Anti-Inflammatory Effects of SGLT2 Inhibitors: Focus on Macrophages
Abstract
1. Introduction
2. Macrophages in Diabetes-Related Inflammation
3. Effects of SGLT2 Inhibitors on Inflammatory Markers in Patients with Diabetes
4. Anti-Inflammatory Effects of SGLT2 Inhibitors in Animal Models
5. Effects of SGLT2 Inhibitors on Macrophages In Vitro
6. Molecular Mechanisms of the Anti-Inflammatory Effect of SGLT2 Inhibitors
6.1. Inflammasome Activity
6.2. Signaling Pathways in Macrophages Affected by SGLT2 Inhibitors
6.3. SGLT2 Control Metabolic Inflammation in Multiple Cell Types
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magliano, D.J.; Boyko, E.J. IDF Diabetes Atlas 10th edition scientific committee IDF DIABETES ATLAS. In IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; ISBN 978-2-930229-98-0. [Google Scholar]
- Yamada, T.; Wakabayashi, M.; Bhalla, A.; Chopra, N.; Miyashita, H.; Mikami, T.; Ueyama, H.; Fujisaki, T.; Saigusa, Y.; Yamaji, T.; et al. Cardiovascular and Renal Outcomes with SGLT-2 Inhibitors versus GLP-1 Receptor Agonists in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease: A Systematic Review and Network Meta-Analysis. Cardiovasc. Diabetol. 2021, 20, 14. [Google Scholar] [CrossRef] [PubMed]
- Mannino, G.C.; Andreozzi, F.; Sesti, G. Pharmacogenetics of Type 2 Diabetes Mellitus, the Route toward Tailored Medicine. Diabetes Metab. Res. Rev. 2019, 35, e3109. [Google Scholar] [CrossRef]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef] [PubMed]
- Marx, N.; Davies, M.J.; Grant, P.J.; Mathieu, C.; Petrie, J.R.; Cosentino, F.; Buse, J.B. Guideline Recommendations and the Positioning of Newer Drugs in Type 2 Diabetes Care. Lancet Diabetes Endocrinol. 2021, 9, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Pramanik, S.; Khare, V.R.; Fernandez, C.J.; Pappachan, J.M. Sodium Glucose Cotransporter-2 Inhibitors and Heart Disease: Current Perspectives. World J. Cardiol. 2024, 16, 240–259. [Google Scholar] [CrossRef] [PubMed]
- Gajewska, A.; Wasiak, J.; Sapeda, N.; Młynarska, E.; Rysz, J.; Franczyk, B. SGLT2 Inhibitors in Kidney Diseases-A Narrative Review. Int. J. Mol. Sci. 2024, 25, 4959. [Google Scholar] [CrossRef] [PubMed]
- Mosenzon, O.; Del Prato, S.; Schechter, M.; Leiter, L.A.; Ceriello, A.; DeFronzo, R.A.; Raz, I. From Glucose Lowering Agents to Disease/Diabetes Modifying Drugs: A “SIMPLE” Approach for the Treatment of Type 2 Diabetes. Cardiovasc. Diabetol. 2021, 20, 92. [Google Scholar] [CrossRef]
- Tian, L.; Cai, Y.; Zheng, H.; Ai, S.; Zhou, M.; Luo, Q.; Tang, J.; Liu, W.; Wang, Y. Canagliflozin for Prevention of Cardiovascular and Renal Outcomes in Type2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Pharmacol. 2021, 12, 691878. [Google Scholar] [CrossRef]
- Andreea, M.M.; Surabhi, S.; Razvan-Ionut, P.; Lucia, C.; Camelia, N.; Emil, T.; Tiberiu, N.I. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Harms or Unexpected Benefits? Medicina 2023, 59, 742. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, D.V.; Lam, C.S.P.; McMurray, J.J.V.; Yi, T.W.; Hocking, S.; Dawson, J.; Raichand, S.; Januszewski, A.S.; Jardine, M.J. Applications of SGLT2 Inhibitors beyond Glycaemic Control. Nat. Rev. Nephrol. 2024, 20, 513–529. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Jongs, N.; Chertow, G.M.; Langkilde, A.M.; McMurray, J.J.V.; Correa-Rotter, R.; Rossing, P.; Sjöström, C.D.; Stefansson, B.V.; Toto, R.D.; et al. Effect of Dapagliflozin on the Rate of Decline in Kidney Function in Patients with Chronic Kidney Disease with and without Type 2 Diabetes: A Prespecified Analysis from the DAPA-CKD Trial. Lancet Diabetes Endocrinol. 2021, 9, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner-La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Lopaschuk, G.D.; Verma, S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic. Transl. Sci. 2020, 5, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Feijóo-Bandín, S.; Aragón-Herrera, A.; Otero-Santiago, M.; Anido-Varela, L.; Moraña-Fernández, S.; Tarazón, E.; Roselló-Lletí, E.; Portolés, M.; Gualillo, O.; González-Juanatey, J.R.; et al. Role of Sodium-Glucose Co-Transporter 2 Inhibitors in the Regulation of Inflammatory Processes in Animal Models. Int. J. Mol. Sci. 2022, 23, 5634. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, Q.; Lu, X.; Fan, R.; Tong, N. Research Advances in the Anti-Inflammatory Effects of SGLT Inhibitors in Type 2 Diabetes Mellitus. Diabetol. Metab. Syndr. 2024, 16, 99. [Google Scholar] [CrossRef] [PubMed]
