Apelin-13 Antagonizes Its Hypotensive Action. Endocrinology 2005, 146, 231–236. [Google Scholar] [CrossRef]
- Flahault, A.; Keck, M.; Girault-Sotias, P.-E.; Esteoulle, L.; De Mota, N.; Bonnet, D.; Llorens-Cortes, C. LIT01-196, a Metabolically Stable Apelin-17 Analog, Normalizes Blood Pressure in Hypertensive DOCA-Salt Rats via a NO Synthase-Dependent Mechanism. Front. Pharmacol. 2021, 12, 715095. [Google Scholar] [CrossRef]
- Murza, A.; Besserer-Offroy, E.; Cote, J.; Berube, P.; Longpre, J.M.; Dumaine, R.; Lesur, O.; Auger-Messier, M.; Leduc, R.; Sarret, P.; et al. C-Terminal Modifications of Apelin-13 Significantly Change Ligand Binding, Receptor Signaling, and Hypotensive Action. J. Med. Chem. 2015, 58, 2431–2440. [Google Scholar] [CrossRef]
- Murza, A.; Sainsily, X.; Cote, J.; Bruneau-Cossette, L.; Besserer-Offroy, E.; Longpre, J.M.; Leduc, R.; Dumaine, R.; Lesur, O.; Auger-Messier, M.; et al. Structure-Activity Relationship of Novel Macrocyclic Biased Apelin Receptor Agonists. Org. Biomol. Chem. 2017, 15, 449–458. [Google Scholar] [CrossRef]
- Trân, K.; Murza, A.; Sainsily, X.; Coquerel, D.; Côté, J.; Belleville, K.; Haroune, L.; Longpré, J.-M.; Dumaine, R.; Salvail, D.; et al. A Systematic Exploration of Macrocyclization in Apelin-13: Impact on Binding, Signaling, Stability, and Cardiovascular Effects. J. Med. Chem. 2018, 61, 2266–2277. [Google Scholar] [CrossRef]
- Trân, K.; Van Den Hauwe, R.; Sainsily, X.; Couvineau, P.; Côté, J.; Simard, L.; Echevarria, M.; Murza, A.; Serre, A.; Théroux, L.; et al. Constraining the Side Chain of C-Terminal Amino Acids in Apelin-13 Greatly Increases Affinity, Modulates Signaling, and Improves the Pharmacokinetic Profile. J. Med. Chem. 2021, 64, 5345–5364. [Google Scholar] [CrossRef]
- Murza, A.; Belleville, K.; Longpré, J.-M.; Sarret, P.; Marsault, É. Stability and Degradation Patterns of Chemically Modified Analogs of Apelin-13 in Plasma and Cerebrospinal Fluid. Biopolymers 2014, 102, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Dumaine, R.; Towbin, J.A.; Brugada, P.; Vatta, M.; Nesterenko, D.V.; Nesterenko, V.V.; Brugada, J.; Brugada, R.; Antzelevitch, C. Ionic Mechanisms Responsible for the Electrocardiographic Phenotype of the Brugada Syndrome Are Temperature Dependent. Circ. Res. 1999, 85, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Antzelevitch, C.; Fish, J.; Di Diego, J.M. Cellular Mechanisms Underlying the Brugada Syndrome. In The Brugada Syndrome: From Bench to Bedside; Antzelevitch, C., Brugada, P., Brugada, J., Brugada, R., Eds.; Blackwell Futura: Oxford, UK, 2004; pp. 52–77. [Google Scholar]
- Barry, D.M.; Trimmer, J.S.; Merlie, J.P.; Nerbonne, J.M. Differential Expression of Voltage-Gated K+ Channel Subunits in Adult Rat Heart. Relation to Functional K+ Channels? Circ. Res. 1995, 77, 361–369. [Google Scholar] [CrossRef]
- Dixon, E.J.; Shi, W.; Wang, H.-S.; McDonald, C.; Yu, H.; Wymore, R.S.; Cohen, I.S.; McKinnon, D. Role of the Kv4.3 K+ Channel in Ventricular Muscle. A Molecular Correlate for the Transient Outward Current. Circ. Res. 1996, 79, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Bezzina, C.; Veldkamp, M.W.; van Den Berg, M.P.; Postma, A.V.; Rook, M.B.; Viersma, J.W.; Van Langen, I.M.; Tan-Sindhunata, G.; Bink-Boelkens, M.T.; Der Hout, A.H.; et al. A Single Na(+) Channel Mutation Causing Both Long-QT and Brugada Syndromes. Circ. Res. 1999, 85, 1206–1213. [Google Scholar] [CrossRef]
- Akai, J.; Makita, N.; Sakurada, H.; Shirai, N.; Ueda, K.; Kitabatake, A.; Nakazawa, K.; Kimura, A.; Hiraoka, M. A Novel SCN5A Mutation Associated with Idiopathic Ventricular Fibrillation without Typical ECG Findings of Brugada Syndrome. FEBS Lett. 2000, 479, 29–34. [Google Scholar] [CrossRef]
