Detection of Live Shiga Toxin-Producing Escherichia coli with Long-Read Sequencing
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Bacterial Culturing
3.2. EMA and PMAxx Range Finding Experiments
3.3. Optimized PMAxx Experiment
3.4. Quantitative Polymerase Chain Reaction
3.5. Long-Read Sequencing
3.6. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EMA | Ethidium monoazide |
PMA | Propidium monoazide |
US | United States |
STEC | Shiga toxin-producing Escherichia coli |
USDA FSIS | United States Department of Agriculture Food Safety and Inspection Service |
MALTI-TOF | Matrix-assisted laser desorption/ionization time-of-flight |
mTSB | Modified tryptic soy broth |
LB | Luria–Bertani |
OD | Optical density |
cfu | Colony-forming unit |
mL | Milliliter |
PBS | Phosphate-buffered saline |
qPCR | Quantitative real-time polymerase chain reaction |
ONT | Oxford Nanopore Technologies |
NCBI | National Center for Biotechnology Information |
References
- Foodborne Germs and Illnesses. Available online: https://www.cdc.gov/foodsafety/foodborne-germs.html (accessed on 24 January 2024).
- Pakbin, B.; Bruck, W.; Rossen, J. Virulence factors of enteric pathogenic Escherichia coli: A review. Int. J. Mol. Sci. 2021, 22, 9922. [Google Scholar] [CrossRef] [PubMed]
- Delahoy, M.; Shah, H.; Weller, D.; Ray, L.; Smith, K.; McGuire, S.; Trevejo, R.; Walter, E.; Wymore, K.; Rissman, T.; et al. Preliminary incidence and trends of infections caused by pathogens transmitted commonly through food—Foodborne diseases active surveillance network, 10 U.S. sites, 2022. Morb. Mortal. Wkly. Rep. 2023, 72, 701–706. [Google Scholar] [CrossRef]
- Summary of Recall Cases in Calendar Year 2021. Food Safety. Available online: https://www.fsis.usda.gov/food-safety/recalls-public-health-alerts/annual-recall-summaries/summary-recall-cases-calendar-8 (accessed on 7 November 2024).
- Hoffmann, S.; Ahn, J. Economic Cost of Major Foodborne Illnesses Increased $2 Billion from 2013 to 2018. Available online: https://www.ers.usda.gov/amber-waves/2021/april/economic-cost-of-major-foodborne-illnesses-increased-2-billion-from-2013-to-2018/ (accessed on 7 November 2024).
- Method Number 5C.04. Microbiology Laboratory Guidebook. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/documents/MLG-5C.04.pdf (accessed on 1 October 2024).
- Fratamico, P.; DebRoy, C.; Liu, Y.; Needleman, D.; Baranzoni, G.; Feng, P. Advances in molecular serotyping and subtyping of Escherichia coli. Front. Microbiol. 2016, 7, 644. [Google Scholar] [CrossRef] [PubMed]
- PCR Platform Instructions for the Real-Time PCR Detection of Shiga Toxin Gene and H7 Gene in E. coli O157:H7. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/2021-03/mlg-5-appendix-5.pdf (accessed on 1 April 2023).
- Nanopores. How Nanopore Sequencing Works. Available online: https://nanoporetech.com/platform/technology (accessed on 28 February 2025).
- Loman, N.; Pallen, M. Twenty years of bacterial genome sequencing. Nat. Rev. Microbiol. 2015, 13, 787–794. [Google Scholar] [CrossRef]
- Jain, M.; Olsen, H.; Paten, B.; Akeson, M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol. 2016, 17, 239. [Google Scholar] [CrossRef]
- Nanopore Sequencing Accuracy. Available online: https://nanoporetech.com/platform/accuracy/ (accessed on 2 February 2024).
- Josephson, K.; Gerba, C.; Pepper, I. Polymerase chain reaction detection of nonviable bacterial pathogens. Appl. Environ. Microbiol. 1993, 59, 3513–3515. [Google Scholar] [CrossRef]
- Carini, P.; Marsden, P.; Leff, J.; Morgan, E.; Strickland, M.; Fierer, N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2017, 2, 16242. [Google Scholar] [CrossRef] [PubMed]
- Rudi, K.; Moen, B.; Dromtorp, S.; Holck, A. Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl. Environ. Microbiol. 2005, 71, 1018–1024. [Google Scholar] [CrossRef]
- Liu, Y.; Mustapha, A. Detection of viable Escherichia coli O157:H7 in ground beef by propidium monoazide real-time PCR. Int. J. Food Microbiol. 2014, 170, 48–54. [Google Scholar] [CrossRef]
- Emerson, J.; Adams, R.; Betancourt Román, C.; Brooks, B.; Coil, D.; Dahlhausen, K.; Ganz, H.; Hartmann, E.; Hsu, T.; Justice, N.; et al. Schrodinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 2017, 5, 86. [Google Scholar] [CrossRef]
- Nocker, A.; Cheung, C.; Camper, A. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Methods 2006, 67, 310–320. [Google Scholar] [CrossRef]