- Mashayekhi, M.; Safa, B.I.; Gonzalez, M.S.C.; Kim, S.F.; Echouffo-Tcheugui, J.B. Systemic and Organ-Specific Anti-Inflammatory Effects of Sodium-Glucose Cotransporter-2 Inhibitors. Trends Endocrinol. Metab. 2024, 35, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.-A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. 2019, 14, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Niknejad, A.; Hosseini, Y.; Shamsnia, H.S.; Kashani, A.S.; Rostamian, F.; Momtaz, S.; Abdolghaffari, A.H. Sodium Glucose Transporter-2 Inhibitors (SGLT2Is)-TLRs Axis Modulates Diabetes. Cell Biochem. Biophys. 2023, 81, 599–613. [Google Scholar] [CrossRef] [PubMed]
- Balogh, D.B.; Wagner, L.J.; Fekete, A. An Overview of the Cardioprotective Effects of Novel Antidiabetic Classes: Focus on Inflammation, Oxidative Stress, and Fibrosis. Int. J. Mol. Sci. 2023, 24, 7789. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Biswas, S.K.; Galdiero, M.R.; Sica, A.; Locati, M. Macrophage Plasticity and Polarization in Tissue Repair and Remodelling. J. Pathol. 2013, 229, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Li, X.; Liu, N.; He, J.C.; Zhong, Y. Relationship between Macrophages and Tissue Microenvironments in Diabetic Kidneys. Biomedicines 2023, 11, 1889. [Google Scholar] [CrossRef] [PubMed]
- Martinez, F.O.; Gordon, S. The M1 and M2 Paradigm of Macrophage Activation: Time for Reassessment. F1000Prime Rep. 2014, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Mossel, D.M.; Moganti, K.; Riabov, V.; Weiss, C.; Kopf, S.; Cordero, J.; Dobreva, G.; Rots, M.G.; Klüter, H.; Harmsen, M.C.; et al. Epigenetic Regulation of S100A9 and S100A12 Expression in Monocyte-Macrophage System in Hyperglycemic Conditions. Front. Immunol. 2020, 11, 1071. [Google Scholar] [CrossRef]
- Tan, F.; Cao, Y.; Zheng, L.; Wang, T.; Zhao, S.; Chen, J.; Pang, C.; Xia, W.; Xia, Z.; Li, N.; et al. Diabetes Exacerbated Sepsis-Induced Intestinal Injury by Promoting M1 Macrophage Polarization via miR-3061/Snail1 Signaling. Front. Immunol. 2022, 13, 922614. [Google Scholar] [CrossRef]
- Fu, J.; Sun, Z.; Wang, X.; Zhang, T.; Yuan, W.; Salem, F.; Yu, S.M.-W.; Zhang, W.; Lee, K.; He, J.C. The Single-Cell Landscape of Kidney Immune Cells Reveals Transcriptional Heterogeneity in Early Diabetic Kidney Disease. Kidney Int. 2022, 102, 1291–1304. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Ruiz-Velasco, A.; Raja, R.; Howell, G.; Miller, J.M.; Abouleisa, R.R.E.; Ou, Q.; Mace, K.; Hille, S.S.; Frey, N.; et al. Paracrine Signal Emanating from Stressed Cardiomyocytes Aggravates Inflammatory Microenvironment in Diabetic Cardiomyopathy. iScience 2022, 25, 103973. [Google Scholar] [CrossRef] [PubMed]
- Gohari, S.; Ismail-Beigi, F.; Mahjani, M.; Ghobadi, S.; Jafari, A.; Ahangar, H.; Gohari, S. The Effect of Sodium-Glucose Co-Transporter-2 (SGLT2) Inhibitors on Blood Interleukin-6 Concentration: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMC Endocr. Disord. 2023, 23, 257. [Google Scholar] [CrossRef] [PubMed]
- La Grotta, R.; de Candia, P.; Olivieri, F.; Matacchione, G.; Giuliani, A.; Rippo, M.R.; Tagliabue, E.; Mancino, M.; Rispoli, F.; Ferroni, S.; et al. Anti-Inflammatory Effect of SGLT-2 Inhibitors via Uric Acid and Insulin. Cell Mol. Life Sci. 2022, 79, 273. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.R.; Lee, S.-G.; Kim, S.H.; Kim, J.H.; Choi, E.; Cho, W.; Rim, J.H.; Hwang, I.; Lee, C.J.; Lee, M.; et al. SGLT2 Inhibition Modulates NLRP3 Inflammasome Activity via Ketones and Insulin in Diabetes with Cardiovascular Disease. Nat. Commun. 2020, 11, 2127. [Google Scholar] [CrossRef] [PubMed]
- Ke, Q.; Shi, C.; Lv, Y.; Wang, L.; Luo, J.; Jiang, L.; Yang, J.; Zhou, Y. SGLT2 Inhibitor Counteracts NLRP3 Inflammasome via Tubular Metabolite Itaconate in Fibrosis Kidney. FASEB J. 2022, 36, e22078. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-M.; Chang, N.-C.; Lin, S.-Z. Dapagliflozin, a Selective SGLT2 Inhibitor, Attenuated Cardiac Fibrosis by Regulating the Macrophage Polarization via STAT3 Signaling in Infarcted Rat Hearts. Free Radic. Biol. Med. 2017, 104, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Song, X.; Tran, J.; Zhou, R.; Cao, X.; Zhao, G.; Yuan, H. Dapagliflozin Alleviates Coxsackievirus B3-Induced Acute Viral Myocarditis by Regulating the Macrophage Polarization Through Stat3-Related Pathways. Inflammation 2022, 45, 2078–2090. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Guo, J.; Ye, H.; Wang, X.; Feng, Y. Role and Molecular Mechanisms of SGLT2 Inhibitors in Pathological Cardiac Remodeling (Review). Mol. Med. Rep. 2024, 29, 73. [Google Scholar] [CrossRef]
