Gratiola officinalis Alcoholic Extract Targets Warburg Effect, Apoptosis and Cell Cycle Progression in Colorectal Cancer Cell Lines
Abstract
1. Introduction
2. Results and Discussion
2.1. Phytochemical Characterization of Gratiola officinalis Extract
ID | Rt (min) | Putative Identification | Molecular Class | Formula | UV–Vis., λ Max. (nm) | ESI—Molecular Ion | ESI—Theoretical m/z | ESI—Experimental m/z | ESI—Δppm | ESI—Confirming Fragments | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.84 | Tetra-hexose | Sugars | C24H42O21 | [M+HCOOH−H+]− | 711.2195 | 711.2200 | 0.65 | 665.2137; 383.1197; 341.1084; 179.0578; 221.0678; 485.1530 | [35] | |
2 | 0.86 | Di-hexose | Sugars | C12H22O11 | [M+HCOOH−H+]− | 387.1139 | 387.1138 | −0.22 | 341.1084; 215.0318; 179.0578; 161.0464; 119.0344; 101.0243; 89.0222 | Massbank | |
2.82 | Dihydroxybenzoic acid sulfohexoside | Benzoic acids | C13H16O12S | [M−H+]− | 395.0284 | 395.0270 | −3.60 | 241.002; 96.959; 153.019; 222.991; 138.970; 109.028; 222.9906; 80.9645 | MetFrag | ||
3.03 | Dihydroxybenzoic acid hexoside | Benzoic acids | C13H16O9 | [M−H+]− | 315.0716 | 315.0725 | 2.84 | 153.0184; 109.0278; 108.0214 | Massbank | ||
4.04 | Caffeoyl-hexose isomer 1 | Hydroxycinnamic acids | C15H18O9 | [M−H+]− | 341.0873 | 341.0895 | 6.59 | 135.045; 179.036; 107.0492; 203.0383; 161.0257 | Massbank | ||
3 | 4.13 | Verbasoside (decaffeoyl-verbascoside) | PE glycoside | C20H30O12 | [M−H+]− | 461.1659 | 461.1646 | −2.80 | 135.045; 315.111; 297.099; 161.044; 113.024; 85.030 | [36] | |
4 | 4.36 | 2,5-dihydroxy-p-benzenediacetic acid | Phenols | C10H10O6 | 257 | [M−H+]− | 225.0399 | 225.0390 | −4.05 | 119.050; 207.0303; 163.0398; 107.049; 163.039; | [21] |
5 | 4.43 | Markhamioside A/Peiioside B | PE glycoside | C25H38O16 | 242, 324 | [M−H+]− | 593.2082 | 593.2104 | 3.79 | 161.0231; 447.1492; 461.1646; 135.0449; 429.1376; 153.0564 | |
4.64 | Caffeic acid glycoside | Hydroxycinnamic acids | C19H26O12 | [M−H+]− | 445.1346 | 445.1345 | −0.21 | 161.023; 133.028; 179.033; 135.045; 153.0564 | MetFrag | ||
4.68 | Caffeoyl-hexose isomer 2 | Hydroxycinnamic acids | C15H18O9 | 243, 324 | [M−H+]− | 341.0873 | 341.0858 | −4.26 | 179.036; 135.047; 161.023; 221.043; 251.056; 281.067 | [37] | |
6 | 5.13 | UI | C26H30O15 | 239, 291, 327 | [M−H+]− | 581.1506 | 581.1526 | 3.38 | 269.0665; 239.0565; 209.0468 | ||
5.31 | Caffeic acid * | Hydroxycinnamic acids | C9H8O4 | [M−H+]− | 179.0344 | 179.0359 | 8.20 | 135.0430; 133.0288 | |||
5.36 | Apigenin-C-di-hexoside | Flavone glycosides | C27H30O15 | 255, 342 | [M−H+]− | 593.1506 | 593.1506 | −0.06 | 353.0671; 383.0757; 473.1095; 297.0777; 503.1209; 325.0717 | [38] | |
7 | 5.38 | Tuberonic acid-O-hexoside | Jasmonates | C18H28O9 | [M−H+]− | 387.1655 | 387.1650 | −1.29 | 163.1130; 369.0599; 119.0344; 207.104 | [39] | |
8 | 5.43 | Luteolin-C-pentoside-C-hexoside | Flavone glycosides | C26H28O15 | 251, 337 | [M−H+]− | 579.1350 | 579.1361 | 1.92 | 399.0723; 519.1184; 489.1015; 459.1009; 369.0599 | [40] |
9 | 5.52 | UI with caffeoyl moiety | C34H44O20 | 247, 330 | [M−H+]− | 771.2348 | 771.2356 | 1.09 | 161.024; 179.034; 753.2252; 135.0449; 591.194; 661.199; 743.2308; 593.2155 | ||
10 | 5.64 | Echinacoside * | PP/PE ester glycoside | C35H46O20 | 271, 331 | [M−H+]− | 785.2504 | 785.2513 | 1.11 | 161.024; 623.219; 785.252 | |
11 | 5.69 | Apigenin-C-pentoside-C-hexoside isomer 1 | Flavone glycosides | C26H28O14 | [M−H+]− | 563.1401 | 563.1398 | −0.42 | 353.077; 383.078; 297.0777; 443.0940; 473.1140; 325.0717 | [38] | |