- Kyndt, F.; Probst, V.; Potet, F.; Demolombe, S.; Chevallier, J.C.; Baro, I.; Moisan, J.P.; Boisseau, P.; Schott, J.J.; Escande, D.; et al. Novel SCN5A Mutation Leading Either to Isolated Cardiac Conduction Defect or Brugada Syndrome in a Large French Family. Circulation 2001, 104, 3081–3086. [Google Scholar] [CrossRef]
- Amin, A.S.; Verkerk, A.O.; Bhuiyan, Z.A.; Wilde, A.A.; Tan, H.L. Novel Brugada Syndrome-Causing Mutation in Ion-Conducting Pore of Cardiac Na Channel Does Not Affect Ion Selectivity Properties. Acta Physiol. Scand. 2005, 185, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Valdivia, C.R.; Tester, D.J.; Rok, B.A.; Porter, C.B.; Munger, T.M.; Jahangir, A.; Makielski, J.C.; Ackerman, M.J. A Trafficking Defective, Brugada Syndrome-Causing SCN5A Mutation Rescued by Drugs. Cardiovasc. Res. 2004, 62, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.J.; Ackerman, M.J.; Antzelevitch, C.; Bezzina, C.R.; Borggrefe, M.; Cuneo, B.F.; Wilde, A.A.M. Inherited Cardiac Arrhythmias. Nat. Rev. Dis. Primers 2020, 6, 58. [Google Scholar] [CrossRef] [PubMed]
- Olesen, M.S.; Refsgaard, L.; Holst, A.G.; Larsen, A.P.; Grubb, S.; Haunsø, S.; Svendsen, J.H.; Olesen, S.-P.; Schmitt, N.; Calloe, K. A Novel KCND3 Gain-of-Function Mutation Associated with Early-Onset of Persistent Lone Atrial Fibrillation. Cardiovasc. Res. 2013, 98, 488–495. [Google Scholar] [CrossRef]
- Ohno, S.; Zankov, D.P.; Ding, W.-G.; Itoh, H.; Makiyama, T.; Doi, T.; Shizuta, S.; Hattori, T.; Miyamoto, A.; Naiki, N.; et al. KCNE5 (KCNE1L) Variants Are Novel Modulators of Brugada Syndrome and Idiopathic Ventricular Fibrillation. Circ. Arrhythmia Electrophysiol. 2011, 4, 352–361. [Google Scholar] [CrossRef]
- Nakajima, T.; Wu, J.; Kaneko, Y.; Ashihara, T.; Ohno, S.; Irie, T.; Ding, W.-G.; Matsuura, H.; Kurabayashi, M.; Horie, M. KCNE3 T4A as the Genetic Basis of Brugada-Pattern Electrocardiogram. Circ. J. 2012, 76, 2763–2772. [Google Scholar] [CrossRef]
- Trân, K.; Murza, A.; Sainsily, X.; Delile, E.; Couvineau, P.; Côté, J.; Coquerel, D.; Peloquin, M.; Auger-Messier, M.; Bouvier, M.; et al. Structure–Activity Relationship and Bioactivity of Short Analogues of ELABELA as Agonists of the Apelin Receptor. J. Med. Chem. 2021, 64, 602–615. [Google Scholar] [CrossRef]
2NaL (nM) | Vh (mV) ± SEM |
---|---|
0 | −51 ± 2 |
0.05 | −48 ± 2 |
0.5 | −49 ± 2 |
5 | −54 ± 2 |
30 | −53 ± 3 |
100 | −56 ± 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras Vite, J.A.; Tiffinger, A.; Théroux, L.; Morin, N.; Auger-Messier, M.; Boudreault, P.-L.; Sarret, P.; Lesur, O.; Dumaine, R. A Metabolically Stable Apelin-13 Analog Acting as a Potent ITo Potassium Current Blocker with Potential Benefits for Brugada Syndrome. Int. J. Mol. Sci. 2025, 26, 2735. https://doi.org/10.3390/ijms26062735
Contreras Vite JA, Tiffinger A, Théroux L, Morin N, Auger-Messier M, Boudreault P-L, Sarret P, Lesur O, Dumaine R. A Metabolically Stable Apelin-13 Analog Acting as a Potent ITo Potassium Current Blocker with Potential Benefits for Brugada Syndrome. International Journal of Molecular Sciences. 2025; 26(6):2735. https://doi.org/10.3390/ijms26062735
Chicago/Turabian StyleContreras Vite, Juan Antonio, Alexandria Tiffinger, Léa Théroux, Nathalie Morin, Mannix Auger-Messier, Pierre-Luc Boudreault, Philippe Sarret, Olivier Lesur, and Robert Dumaine. 2025. "A Metabolically Stable Apelin-13 Analog Acting as a Potent ITo Potassium Current Blocker with Potential Benefits for Brugada Syndrome" International Journal of Molecular Sciences 26, no. 6: 2735. https://doi.org/10.3390/ijms26062735
APA StyleContreras Vite, J. A., Tiffinger, A., Théroux, L., Morin, N., Auger-Messier, M., Boudreault, P.-L., Sarret, P., Lesur, O., & Dumaine, R. (2025). A Metabolically Stable Apelin-13 Analog Acting as a Potent ITo Potassium Current Blocker with Potential Benefits for Brugada Syndrome. International Journal of Molecular Sciences, 26(6), 2735. https://doi.org/10.3390/ijms26062735