- Tan, F.; Long, X.; Du, J.; Yuan, X. RNA-Seq Transcriptomic Landscape Profiling of Spontaneously Hypertensive Rats Treated with a Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor. Biomed. Pharmacother. 2023, 166, 115289. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-D.; You, Y.-K.; Shao, B.-Y.; Wu, W.-F.; Wang, Y.-F.; Guo, J.-B.; Meng, X.-M.; Chen, H. Roles and Crosstalks of Macrophages in Diabetic Nephropathy. Front. Immunol. 2022, 13, 1015142. [Google Scholar] [CrossRef] [PubMed]
- Piątkowska-Chmiel, I.; Herbet, M.; Gawrońska-Grzywacz, M.; Pawłowski, K.; Ostrowska-Leśko, M.; Dudka, J. Molecular and Neural Roles of Sodium-Glucose Cotransporter 2 Inhibitors in Alleviating Neurocognitive Impairment in Diabetic Mice. Psychopharmacology 2023, 240, 983–1000. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Xiao, Y.; Tai, S.; Yang, H.; Zhou, S.; Zhou, Z. Emerging Roles of Sodium Glucose Cotransporter 2 (SGLT-2) Inhibitors in Diabetic Cardiovascular Diseases: Focusing on Immunity, Inflammation and Metabolism. Front. Pharmacol. 2022, 13, 836849. [Google Scholar] [CrossRef]
- Gordon, S. Alternative Activation of Macrophages. Nat. Rev. Immunol. 2003, 3, 23–35. [Google Scholar] [CrossRef]
- Gratchev, A.; Kzhyshkowska, J.; Duperrier, K.; Utikal, J.; Velten, F.W.; Goerdt, S. The Receptor for Interleukin-17E Is Induced by Th2 Cytokines in Antigen-Presenting Cells. Scand. J. Immunol. 2004, 60, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Gratchev, A.; Kzhyshkowska, J.; Utikal, J.; Goerdt, S. Interleukin-4 and Dexamethasone Counterregulate Extracellular Matrix Remodelling and Phagocytosis in Type-2 Macrophages. Scand. J. Immunol. 2005, 61, 10–17. [Google Scholar] [CrossRef]
- Gordon, S.; Martinez, F.O. Alternative Activation of Macrophages: Mechanism and Functions. Immunity 2010, 32, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Gratchev, A.; Kzhyshkowska, J.; Köthe, K.; Muller-Molinet, I.; Kannookadan, S.; Utikal, J.; Goerdt, S. Mphi1 and Mphi2 Can Be Re-Polarized by Th2 or Th1 Cytokines, Respectively, and Respond to Exogenous Danger Signals. Immunobiology 2006, 211, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Gratchev, A.; Kzhyshkowska, J.; Kannookadan, S.; Ochsenreiter, M.; Popova, A.; Yu, X.; Mamidi, S.; Stonehouse-Usselmann, E.; Muller-Molinet, I.; Gooi, L.; et al. Activation of a TGF-Beta-Specific Multistep Gene Expression Program in Mature Macrophages Requires Glucocorticoid-Mediated Surface Expression of TGF-Beta Receptor II. J. Immunol. 2008, 180, 6553–6565. [Google Scholar] [CrossRef]
- Stein, M.; Keshav, S.; Harris, N.; Gordon, S. Interleukin 4 Potently Enhances Murine Macrophage Mannose Receptor Activity: A Marker of Alternative Immunologic Macrophage Activation. J. Exp. Med. 1992, 176, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Ruffell, D.; Mourkioti, F.; Gambardella, A.; Kirstetter, P.; Lopez, R.G.; Rosenthal, N.; Nerlov, C. A CREB-C/EBPbeta Cascade Induces M2 Macrophage-Specific Gene Expression and Promotes Muscle Injury Repair. Proc. Natl. Acad. Sci. USA 2009, 106, 17475–17480. [Google Scholar] [CrossRef] [PubMed]
- Vogel, D.Y.S.; Glim, J.E.; Stavenuiter, A.W.D.; Breur, M.; Heijnen, P.; Amor, S.; Dijkstra, C.D.; Beelen, R.H.J. Human Macrophage Polarization in Vitro: Maturation and Activation Methods Compared. Immunobiology 2014, 219, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yun, J.-S.; Ko, S.-H. Advanced Glycation End Products and Their Effect on Vascular Complications in Type 2 Diabetes Mellitus. Nutrients 2022, 14, 3086. [Google Scholar] [CrossRef] [PubMed]
- Dilworth, L.; Facey, A.; Omoruyi, F. Diabetes Mellitus and Its Metabolic Complications: The Role of Adipose Tissues. Int. J. Mol. Sci. 2021, 22, 7644. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; He, Z.; King, G.L. Introduction of Hyperglycemia and Dyslipidemia in the Pathogenesis of Diabetic Vascular Complications. Curr. Diab Rep. 2005, 5, 91–97. [Google Scholar] [CrossRef]
- Parrinello, C.M.; Lutsey, P.L.; Ballantyne, C.M.; Folsom, A.R.; Pankow, J.S.; Selvin, E. Six-Year Change in High-Sensitivity C-Reactive Protein and Risk of Diabetes, Cardiovascular Disease, and Mortality. Am. Heart J. 2015, 170, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bao, W.; Liu, J.; Ouyang, Y.-Y.; Wang, D.; Rong, S.; Xiao, X.; Shan, Z.-L.; Zhang, Y.; Yao, P.; et al. Inflammatory Markers and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diabetes Care 2013, 36, 166–175. [Google Scholar] [CrossRef]
- Liu, C.; Feng, X.; Li, Q.; Wang, Y.; Li, Q.; Hua, M. Adiponectin, TNF-α and Inflammatory Cytokines and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Cytokine 2016, 86, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Yu, X.; Zhu, X.; Song, Y.; Gao, F.; Yu, B.; Qu, A. Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism. J. Cardiovasc. Transl. Res. 2024, 17, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.I.; Bettaieb, A.; Sun, C.; DeVerse, J.S.; Radecke, C.E.; Mathew, S.; Edwards, C.M.; Haj, F.G.; Passerini, A.G.; Simon, S.I. Triglyceride-Rich Lipoprotein Modulates Endothelial Vascular Cell Adhesion Molecule (VCAM)-1 Expression via Differential Regulation of Endoplasmic Reticulum Stress. PLoS ONE 2013, 8, e78322. [Google Scholar] [CrossRef]