5.91 | Apigenin-C-pentoside-C-hexoside isomer 2 | Flavone glycosides | C26H28O14 | [M−H+]− | 563.1401 | 563.1401 | 0.05 | 353.077; 383.078; 297.0777; 443.0940; 473.1140; 325.0717 | [38] | ||
6.15 | Echinacoside isomer | PP/PE ester glycoside | C35H46O20 | [M−H+]− | 785.2504 | 785.2544 | 5.09 | 179.0359; 623.2093; 161.024; 179.035; 461.1558; 135.0449; | [41] | ||
12 | 6.23 | UI with caffeoyl moiety | C34H42O20 | [M−H+]− | 769.2191 | 769.2234 | 5.58 | 179.0359; 135.0449; 161.0231; 149.0239; 619.1891 | |||
13 | 6.31 | Arenarioside/Forsythoside B | PP/PE ester glycoside | C34H44O19 | 245, 329 | [M−H+]− | 755.2398 | 755.2416 | 2.26 | 161.0231; 593.2104; 133.0282; 179.0359; 447.1492; 461.1690; 623.2042; 575.2020; 429.1418 | [21] |
14 | 6.65 | Verbascoside * | PP/PE ester glycoside | C29H36O15 | 246, 329 | [M−H+]− | 623.1976 | 623.1988 | 1.88 | 161.026; 179.034; 461.168; 623.19 | |
15 | 6.68 | Samioside | PP/PE ester glycoside | C34H44O19 | 244, 328 | [M−H+]− | 755.2398 | 755.2400 | 0.21 | 593.2104; 161.0257; 133.0292; 135.0449; 179.0332; 447.1492; 461.1690 | [21] |
6.74 | Isorhamnetin-O-hexoside | Flavonol glycosides | C22H22O12 | [M−H+]− | 477.1033 | 477.1027 | −1.25 | 315.0527; 314.0435; 299.0231; 300.0274; 271.0276; 243.0321 | |||
6.75 | Isorhamnetin-O-hexuronide | Flavonol glycosides | C22H20O13 | [M−H+]− | 491.0826 | 491.0818 | −1.55 | 315.0527; 300.0274 | |||
16 | 6.78 | Alyssonoside | PP/PE ester glycoside | C35H46O19 | [M−H+]− | 769.2555 | 769.2588 | 4.30 | 593.2104; 175.0405; 160.0168; 193.0520; 135.0449; 447.1535; 575.2020; 461.1690; 315.1072 | [42] | |
17 | 6.89 | UI with caffeoyl moiety | C36H46O20 | 244, 329 | [M−H+]− | 797.2504 | 797.2537 | 4.13 | 179.0359; 161.0257; 135.0449; 619.1891; 635.2241 | ||
18 | 6.94 | Verbascoside isomer 1 (isoverbascoside) | PP/PE ester glycoside | C29H36O15 | 244, 326 | [M−H+]− | 623.1976 | 623.1990 | 2.27 | 161.024; 179.034; 461.164 | [21] |
19 | 7.00 | Verbascoside isomer 2 | PP/PE ester glycoside | C29H36O15 | 244, 326 | [M−H+]− | 623.1976 | 623.1990 | 2.27 | 161.024; 179.034; 461.164 | [42] |
20 | 7.17 | UI with caffeoyl moiety | C36H48O20 | 247, 296, 327 | [M−H+]− | 799.2661 | 799.2662 | 0.18 | 161.0231; 637.2377; 608.1956; 179.0359; 133.0282 | ||
7.31 | Leucosceptoside A | PP/PE ester glycoside | C30H38O15 | [M−H+]− | 637.2132 | 637.2119 | −2.10 | 175.0405; 461.1690; 315.1108; 193.0491; 160.0168 | [43,44] | ||
21 | 7.35 | Acetyl-verbascoside | PP/PE ester glycoside | C31H38O16 | [M−H+]− | 665.2082 | 665.2085 | 0.53 | 161.026; 179.034; 461.168; 623.1991 | ||
22 | 7.48 | Methoxyapigenin-O-hexuronide | Flavone glycosides | C22H20O12 | 250, 344 | [M−H+]− | 475.0876 | 475.0871 | −1.08 | 284.0326; 299.0567 | |
23 | 7.62 | Tuberonic acid-(caffeoyl)-O-hexoside | Jasmonates | C27H34O12 | [M−H+]− | 549.1972 | 549.1990 | 3.29 | 387.1690; 161.0257; 207.1039; 133.0305 | ||
24 | 7.82 | Dihydrodehydrodiconiferyl alcohol-9′-O-sulfate | Neolignan | C20H24O9S | [M−H+]− | 439.1063 | 439.1071 | 1.88 | 96.9695; 269.0833; 314.1160; 299.9550; 79.9566 | MetFrag; [45] | |
25 | 8.17 | Martynoside | PP/PE ester glycoside | C31H40O15 | 246, 330 | [M−H+]− | 651.2289 | 651.2290 | 0.18 | 175.0405; 475.1821; 329.1217; 315.0527; 193.0520; 160.0168; | [42] |
26 | 8.25 | UI | C23H40O9 | [M+HCOOH−H+]− | 505.2649 | 505.2628 | −4.10 | 459.2588; 417.2505; 399.2400; 161.0257 | |||