- Hixon, S.; White, W., Jr.; Yielding, K. Selective covalent binding of an ethidium analog to mitochondrial DNA with production of petite mutants in yeast by photoaffinity labeling. J. Mol. Biol. 1975, 92, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Riedy, M.; Muirhead, K.; Jensen, C.; Stewart, C. Use of a photolabeling technique to identify nonviable cells in fixed homologous or heterologous cell populations. Cytometry 1991, 12, 133–139. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, C. Quantitative analysis of viable, stressed and dead cells of Campylobacter jejuni strain 81-176. Food Microbiol. 2010, 27, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Nocker, A.; Sossa, K.; Camper, A. Molecular modification of disinfection efficacy using propidium monoazide in combination with quantitative PCR. J. Microbiol. Methods 2007, 70, 252–260. [Google Scholar] [CrossRef]
- Nocker, A.; Sossa-Fernandez, P.; Burr, M.; Camper, A. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl. Environ. Microbiol. 2007, 73, 5111–5117. [Google Scholar] [CrossRef]
- Yap, M.; O’Sullivan, O.; O’Toole, P.; Cotter, P. Development of sequencing-based methodologies to distinguish viable from non-viable cells in a bovine milk matrix: A pilot study. Front. Microbiol. 2022, 13, 1036643. [Google Scholar] [CrossRef]
- Ohno, A.; Umezawa, K.; Asai, S.; Kryukov, K.; Nakagawa, S.; Miyachi, H.; Imanishi, T. Rapid profiling of drug-resistant bacteria using DNA-binding dyes and a nanopore-based DNA sequencer. Sci. Rep. 2021, 11, 3436. [Google Scholar] [CrossRef]
- McHugh, A. Novel Sequencing-Based Methods to Characterise Microbiomes, and in Particular Spore-Forming Bacteria, in the Dairy Processing Chain. Ph.D. Thesis, University College Cork, Cork, Ireland, 2020. [Google Scholar]
- PMAxx Dye, 20 mM in H2O. Available online: https://biotium.com/product/pmaxx-20-mm-in-h2o/ (accessed on 26 September 2022).
- Nielsen, K.; Johnsen, P.; Bensasson, D.; Daffonchio, D. Release and persistence of extracellular DNA in the environment. Environ. Biosaf. Res. 2007, 6, 37–53. [Google Scholar] [CrossRef]
- Counihan, K.L.; Kanrar, S.; Tilman, S.; Capobianco, J.; Armstrong, C.M.; Gehring, A. Detection of Escherichia coli O157:H7 in ground beef using long-read sequencing. Foods 2024, 13, 828. [Google Scholar] [CrossRef]
- Sohaib, M.; Anjum, F.; Arshad, M.; Rahman, U. Postharvest intervention technologies for safety enhancement of meat and meat based products; a critical review. J. Food Sci. Technol. 2016, 53, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Nocker, A.; Camper, A. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl. Environ. Microbiol. 2006, 72, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Method Number 4.15. Microbiology Laboratory Guidebook. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/documents/MLG_4.15.pdf (accessed on 26 February 2025).
- Method Number 41.09. Microbiology Laboratory Guidebook. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/documents/MLG-41.09.pdf (accessed on 26 February 2025).
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Counihan, K.L.; Tilman, S.; Chen, C.; He, Y. Data from: Detection of Live Shiga Toxin-Producing Escherichia coli with Long-Read Sequencing; USDA: Washington, DC, USA, 2025. [CrossRef]
Sample | Mean Length ± Standard Error (b) | Minimum Length (b) | Maximum Length (b) | Reads Generated ± Standard Error (k) | Estimated Bases (Mb) | Data Produced (GB) | Estimated N50 (kb) |
---|---|---|---|---|---|---|---|
Live Untreated | 3476 ± 74.31 | 1000 | 22,964 | 89,267 ± 8230 | 1552.00 | 19.31 | 4.19 |
Live Treated | 3552 ± 74.31 | 1000 | 32,592 | 78,544 ± 22,504 | |||
Dead Untreated | 2510 ± 220.10 | 1000 | 20,560 | 69,560 ± 8619 | |||
Dead Treated | 3049 ± 95.35 | 1000 | 9947 | 10.67 ± 5.36 |
Sample | Concentration (ng µL−1) |
---|---|
Live Untreated * | 33.24 ± 1.75 |
Live Treated * | 34.82 ± 1.79 |
Dead Untreated | 8.85 ± 1.87 |
Dead Treated | 2.90 ± 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Counihan, K.L.; Tilman, S.; Chen, C.-Y.; He, Y. Detection of Live Shiga Toxin-Producing Escherichia coli with Long-Read Sequencing. Int. J. Mol. Sci. 2025, 26, 2228. https://doi.org/10.3390/ijms26052228
Counihan KL, Tilman S, Chen C-Y, He Y. Detection of Live Shiga Toxin-Producing Escherichia coli with Long-Read Sequencing. International Journal of Molecular Sciences. 2025; 26(5):2228. https://doi.org/10.3390/ijms26052228
Chicago/Turabian StyleCounihan, Katrina L., Shannon Tilman, Chin-Yi Chen, and Yiping He. 2025. "Detection of Live Shiga Toxin-Producing Escherichia coli with Long-Read Sequencing" International Journal of Molecular Sciences 26, no. 5: 2228. https://doi.org/10.3390/ijms26052228
APA StyleCounihan, K. L., Tilman, S., Chen, C.-Y., & He, Y. (2025). Detection of Live Shiga Toxin-Producing Escherichia coli with Long-Read Sequencing. International Journal of Molecular Sciences, 26(5), 2228. https://doi.org/10.3390/ijms26052228