- Aburawi, E.H.; AlKaabi, J.; Zoubeidi, T.; Shehab, A.; Lessan, N.; Al Essa, A.; Yasin, J.; Saadi, H.; Souid, A.-K. Subclinical Inflammation and Endothelial Dysfunction in Young Patients with Diabetes: A Study from United Arab Emirates. PLoS ONE 2016, 11, e0159808. [Google Scholar] [CrossRef] [PubMed]
- de Lima, E.P.; Moretti, R.C.; Torres Pomini, K.; Laurindo, L.F.; Sloan, K.P.; Sloan, L.A.; Castro, M.V.M.d.; Baldi, E.; Ferraz, B.F.R.; de Souza Bastos Mazuqueli Pereira, E.; et al. Glycolipid Metabolic Disorders, Metainflammation, Oxidative Stress, and Cardiovascular Diseases: Unraveling Pathways. Biology 2024, 13, 519. [Google Scholar] [CrossRef]
- Giulietti, A.; van Etten, E.; Overbergh, L.; Stoffels, K.; Bouillon, R.; Mathieu, C. Monocytes from Type 2 Diabetic Patients Have a Pro-Inflammatory Profile. 1,25-Dihydroxyvitamin D(3) Works as Anti-Inflammatory. Diabetes Res. Clin. Pract. 2007, 77, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Harris, D.C.H.; Wang, Y. Macrophages in Kidney Injury, Inflammation, and Fibrosis. Physiology 2015, 30, 183–194. [Google Scholar] [CrossRef]
- Baardman, J.; Licht, I.; de Winther, M.P.J.; Van den Bossche, J. Metabolic-Epigenetic Crosstalk in Macrophage Activation. Epigenomics 2015, 7, 1155–1164. [Google Scholar] [CrossRef]
- Viola, A.; Munari, F.; Sánchez-Rodríguez, R.; Scolaro, T.; Castegna, A. The Metabolic Signature of Macrophage Responses. Front. Immunol. 2019, 10, 1462. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Wang, J.; Dai, X.; Wu, S.; Huang, Q.; Jiang, L.; Kong, X. Augmented PFKFB3-Mediated Glycolysis by Interferon-γ Promotes Inflammatory M1 Polarization through the JAK2/STAT1 Pathway in Local Vascular Inflammation in Takayasu Arteritis. Arthritis Res. Ther. 2022, 24, 266. [Google Scholar] [CrossRef]
- Torres-Castro, I.; Arroyo-Camarena, Ú.D.; Martínez-Reyes, C.P.; Gómez-Arauz, A.Y.; Dueñas-Andrade, Y.; Hernández-Ruiz, J.; Béjar, Y.L.; Zaga-Clavellina, V.; Morales-Montor, J.; Terrazas, L.I.; et al. Human Monocytes and Macrophages Undergo M1-Type Inflammatory Polarization in Response to High Levels of Glucose. Immunol. Lett. 2016, 176, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Moganti, K.; Li, F.; Schmuttermaier, C.; Riemann, S.; Klüter, H.; Gratchev, A.; Harmsen, M.C.; Kzhyshkowska, J. Hyperglycemia Induces Mixed M1/M2 Cytokine Profile in Primary Human Monocyte-Derived Macrophages. Immunobiology 2017, 222, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Badillo-Garcia, L.E.; Liu, Q.; Ziebner, K.; Balduff, M.; Sevastyanova, T.; Schmuttermaier, C.; Klüter, H.; Harmsen, M.; Kzhyshkowska, J. Hyperglycemia Amplifies TLR-Mediated Inflammatory Response of M(IL4) Macrophages to Dyslipidemic Ligands. J. Leukoc. Biol. 2024, 116, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Conway, B.R.; O’Sullivan, E.D.; Cairns, C.; O’Sullivan, J.; Simpson, D.J.; Salzano, A.; Connor, K.; Ding, P.; Humphries, D.; Stewart, K.; et al. Kidney Single-Cell Atlas Reveals Myeloid Heterogeneity in Progression and Regression of Kidney Disease. J. Am. Soc. Nephrol. 2020, 31, 2833–2854. [Google Scholar] [CrossRef]
- Larionova, I.; Patysheva, M.; Iamshchikov, P.; Kazakova, E.; Kazakova, A.; Rakina, M.; Grigoryeva, E.; Tarasova, A.; Afanasiev, S.; Bezgodova, N.; et al. PFKFB3 Overexpression in Monocytes of Patients with Colon but Not Rectal Cancer Programs Pro-Tumor Macrophages and Is Indicative for Higher Risk of Tumor Relapse. Front. Immunol. 2022, 13, 1080501. [Google Scholar] [CrossRef] [PubMed]
- Cassetta, L.; Fragkogianni, S.; Sims, A.H.; Swierczak, A.; Forrester, L.M.; Zhang, H.; Soong, D.Y.H.; Cotechini, T.; Anur, P.; Lin, E.Y.; et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell 2019, 35, 588–602.e10. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Sun, H.; Zhang, Y.; Wang, Z.; Xun, Z.; Li, Z.; Ding, X.; Bao, R.; Hong, L.; Jia, W.; et al. Single-Cell and Spatial Analysis Reveal Interaction of FAP+ Fibroblasts and SPP1+ Macrophages in Colorectal Cancer. Nat. Commun. 2022, 13, 1742. [Google Scholar] [CrossRef]
- Kzhyshkowska, J.; Shen, J.; Larionova, I. Targeting of TAMs: Can We Be More Clever than Cancer Cells? Cell Mol. Immunol. 2024, 21, 1376–1409. [Google Scholar] [CrossRef]
- Hattori, S. Anti-Inflammatory Effects of Empagliflozin in Patients with Type 2 Diabetes and Insulin Resistance. Diabetol. Metab. Syndr. 2018, 10, 93. [Google Scholar] [CrossRef] [PubMed]