27 | 8.37 | Cucurbitacin I-2-O-glucoside | Cucurbitane-triterpene glycoside | C36H52O12 | 244 | [M+HCOOH−H+]− | 721.3435 | 721.3454 | 2.60 | 495.272; 513.286; 675.338 | [46] |
28 | 8.94 | 16-hydroxygratiogenin-3-O-(apiosyl)-glucoside-25-O-glucoside | Cucurbitane-triterpene glycoside | C47H76O19 | [M+HCOOH−H+]− | 989.4957 | 989.5006 | 4.97 | 943.494; 811.448; 649.396; 487.3421 | [24] | |
29 | 9.19 | C30H46O6-O-hexoside | Triterpenoid | C36H56O11 | [M+HCOOH−H+]− | 709.3799 | 709.3783 | −2.25 | 663.3777; 501.3227; 163.0764 | ||
30 | 9.43 | UI | C36H60O10 | [M+HCOOH−H+]− | 697.4163 | 697.4187 | 3.47 | nf | |||
31 | 9.52 | C30H50O5-O-(pentosyl)-hexoside | Triterpenoid | C41H68O14 | [M+HCOOH−H+]− | 829.4585 | 829.4623 | 4.51 | 783.458; 651.413; 489.359 | ||
32 | 9.74 | Gratiogenin-3-O-(glucosyl)-glucoside-25-O-glucoside | Cucurbitane-triterpene glycoside | C48H78O19 | [M+HCOOH−H+]− | 1003.5114 | 1003.5098 | −1.55 | 957.5112; 795.4572; 633.4042; 471.3524 | [24] | |
33 | 9.98 | Gratiogenin-3-O-(glucosyl)-glucoside-25-O-glucoside acetylated derivative | Cucurbitane-triterpene glycoside | C51H80O22 | [M−H+]− | 1043.5063 | 1043.5071 | 0.79 | 999.5259; 957.5112; 939.5005; 795.4572; 777.4499; 633.4042; 471.3524 | ||
34 | 10.00 | Cucurbitacin E-2-O-glucoside (elaterinide/gratiotoxin) | Cucurbitane-triterpene glycoside | C38H54O13 | 240 | [M+HCOOH−H+]− | 763.3541 | 763.3562 | 2.82 | 495.275; 657.329; 717.351; 615.3190; 699.3390; 537.2862; 477.2637 | [46] |
35 | 10.14 | 16-hydroxygratiogenin-3-O-(apiosyl)-glucoside | Cucurbitane-triterpene glycoside | C41H66O14 | [M+HCOOH−H+]− | 827.4429 | 827.4445 | 1.96 | 781.443; 649.398; 487.343 | [24] | |
36 | 10.21 | Cucurbitacin B-2-O-glucoside | Cucurbitane-triterpene glycoside | C38H56O13 | 252 | [M+HCOOH−H+]− | 765.3697 | 765.3716 | 2.42 | 497.283; 659.45; 701.353; 719.370; 557.3116 | |
37 | 10.46 | Cucurbitacin S-2-O-glucoside | Cucurbitane-triterpene glycoside | C36H52O11 | 254 | [M+HCOOH−H+]− | 705.3486 | 705.3500 | 2.01 | † ESI+: 349.1261] | [46] |
38 | 10.55 | Gratioside (gratiogenin-3-O-glucoside-25-O-glucoside) | Cucurbitane-triterpene glycoside | C42H68O14 | [M+HCOOH−H+]− | 841.4585 | 841.4603 | 2.14 | 795.4572; 633.4042; 471.3524 | [24] | |
39 | 10.68 | Gratiogenin-3-O-(apiosyl)-glucoside-25-O-glucoside | Cucurbitane-triterpene glycoside | C47H76O18 | [M+HCOOH−H+]− | 973.5008 | 973.5035 | 2.82 | 927.501; 795.4572; 633.4042; 471.3524 | [24] | |
10.93 | Cucurbitacin I | Cucurbitane-triterpene glycoside | C30H42O7 | [M+HCOOH−H+]− | 559.2907 | 559.2898 | −1.60 | 513.2865; 497.2931 | |||
40 | 11.02 | Gratioside acetylated derivative | Cucurbitane-triterpene glycoside | C45H70O17 | [M−H+]− | 881.4535 | 881.4554 | 2.21 | 777.449; 795.454; 837.468; 633.4042; 471.3436 | ||
41 | 11.20 | Gratiogenin-3-O-(apiosyl)-glucoside-25-O-glucoside acetylated derivative | Cucurbitane-triterpene glycoside | C50H78O21 | 252 | [M−H+]− | 1013.4957 | 1013.5010 | 5.22 | 777.448; 795.459; 909.494; 927.502; 969.515; 471.3524 | |
42 | 11.24 | C30H44O5-di-O-hexoside | Triterpenoid | C42H64O15 | [M+HCOOH−H+]− | 853.4222 | 853.4229 | 0.87 | 807.4176; 645.3656; 483.3107 | ||
43 | 11.39 | Gratioside diacetylated derivative | Cucurbitane-triterpene glycoside | C48H72O20 | [M−H+]− | 967.4538 | 967.4559 | 2.12 | 879.477; 777.449; 759.436; 795.459; 837.472; 923.472; 819.4574; 633.404; 471.352 | ||
11.55 | C30H44O5-di-O-hexoside acetylated derivative | Triterpenoid | C38H70O23 | [M−H+]− | 893.4229 | 893.4192 | −4.19 | 849.4329; 807.4176; 789.4069; 645.3656; 644.3572; 163.0790 | |||