- Sezai, A.; Sekino, H.; Unosawa, S.; Taoka, M.; Osaka, S.; Tanaka, M. Canagliflozin for Japanese Patients with Chronic Heart Failure and Type II Diabetes. Cardiovasc. Diabetol. 2019, 18, 76. [Google Scholar] [CrossRef]
- Iannantuoni, F.; M de Marañon, A.; Diaz-Morales, N.; Falcon, R.; Bañuls, C.; Abad-Jimenez, Z.; Victor, V.M.; Hernandez-Mijares, A.; Rovira-Llopis, S. The SGLT2 Inhibitor Empagliflozin Ameliorates the Inflammatory Profile in Type 2 Diabetic Patients and Promotes an Antioxidant Response in Leukocytes. J. Clin. Med. 2019, 8, 1814. [Google Scholar] [CrossRef]
- Gotzmann, M.; Henk, P.; Stervbo, U.; Blázquez-Navarro, A.; Mügge, A.; Babel, N.; Westhoff, T.H. Empagliflozin Reduces Interleukin-6 Levels in Patients with Heart Failure. J. Clin. Med. 2023, 12, 4458. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Perco, P.; Mulder, S.; Leierer, J.; Hansen, M.K.; Heinzel, A.; Mayer, G. Canagliflozin Reduces Inflammation and Fibrosis Biomarkers: A Potential Mechanism of Action for Beneficial Effects of SGLT2 Inhibitors in Diabetic Kidney Disease. Diabetologia 2019, 62, 1154–1166. [Google Scholar] [CrossRef] [PubMed]
- Sen, T.; Li, J.; Neuen, B.L.; Neal, B.; Arnott, C.; Parikh, C.R.; Coca, S.G.; Perkovic, V.; Mahaffey, K.W.; Yavin, Y.; et al. Effects of the SGLT2 Inhibitor Canagliflozin on Plasma Biomarkers TNFR-1, TNFR-2 and KIM-1 in the CANVAS Trial. Diabetologia 2021, 64, 2147–2158. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chang, X.; Ding, X.; He, X.; Wang, J.; Wang, G. Effect of Dapagliflozin on Proteomics and Metabolomics of Serum from Patients with Type 2 Diabetes. Diabetol. Metab. Syndr. 2023, 15, 251. [Google Scholar] [CrossRef]
- Vale, C.; Godolphin, P.J.; Fisher, D.; Horby, P.W.; Kosiborod, M.N.; Hochman, J.S.; Webster, K.; Higgins, J.P.T.; Althouse, A.D.; Berwanger, O.; et al. Sodium-Glucose Co-Transporter-2 Inhibitors for Hospitalised Patients with COVID-19: A Prospective Meta-Analysis of Randomised Trials. Lancet Diabetes Endocrinol. 2024, 12, 735–747. [Google Scholar] [CrossRef]
- Scheen, A.J. Sodium-Glucose Cotransporter Type 2 Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Nat. Rev. Endocrinol. 2020, 16, 556–577. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ni, J.; Guo, R.; Li, L.; Su, J.; He, F.; Fan, G. SGLT2 Inhibitors Break the Vicious Circle between Heart Failure and Insulin Resistance: Targeting Energy Metabolism. Heart Fail. Rev. 2022, 27, 961–980. [Google Scholar] [CrossRef] [PubMed]
- Gharaibeh, N.E.; Rahhal, M.-N.; Rahimi, L.; Ismail-Beigi, F. SGLT-2 Inhibitors as Promising Therapeutics for Non-Alcoholic Fatty Liver Disease: Pathophysiology, Clinical Outcomes, and Future Directions. Diabetes Metab. Syndr. Obes. 2019, 12, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, F.; Shuja, M.H.; Azam, L.; Amjad, M.; Manjee, K.Z.; Ramzan, H.; Sharif, T.; Shoaib, A.; Tahir, A.; Kumar, S.; et al. Effect of Sodium-Glucose Cotransporter 2 Inhibitors on the 24-Hour Ambulatory Blood Pressure in Patients With Type 2 Diabetes Mellitus and Hypertension: An Updated Meta-Analysis. Endocr. Pract. 2024, 30, 481–489. [Google Scholar] [CrossRef]
- Pennig, J.; Scherrer, P.; Gissler, M.C.; Anto-Michel, N.; Hoppe, N.; Füner, L.; Härdtner, C.; Stachon, P.; Wolf, D.; Hilgendorf, I.; et al. Glucose Lowering by SGLT2-Inhibitor Empagliflozin Accelerates Atherosclerosis Regression in Hyperglycemic STZ-Diabetic Mice. Sci. Rep. 2019, 9, 17937. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G.; Lee, S.J.; Lee, J.J.; Kim, J.S.; Lee, O.H.; Kim, C.K.; Kim, D.; Lee, Y.H.; Oh, J.; Park, S.; et al. Anti-Inflammatory Effect for Atherosclerosis Progression by Sodium-Glucose Cotransporter 2 (SGLT-2) Inhibitor in a Normoglycemic Rabbit Model. Korean Circ. J. 2020, 50, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Terasaki, M.; Hiromura, M.; Mori, Y.; Kohashi, K.; Nagashima, M.; Kushima, H.; Watanabe, T.; Hirano, T. Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice. PLoS ONE 2015, 10, e0143396. [Google Scholar] [CrossRef]
- Kzhyshkowska, J.; Neyen, C.; Gordon, S. Role of Macrophage Scavenger Receptors in Atherosclerosis. Immunobiology 2012, 217, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Kazakova, E.; Iamshchikov, P.; Larionova, I.; Kzhyshkowska, J. Macrophage Scavenger Receptors: Tumor Support and Tumor Inhibition. Front. Oncol. 2022, 12, 1096897. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Koibuchi, N.; Hasegawa, Y.; Sueta, D.; Toyama, K.; Uekawa, K.; Ma, M.; Nakagawa, T.; Kusaka, H.; Kim-Mitsuyama, S. Glycemic Control with Empagliflozin, a Novel Selective SGLT2 Inhibitor, Ameliorates Cardiovascular Injury and Cognitive Dysfunction in Obese and Type 2 Diabetic Mice. Cardiovasc. Diabetol. 2014, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Lan, W.; Liu, W.; Chen, T.; Tang, Y. Dapagliflozin Promotes Angiogenesis in Hindlimb Ischemia Mice by Inducing M2 Macrophage Polarization. Front. Pharmacol. 2023, 14, 1255904. [Google Scholar] [CrossRef] [PubMed]
- Dos Passos, R.R.; Santos, C.V.; Priviero, F.; Briones, A.M.; Tostes, R.C.; Webb, R.C.; Bomfim, G.F. Immunomodulatory Activity of Cytokines in Hypertension: A Vascular Perspective. Hypertension 2024, 81, 1411–1423. [Google Scholar] [CrossRef]
- Hierro-Bujalance, C.; Infante-Garcia, C.; Del Marco, A.; Herrera, M.; Carranza-Naval, M.J.; Suarez, J.; Alves-Martinez, P.; Lubian-Lopez, S.; Garcia-Alloza, M. Empagliflozin Reduces Vascular Damage and Cognitive Impairment in a Mixed Murine Model of Alzheimer’s Disease and Type 2 Diabetes. Alzheimers Res. Ther. 2020, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Bao, J.; Gao, Z.; Ye, L.; Wang, L. Sodium-Glucose Cotransporter Protein 2 Inhibitors: Novel Application for the Treatment of Obesity-Associated Hypertension. Diabetes Metab. Syndr. Obes. 2024, 17, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Tsigalou, C.; Vallianou, N.; Dalamaga, M. Autoantibody Production in Obesity: Is There Evidence for a Link Between Obesity and Autoimmunity? Curr. Obes. Rep. 2020, 9, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Miyachi, Y.; Tsuchiya, K.; Shiba, K.; Mori, K.; Komiya, C.; Ogasawara, N.; Ogawa, Y. A Reduced M1-like/M2-like Ratio of Macrophages in Healthy Adipose Tissue Expansion during SGLT2 Inhibition. Sci. Rep. 2018, 8, 16113. [Google Scholar] [CrossRef] [PubMed]
- Okuma, H.; Mori, K.; Nakamura, S.; Sekine, T.; Ogawa, Y.; Tsuchiya, K. Ipragliflozin Ameliorates Diabetic Nephropathy Associated with Perirenal Adipose Expansion in Mice. Int. J. Mol. Sci. 2021, 22, 7329. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Nagata, N.; Nagashimada, M.; Zhuge, F.; Ni, Y.; Chen, G.; Mayoux, E.; Kaneko, S.; Ota, T. SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-Induced Obese Mice. EBioMedicine 2017, 20, 137–149. [Google Scholar] [CrossRef]
- Larionova, I.; Kazakova, E.; Patysheva, M.; Kzhyshkowska, J. Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers 2020, 12, 1411. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Song, C.; Zeng, Y.; Li, Y.; Li, H.; Liu, B.; Dai, M.; Pan, P. Canagliflozin Alleviates LPS-Induced Acute Lung Injury by Modulating Alveolar Macrophage Polarization. Int. Immunopharmacol. 2020, 88, 106969. [Google Scholar] [CrossRef] [PubMed]
- Constantinesco, N.J.; Chinnappan, B.; DeVito, L.J.; Moras, C.; Srikanth, S.; Garcia-Hernandez, M.d.l.L.; Rangel-Moreno, J.; Gopal, R. Sodium-Glucose Cotransporter-2 Inhibitor, Empagliflozin, Suppresses the Inflammatory Immune Response to Influenza Infection. Immunohorizons 2023, 7, 861–871. [Google Scholar] [CrossRef]
- El-Rous, M.A.; Saber, S.; Raafat, E.M.; Ahmed, A.A.E. Dapagliflozin, an SGLT2 Inhibitor, Ameliorates Acetic Acid-Induced Colitis in Rats by Targeting NFκB/AMPK/NLRP3 Axis. Inflammopharmacology 2021, 29, 1169–1185. [Google Scholar] [CrossRef]
- Morsy, M.A.; Khalaf, H.M.; Rifaai, R.A.; Bayoumi, A.M.A.; Khalifa, E.M.M.A.; Ibrahim, Y.F. Canagliflozin, an SGLT-2 Inhibitor, Ameliorates Acetic Acid-Induced Colitis in Rats through Targeting Glucose Metabolism and Inhibiting NOX2. Biomed. Pharmacother. 2021, 141, 111902. [Google Scholar] [CrossRef] [PubMed]
- Makaro, A.; Świerczyński, M.; Pokora, K.; Sarniak, B.; Kordek, R.; Fichna, J.; Salaga, M. Empagliflozin Attenuates Intestinal Inflammation through Suppression of Nitric Oxide Synthesis and Myeloperoxidase Activity in in Vitro and in Vivo Models of Colitis. Inflammopharmacology 2024, 32, 377–392. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, M.S.; Elshal, M.; Abdelmageed, M.E. Preventive Empagliflozin Activity on Acute Acetic Acid-Induced Ulcerative Colitis in Rats via Modulation of SIRT-1/PI3K/AKT Pathway and Improving Colon Barrier. Environ. Toxicol. Pharmacol. 2022, 91, 103833. [Google Scholar] [CrossRef] [PubMed]
- Youssef, M.E.; Abd El-Fattah, E.E.; Abdelhamid, A.M.; Eissa, H.; El-Ahwany, E.; Amin, N.A.; Hetta, H.F.; Mahmoud, M.H.; Batiha, G.E.-S.; Gobba, N.; et al. Interference With the AMPKα/mTOR/NLRP3 Signaling and the IL-23/IL-17 Axis Effectively Protects Against the Dextran Sulfate Sodium Intoxication in Rats: A New Paradigm in Empagliflozin and Metformin Reprofiling for the Management of Ulcerative Colitis. Front. Pharmacol. 2021, 12, 719984. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-P.; Wu, H.-W.; Zhu, T.; Li, X.-T.; Zuo, J.; Hasan, A.A.; Reichetzeder, C.; Delic, D.; Yard, B.; Klein, T.; et al. Empagliflozin Reduces Kidney Fibrosis and Improves Kidney Function by Alternative Macrophage Activation in Rats with 5/6-Nephrectomy. Biomed. Pharmacother. 2022, 156, 113947. [Google Scholar] [CrossRef] [PubMed]