44 | 12.63 | Cucurbitacin E | Cucurbitane-triterpene glycoside | C32H44O8 | [M+HCOOH−H+]− | 601.3013 | 601.2994 | −3.09 | 555.2984; 495.2776; 477.2682; 409.2032 | [47] | |
12.79 | Cucurbitacin S | Cucurbitane-triterpene glycoside | C30H42O6 | [M−H+]− | 497.2903 | 497.2931 | 5.63 | † ESI+: 481.2943; 463.2869; 317.2160] | [46] | ||
45 | 12.81 | Cucurbitacin B | Cucurbitane-triterpene glycoside | C32H46O8 | [M+HCOOH−H+]− | 603.3169 | 603.3190 | 3.47 | 557.3116; 479.2826; 497.2885; 539.3046; 339.1982; 163.0764 | [47] | |
46 | 15.81 | Betulinic acid * | Lupane-type triterpenic acid | C30H48O3 | [M−H+]− | 455.3525 | 455.3542 | 3.73 | nf | [48] |
2.2. G. officinalis Extract Triggers Apoptosis in Colorectal Cancer Cells, Without Affecting Healthy Colon Cells
2.3. G. officinalis Extract Shows an Antiproliferative Effect on E705 Cells and Leads SW480 Cells to Cell Cycle Arrest in the G2/M Phase
2.4. G. officinalis Extract Promotes Glycolysis Downregulation, Reducing the Expression of Warburg Effect Markers in E705 Cells
3. Materials and Methods
3.1. Cell Cultures
3.2. Plant Material and Extract Preparation
3.3. Phytochemical Profiling of G. officinalis Extract
3.4. Viability Assay
3.5. SDS-PAGE and Western Blotting
3.6. Annexin V-FITC Assay for Apoptosis
3.7. Cell Cycle Analysis
3.8. ATP Production and Glycolytic Rate Measurements
3.9. Enzyme Activity Assay
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polukonova, N.; Navolokin, N.; Raĭkova, S.; Masliakova, G.; Bucharskaia, A.; Durnova, N.; Shub, G. AntI-Inflammatory, Antipyretic and Antimicrobial Activity of Flavonoid-Containing Extract of Gratiola officinalis L. Eksp. Klin. Farmakol. 2015, 78, 34–38. [Google Scholar]
- Petran, M.; Dragos, D.; Gilca, M. Historical Ethnobotanical Review of Medicinal Plants Used to Treat Children Diseases in Romania (1860s–1970s). J. Ethnobiol. Ethnomed. 2020, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Slapšytė, G.; Dedonytė, V.; Adomėnienė, A.; Lazutka, J.R.; Kazlauskaitė, J.; Ragažinskienė, O.; Venskutonis, P.R. Genotoxic Properties of Betonica Officinalis, Gratiola officinalis, Vincetoxicum Luteum and Vincetoxicum Hirundinaria Extracts. Food Chem. Toxicol. 2019, 134, 110815. [Google Scholar] [CrossRef] [PubMed]
- Navolokin, N.; Lomova, M.; Bucharskaya, A.; Godage, O.; Polukonova, N.; Shirokov, A.; Grinev, V.; Maslyakova, G. Antitumor Effects of Microencapsulated Gratiola officinalis Extract on Breast Carcinoma and Human Cervical Cancer Cells In Vitro. Materials 2023, 16, 1470. [Google Scholar] [CrossRef]
- Polukonova, N.V.; Navolokin, N.A.; Baryshnikova, M.A.; Maslyakova, G.N.; Bucharskaya, A.B.; Polukonova, A.V. Examining Apoptotic Activity of Gratiola officinalis L. (Scrophulariaceae) Extract On Cultured Human Tumor Cell Lines. Russ. Open Med. J. 2022, 11, 415. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health Benefits of Polyphenols: A Concise Review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Sammarco, G.; Gallo, G.; Vescio, G.; Picciariello, A.; De Paola, G.; Trompetto, M.; Currò, G.; Ammendola, M. Mast Cells, MicroRNAs and Others: The Role of Translational Research on Colorectal Cancer in the Forthcoming Era of Precision Medicine. J. Clin. Med. 2020, 9, 2852. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Mathai, M.; Zulli, A. A Synopsis of Modern—Day Colorectal Cancer: Where We Stand. Biochim. Biophys. Acta (BBA) Rev. Cancer 2022, 1877, 188699. [Google Scholar] [CrossRef]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal Cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef]