- Kohlmorgen, C.; Gerfer, S.; Feldmann, K.; Twarock, S.; Hartwig, S.; Lehr, S.; Klier, M.; Krüger, I.; Helten, C.; Keul, P.; et al. Dapagliflozin Reduces Thrombin Generation and Platelet Activation: Implications for Cardiovascular Risk Reduction in Type 2 Diabetes Mellitus. Diabetologia 2021, 64, 1834–1849. [Google Scholar] [CrossRef]
- Aragón-Herrera, A.; Moraña-Fernández, S.; Otero-Santiago, M.; Anido-Varela, L.; Campos-Toimil, M.; García-Seara, J.; Román, A.; Seijas, J.; García-Caballero, L.; Rodríguez, J.; et al. The Lipidomic and Inflammatory Profiles of Visceral and Subcutaneous Adipose Tissues Are Distinctly Regulated by the SGLT2 Inhibitor Empagliflozin in Zucker Diabetic Fatty Rats. Biomed. Pharmacother. 2023, 161, 114535. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-G.; Kim, D.; Lee, J.-J.; Lee, H.-J.; Moon, R.-K.; Lee, Y.-J.; Lee, S.-J.; Lee, O.-H.; Kim, C.; Oh, J.; et al. Dapagliflozin Attenuates Diabetes-Induced Diastolic Dysfunction and Cardiac Fibrosis by Regulating SGK1 Signaling. BMC Med. 2022, 20, 309. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Liu, X.; Li, T.; Fang, T.; Cheng, Y.; Han, L.; Sun, B.; Chen, L. The SGLT2 Inhibitor Empagliflozin Negatively Regulates IL-17/IL-23 Axis-Mediated Inflammatory Responses in T2DM with NAFLD via the AMPK/mTOR/Autophagy Pathway. Int. Immunopharmacol. 2021, 94, 107492. [Google Scholar] [CrossRef]
- Xu, C.; Wang, W.; Zhong, J.; Lei, F.; Xu, N.; Zhang, Y.; Xie, W. Canagliflozin Exerts Anti-Inflammatory Effects by Inhibiting Intracellular Glucose Metabolism and Promoting Autophagy in Immune Cells. Biochem. Pharmacol. 2018, 152, 45–59. [Google Scholar] [CrossRef]
- Lee, N.; Heo, Y.J.; Choi, S.-E.; Jeon, J.Y.; Han, S.J.; Kim, D.J.; Kang, Y.; Lee, K.W.; Kim, H.J. Anti-Inflammatory Effects of Empagliflozin and Gemigliptin on LPS-Stimulated Macrophage via the IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 Signalling Pathways. J. Immunol. Res. 2021, 2021, 9944880. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-T.; Lin, K.-D.; Hsieh, C.-F.; Wang, J.-Y. SGLT2 Inhibitor Canagliflozin Alleviates High Glucose-Induced Inflammatory Toxicity in BV-2 Microglia. Biomedicines 2023, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- Heimke, M.; Lenz, F.; Rickert, U.; Lucius, R.; Cossais, F. Anti-Inflammatory Properties of the SGLT2 Inhibitor Empagliflozin in Activated Primary Microglia. Cells 2022, 11, 3107. [Google Scholar] [CrossRef] [PubMed]
- Arefin, A.; Gage, M.C. Metformin, Empagliflozin, and Their Combination Modulate Ex-Vivo Macrophage Inflammatory Gene Expression. Int. J. Mol. Sci. 2023, 24, 4785. [Google Scholar] [CrossRef] [PubMed]
- Kounatidis, D.; Vallianou, N.; Evangelopoulos, A.; Vlahodimitris, I.; Grivakou, E.; Kotsi, E.; Dimitriou, K.; Skourtis, A.; Mourouzis, I. SGLT-2 Inhibitors and the Inflammasome: What’s Next in the 21st Century? Nutrients 2023, 15, 2294. [Google Scholar] [CrossRef]
- Peace, C.G.; O’Neill, L.A. The Role of Itaconate in Host Defense and Inflammation. J. Clin. Investig. 2022, 132, e148548. [Google Scholar] [CrossRef]
- Taniguchi, K.; Karin, M. NF-κB, Inflammation, Immunity and Cancer: Coming of Age. Nat. Rev. Immunol. 2018, 18, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.; Shaw, R.J. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol. Cell 2017, 66, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Xu, H.; Wu, F.; Tu, Q.; Dong, X.; Xie, H.; Cao, Z. Empagliflozin Inhibits Macrophage Inflammation through AMPK Signaling Pathway and Plays an Anti-Atherosclerosis Role. Int. J. Cardiol. 2022, 367, 56–62. [Google Scholar] [CrossRef]
- Abdollahi, E.; Keyhanfar, F.; Delbandi, A.-A.; Falak, R.; Hajimiresmaiel, S.J.; Shafiei, M. Dapagliflozin Exerts Anti-Inflammatory Effects via Inhibition of LPS-Induced TLR-4 Overexpression and NF-κB Activation in Human Endothelial Cells and Differentiated Macrophages. Eur. J. Pharmacol. 2022, 918, 174715. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, E.C.; Meffert, M.K. Cellular Specificity of NF-κB Function in the Nervous System. Front. Immunol. 2019, 10, 1043. [Google Scholar] [CrossRef] [PubMed]
- Shabab, T.; Khanabdali, R.; Moghadamtousi, S.Z.; Kadir, H.A.; Mohan, G. Neuroinflammation Pathways: A General Review. Int. J. Neurosci. 2017, 127, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, P.T.; Stephens, L.R. PI3K Signalling in Inflammation. Biochim. Biophys. Acta 2015, 1851, 882–897. [Google Scholar] [CrossRef] [PubMed]