- Pearlman, R.; Frankel, W.L.; Swanson, B.; Zhao, W.; Yilmaz, A.; Miller, K.; Bacher, J.; Bigley, C.; Nelsen, L.; Goodfellow, P.J.; et al. Prevalence and Spectrum of Germline Cancer Susceptibility Gene Mutations Among Patients With Early-Onset Colorectal Cancer. JAMA Oncol. 2017, 3, 464–471. [Google Scholar] [CrossRef]
- Stoffel, E.M.; Koeppe, E.; Everett, J.; Ulintz, P.; Kiel, M.; Osborne, J.; Williams, L.; Hanson, K.; Gruber, S.B.; Rozek, L.S. Germline Genetic Features of Young Individuals With Colorectal Cancer. Gastroenterology 2018, 154, 897–905.e1. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Hanna, M.H. Colorectal Cancer in Young Adults. J. Surg. Oncol. 2023, 127, 1247–1251. [Google Scholar] [CrossRef]
- Byndloss, M.X.; Olsan, E.E.; Rivera-Chávez, F.; Tiffany, C.R.; Cevallos, S.A.; Lokken, K.L.; Torres, T.P.; Byndloss, A.J.; Faber, F.; Gao, Y.; et al. Microbiota-Activated PPAR-γ Signaling Inhibits Dysbiotic Enterobacteriaceae Expansion. Science 2017, 357, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Cevallos, S.A.; Byndloss, M.X.; Tiffany, C.R.; Olsan, E.E.; Butler, B.P.; Young, B.M.; Rogers, A.W.L.; Nguyen, H.; Kim, K.; et al. High-Fat Diet and Antibiotics Cooperatively Impair Mitochondrial Bioenergetics to Trigger Dysbiosis That Exacerbates Pre-Inflammatory Bowel Disease. Cell Host Microbe 2020, 28, 273–284.e6. [Google Scholar] [CrossRef]
- McCullough, M.L.; Zoltick, E.S.; Weinstein, S.J.; Fedirko, V.; Wang, M.; Cook, N.R.; Eliassen, A.H.; Zeleniuch-Jacquotte, A.; Agnoli, C.; Albanes, D.; et al. Circulating Vitamin D and Colorectal Cancer Risk: An International Pooling Project of 17 Cohorts. J. Natl. Cancer Inst. 2019, 111, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Thanikachalam, K.; Khan, G. Colorectal Cancer and Nutrition. Nutrients 2019, 11, 164. [Google Scholar] [CrossRef]
- Masci, D.; Puxeddu, M.; Silvestri, R.; La Regina, G. Metabolic Rewiring in Cancer: Small Molecule Inhibitors in Colorectal Cancer Therapy. Molecules 2024, 29, 2110. [Google Scholar] [CrossRef]
- Ríos-Hoyo, A.; Monzonís, X.; Vidal, J.; Linares, J.; Montagut, C. Unveiling Acquired Resistance to Anti-EGFR Therapies in Colorectal Cancer: A Long and Winding Road. Front. Pharmacol. 2024, 15, 1398419. [Google Scholar] [CrossRef]
- Esmeeta, A.; Adhikary, S.; Dharshnaa, V.; Swarnamughi, P.; Ummul Maqsummiya, Z.; Banerjee, A.; Pathak, S.; Duttaroy, A.K. Plant-Derived Bioactive Compounds in Colon Cancer Treatment: An Updated Review. Biomed. Pharmacother. 2022, 153, 113384. [Google Scholar] [CrossRef]
- Feng, Y.; Lu, J.; Jiang, J.; Wang, M.; Guo, K.; Lin, S. Berberine: Potential Preventive and Therapeutic Strategies for Human Colorectal Cancer. Cell Biochem. Funct. 2024, 42, e4033. [Google Scholar] [CrossRef]
- Šliumpaite, I.; Venskutonis, P.R.; Murkovic, M.; Pukalskas, A. Antioxidant Properties and Polyphenolics Composition of Common Hedge Hyssop (Gratiola officinalis L.). J. Funct. Foods 2013, 5, 1927–1937. [Google Scholar] [CrossRef]
- Plamada, D.; Vodnar, D.C. Polyphenols—Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients 2021, 14, 137. [Google Scholar] [CrossRef] [PubMed]
- Fabbrini, M.; D’Amico, F.; Barone, M.; Conti, G.; Mengoli, M.; Brigidi, P.; Turroni, S. Polyphenol and Tannin Nutraceuticals and Their Metabolites: How the Human Gut Microbiota Influences Their Properties. Biomolecules 2022, 12, 875. [Google Scholar] [CrossRef]
- Rothenburger, J.; Haslinger, E. New Cucurbitacine Glycosides from Gratiola officinalis L. Monatshefte Chem. Chem. Mon. 1995, 126, 1331–1339. [Google Scholar] [CrossRef]
- Sturm, S.; Stuppner, H. Analysis of Cucurbitacins in Medicinal Plants by High-Pressure Liquid Chromatography–Mass Spectrometry. Phytochem. Anal. 2000, 11, 121–127. [Google Scholar] [CrossRef]
- Frezza, C.; Venditti, A.; Bianco, A.; Serafini, M.; Pitorri, M.; Sciubba, F.; Di Cocco, M.E.; Spinozzi, E.; Cappellacci, L.; Hofer, A.; et al. Phytochemical Analysis and Trypanocidal Activity of Marrubium Incanum Desr. Molecules 2020, 25, 3140. [Google Scholar] [CrossRef]
- Sena Filho, J.G.; Nimmo, S.L.; Xavier, H.S.; Barbosa-Filho, J.M.; Cichewicz, R.H. Phenylethanoid and Lignan Glycosides from Polar Extracts of Lantana, a Genus of Verbenaceous Plants Widely Used in Traditional Herbal Therapies. J. Nat. Prod. 2009, 72, 1344–1347. [Google Scholar] [CrossRef]
- Daneshforouz, A.; Nazemi, S.; Gholami, O.; Kafami, M.; Amin, B. The Cytotoxicity and Apoptotic Effects of Verbascoside on Breast Cancer 4T1 Cell Line. BMC Pharmacol. Toxicol. 2021, 22, 72. [Google Scholar] [CrossRef]
- Seyfi, D.; Behzad, S.B.; Nabiuni, M.; Parivar, K.; Tahmaseb, M.; Amini, E. Verbascoside Attenuates Rac-1 and HIF-1α Signaling Cascade in Colorectal Cancer Cells. Anticancer Agents Med. Chem. 2019, 18, 2149–2155. [Google Scholar] [CrossRef]
- Attia, Y.M.; El-Kersh, D.M.; Wagdy, H.A.; Elmazar, M.M. Verbascoside: Identification, Quantification, and Potential Sensitization of Colorectal Cancer Cells to 5-FU by Targeting PI3K/AKT Pathway. Sci. Rep. 2018, 8, 16939. [Google Scholar] [CrossRef]
- Sari, C.; Sümer, C.; Eyüpoğlu, F.C. Caffeic Acid Phenethyl Ester Induces Apoptosis in Colorectal Cancer Cells via Inhibition of Survivin. Turk. J. Biol. 2020, 44, 264–274. [Google Scholar] [CrossRef] [PubMed]
- El-Gogary, R.I.; Nasr, M.; Rahsed, L.A.; Hamzawy, M.A. Ferulic Acid Nanocapsules as a Promising Treatment Modality for Colorectal Cancer: Preparation and in Vitro/in Vivo Appraisal. Life Sci. 2022, 298, 120500. [Google Scholar] [CrossRef] [PubMed]
- Abdelmaksoud, N.M.; Abulsoud, A.I.; Abdelghany, T.M.; Elshaer, S.S.; Samaha, A.; Maurice, N.W.; Rizk, S.M.; Senousy, M.A. Targeting the SIRT3/MnSOD and JNK/HMGB1/Beclin 1 Axes: Role of Apigenin in Multifaceted Metabolic Intervention in Colorectal Cancer. J. Biochem. Mol. Toxicol. 2025, 39, e70095. [Google Scholar] [CrossRef]
- Polukonova, N.V.; Navolokin, N.A.; Bucharskaya, A.B.; Mudrak, D.A.; Baryshnikova, M.A.; Stepanova, E.V.; Solomko, E.S.; Polukonova, A.V.; Maslyakova, G.N. The Apoptotic Activity of Flavonoid-Containing Gratiola officinalis Extract in Cell Cultures of Human Kidney Cancer. Russ. Open Med. J. 2018, 7, e0402. [Google Scholar] [CrossRef]
- Song, J.; Liu, Y.; Yin, X.; Nan, Y.; Shi, Y.; Chen, X.; Liang, H.; Zhang, J.; Ma, B. Isolation and Structural Elucidation of Prebiotic Oligosaccharides from Ziziphi Spinosae Semen. Carbohydr. Res. 2023, 534, 108948. [Google Scholar] [CrossRef]
- Peixoto, J.A.B.; Álvarez-Rivera, G.; Costa, A.S.G.; Machado, S.; Cifuentes, A.; Ibáñez, E.; Oliveira, M.B.P.P.; Alves, R.C. Contribution of Phenolics and Free Amino Acids on the Antioxidant Profile of Commercial Lemon Verbena Infusions. Antioxidants 2023, 12, 251. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-N.; Sun, J.; Shi, H.; Yu, L.; Ridge, C.D.; Mazzola, E.P.; Okunji, C.; Iwu, M.M.; Michel, T.K.; Chen, P. Profiling Hydroxycinnamic Acid Glycosides, Iridoid Glycosides, and Phenylethanoid Glycosides in Baobab Fruit Pulp (Adansonia digitata). Food Res. Int. 2017, 99, 755–761. [Google Scholar] [CrossRef]
- Cao, J.; Yin, C.; Qin, Y.; Cheng, Z.; Chen, D. Approach to the Study of Flavone Di-C-glycosides by High Performance Liquid Chromatography-tandem Ion Trap Mass Spectrometry and Its Application to Characterization of Flavonoid Composition in Viola Yedoensis. J. Mass Spectrom. 2014, 49, 1010–1024. [Google Scholar] [CrossRef]
- Formato, M.; Piccolella, S.; Zidorn, C.; Pacifico, S. UHPLC-HRMS Analysis of Fagus Sylvatica (Fagaceae) Leaves: A Renewable Source of Antioxidant Polyphenols. Antioxidants 2021, 10, 1140. [Google Scholar] [CrossRef]
- Pereira-Caro, G.; Cros, G.; Yokota, T.; Crozier, A. Phytochemical Profiles of Black, Red, Brown, and White Rice from the Camargue Region of France. J. Agric. Food Chem. 2013, 61, 7976–7986. [Google Scholar] [CrossRef]
- Friščić, M.; Bucar, F.; Hazler Pilepić, K. LC-PDA-ESI-MSn Analysis of Phenolic and Iridoid Compounds from Globularia Spp. J. Mass Spectrom. 2016, 51, 1211–1236. [Google Scholar] [CrossRef]
- Kırmızıbekmez, H.; Montoro, P.; Piacente, S.; Pizza, C.; Dönmez, A.; Çalış, İ. Identification by HPLC-PAD-MS and Quantification by HPLC-PAD of Phenylethanoid Glycosides of Five Phlomis Species. Phytochem. Anal. 2005, 16, 1–6. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Z.; Song, F.; Xing, J.; Zheng, Z.; Liu, S. A Strategy for Identification and Structural Characterization of Compounds from Plantago asiatica L. by Liquid Chromatography-Mass Spectrometry Combined with Ion Mobility Spectrometry. Molecules 2022, 27, 4302. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Zengin, G.; Segura-Carretero, A.; Lobine, D.; Mahomoodally, M.F. Chemical Fingerprint and Bioactivity Evaluation of Globularia orientalis L. and Globularia trichosantha Fisch. & C. A. Mey. Using Non-targeted HPLC-ESI-QTOF-MS Approach. Phytochem. Anal. 2019, 30, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, H.; Hirata, E.; Shinzato, T.; Takeda, Y. Isolation of Lignan Glucosides and Neolignan Sulfate from the Leaves of Glochidion zeylanicum (Gaertn) A. Juss. Chem. Pharm. Bull. 2000, 48, 1084–1086. [Google Scholar] [CrossRef] [PubMed]
- Haq, F.U.; Ali, A.; Khan, M.N.; Shah, S.M.Z.; Kandel, R.C.; Aziz, N.; Adhikari, A.; Choudhary, M.I.; ur-Rahman, A.; El-Seedi, H.R.; et al. Metabolite Profiling and Quantitation of Cucurbitacins in Cucurbitaceae Plants by Liquid Chromatography Coupled to Tandem Mass Spectrometry. Sci. Rep. 2019, 9, 15992. [Google Scholar] [CrossRef]
- Hu, G.; Liu, W.; Li, L. Identification and Quantification of Cucurbitacin in Watermelon Frost Using Molecular Networking Integrated with Ultra-high-performance Liquid Chromatography-tandem Mass Spectrometry. J. Sep. Sci. 2023, 46, e2300019. [Google Scholar] [CrossRef] [PubMed]
- Ali, L.; Rizvi, T.S.; Ahmad, M.; Shaheen, F. New Iridoid Glycoside from Gratiola officinalis. J. Asian Nat. Prod. Res. 2012, 14, 1191–1195. [Google Scholar] [CrossRef]
- Hatok, J.; Racay, P. Bcl-2 Family Proteins: Master Regulators of Cell Survival. Biomol. Concepts 2016, 7, 259–270. [Google Scholar] [CrossRef]
- Uribe, M.L.; Marrocco, I.; Yarden, Y. EGFR in Cancer: Signaling Mechanisms, Drugs, and Acquired Resistance. Cancers 2021, 13, 2748. [Google Scholar] [CrossRef]
- Chambard, J.C.; Lefloch, R.; Pouysségur, J.; Lenormand, P. ERK Implication in Cell Cycle Regulation. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2007, 1773, 1299–1310. [Google Scholar] [CrossRef]
- Lv, C.; Hong, Y.; Miao, L.; Li, C.; Xu, G.; Wei, S.; Wang, B.; Huang, C.; Jiao, B. Wentilactone A as a Novel Potential Antitumor Agent Induces Apoptosis and G2/M Arrest of Human Lung Carcinoma Cells, and Is Mediated by HRas-GTP Accumulation to Excessively Activate the Ras/Raf/ERK/P53-P21 Pathway. Cell Death Dis. 2013, 4, e952. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Sánchez, R.; Marín-Hernández, A.; Saavedra, E.; Pardo, J.P.; Ralph, S.J.; Rodríguez-Enríquez, S. Who Controls the ATP Supply in Cancer Cells? Biochemistry Lessons to Understand Cancer Energy Metabolism. Int. J. Biochem. Cell Biol. 2014, 50, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Abbaszadeh, Z.; Çeşmeli, S.; Biray Avcı, Ç. Crucial Players in Glycolysis: Cancer Progress. Gene 2020, 726, 144158. [Google Scholar] [CrossRef]
- De Soricellis, G.; Rinaldi, F.; Tengattini, S.; Temporini, C.; Negri, S.; Capelli, D.; Montanari, R.; Cena, H.; Salerno, S.; Massolini, G.; et al. Development of an Analytical Platform for the Affinity Screening of Natural Extracts by SEC-MS towards PPARα and PPARγ Receptors. Anal. Chim. Acta 2024, 1309, 342666. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of Protein Using Bicinchoninic Acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bergmeyer, H.U. Enzymes as Biochemical Reagents. Methods Enzym. Anal. 1974, 1, 473–474. [Google Scholar]
- Ali, S.; El-Ahmady, S.; Ayoub, N.; Singab, A. Phytochemicals of Markhamia Species (Bignoniaceae) and Their Therapeutic Value: A Review. Eur. J. Med. Plants 2015, 6, 124–142. [Google Scholar] [CrossRef]
- Rothenburger, J.; Haslinger, E. Caffeic Acid Glycoside Esters from Gratiola officinalis L. Liebigs Ann. Chem. 1994, 1994, 1113–1115. [Google Scholar] [CrossRef]
- Wu, A.-Z.; Zhai, Y.-J.; Zhao, Z.-X.; Zhang, C.-X.; Lin, C.-Z.; Zhu, C.-C. Phenylethanoid glycosides from the stems of Callicarpa peii (hemostatic drug). Fitoterapia 2013, 84, 237–241. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchini, S.; Bovio, F.; Negri, S.; Guzzo, F.; Forcella, M.; Fusi, P. Gratiola officinalis Alcoholic Extract Targets Warburg Effect, Apoptosis and Cell Cycle Progression in Colorectal Cancer Cell Lines. Int. J. Mol. Sci. 2025, 26, 2220. https://doi.org/10.3390/ijms26052220
Bianchini S, Bovio F, Negri S, Guzzo F, Forcella M, Fusi P. Gratiola officinalis Alcoholic Extract Targets Warburg Effect, Apoptosis and Cell Cycle Progression in Colorectal Cancer Cell Lines. International Journal of Molecular Sciences. 2025; 26(5):2220. https://doi.org/10.3390/ijms26052220
Chicago/Turabian StyleBianchini, Stefano, Federica Bovio, Stefano Negri, Flavia Guzzo, Matilde Forcella, and Paola Fusi. 2025. "Gratiola officinalis Alcoholic Extract Targets Warburg Effect, Apoptosis and Cell Cycle Progression in Colorectal Cancer Cell Lines" International Journal of Molecular Sciences 26, no. 5: 2220. https://doi.org/10.3390/ijms26052220
APA StyleBianchini, S., Bovio, F., Negri, S., Guzzo, F., Forcella, M., & Fusi, P. (2025). Gratiola officinalis Alcoholic Extract Targets Warburg Effect, Apoptosis and Cell Cycle Progression in Colorectal Cancer Cell Lines. International Journal of Molecular Sciences, 26(5), 2220. https://doi.org/10.3390/ijms26052220