- Pfitzner, E.; Kliem, S.; Baus, D.; Litterst, C.M. The Role of STATs in Inflammation and Inflammatory Diseases. Curr. Pharm. Des. 2004, 10, 2839–2850. [Google Scholar] [CrossRef] [PubMed]
- Steven, S.; Oelze, M.; Hanf, A.; Kröller-Schön, S.; Kashani, F.; Roohani, S.; Welschof, P.; Kopp, M.; Gödtel-Armbrust, U.; Xia, N.; et al. The SGLT2 Inhibitor Empagliflozin Improves the Primary Diabetic Complications in ZDF Rats. Redox Biol. 2017, 13, 370–385. [Google Scholar] [CrossRef]
- Lee, D.M.; Battson, M.L.; Jarrell, D.K.; Hou, S.; Ecton, K.E.; Weir, T.L.; Gentile, C.L. SGLT2 Inhibition via Dapagliflozin Improves Generalized Vascular Dysfunction and Alters the Gut Microbiota in Type 2 Diabetic Mice. Cardiovasc. Diabetol. 2018, 17, 62. [Google Scholar] [CrossRef]
- Takahashi, H.; Nomiyama, T.; Terawaki, Y.; Horikawa, T.; Kawanami, T.; Hamaguchi, Y.; Tanaka, T.; Motonaga, R.; Fukuda, T.; Tanabe, M.; et al. Combined Treatment with DPP-4 Inhibitor Linagliptin and SGLT2 Inhibitor Empagliflozin Attenuates Neointima Formation after Vascular Injury in Diabetic Mice. Biochem. Biophys. Rep. 2019, 18, 100640. [Google Scholar] [CrossRef]
- Padda, I.S.; Mahtani, A.U.; Parmar, M. Sodium-Glucose Transport Protein 2 (SGLT2) Inhibitors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Chen, Y.-Y.; Wu, T.-T.; Ho, C.-Y.; Yeh, T.-C.; Sun, G.-C.; Kung, Y.-H.; Wong, T.-Y.; Tseng, C.-J.; Cheng, P.-W. Dapagliflozin Prevents NOX- and SGLT2-Dependent Oxidative Stress in Lens Cells Exposed to Fructose-Induced Diabetes Mellitus. Int. J. Mol. Sci. 2019, 20, 4357. [Google Scholar] [CrossRef]
- Wang, X.X.; Levi, J.; Luo, Y.; Myakala, K.; Herman-Edelstein, M.; Qiu, L.; Wang, D.; Peng, Y.; Grenz, A.; Lucia, S.; et al. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy: SGLT2 Protein Inhibition Decreases Renal Lipid Accumulation, Inflammation, and the Development of Nephropathy in Diabetic Mice. J. Biol. Chem. 2017, 292, 5335–5348. [Google Scholar] [CrossRef]
- Nasiri-Ansari, Ν.; Dimitriadis, G.K.; Agrogiannis, G.; Perrea, D.; Kostakis, I.D.; Kaltsas, G.; Papavassiliou, A.G.; Randeva, H.S.; Kassi, E. Canagliflozin Attenuates the Progression of Atherosclerosis and Inflammation Process in APOE Knockout Mice. Cardiovasc. Diabetol. 2018, 17, 106. [Google Scholar] [CrossRef]
- Dimitriadis, G.K.; Nasiri-Ansari, N.; Agrogiannis, G.; Kostakis, I.D.; Randeva, M.S.; Nikiteas, N.; Patel, V.H.; Kaltsas, G.; Papavassiliou, A.G.; Randeva, H.S.; et al. Empagliflozin Improves Primary Haemodynamic Parameters and Attenuates the Development of Atherosclerosis in High Fat Diet Fed APOE Knockout Mice. Mol. Cell Endocrinol. 2019, 494, 110487. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo Santiago, J.C.; Maraver Delgado, J.; Cayón Blanco, M.; López Saez, J.B.; Gómez-Fernández, P. Effect of Dapagliflozin on Arterial Stiffness in Patients with Type 2 Diabetes Mellitus. Med. Clin. (Barc) 2020, 154, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Durante, W.; Behnammanesh, G.; Peyton, K.J. Effects of Sodium-Glucose Co-Transporter 2 Inhibitors on Vascular Cell Function and Arterial Remodeling. Int. J. Mol. Sci. 2021, 22, 8786. [Google Scholar] [CrossRef] [PubMed]
- Lunder, M.; Janić, M.; Japelj, M.; Juretič, A.; Janež, A.; Šabovič, M. Empagliflozin on Top of Metformin Treatment Improves Arterial Function in Patients with Type 1 Diabetes Mellitus. Cardiovasc. Diabetol. 2018, 17, 153. [Google Scholar] [CrossRef]
- Solini, A.; Seghieri, M.; Giannini, L.; Biancalana, E.; Parolini, F.; Rossi, C.; Dardano, A.; Taddei, S.; Ghiadoni, L.; Bruno, R.M. The Effects of Dapagliflozin on Systemic and Renal Vascular Function Display an Epigenetic Signature. J. Clin. Endocrinol. Metab. 2019, 104, 4253–4263. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, H.; Takagi, S.; Nitta, K.; Kitada, M.; Srivastava, S.P.; Takagaki, Y.; Kanasaki, K.; Koya, D. Renal Protective Effects of Empagliflozin via Inhibition of EMT and Aberrant Glycolysis in Proximal Tubules. JCI Insight 2020, 5, e129034. [Google Scholar] [CrossRef] [PubMed]
- Kriz, W.; Kaissling, B.; Le Hir, M. Epithelial-Mesenchymal Transition (EMT) in Kidney Fibrosis: Fact or Fantasy? J. Clin. Investig. 2011, 121, 468–474. [Google Scholar] [CrossRef]
- Hadpech, S.; Thongboonkerd, V. Epithelial-Mesenchymal Plasticity in Kidney Fibrosis. Genesis 2024, 62, e23529. [Google Scholar] [CrossRef] [PubMed]
- Allison, S.J. Fibrosis: Targeting EMT to Reverse Renal Fibrosis. Nat. Rev. Nephrol. 2015, 11, 565. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zou, H.; Lu, H.; Xiang, H.; Chen, S. Research Progress of Endothelial-Mesenchymal Transition in Diabetic Kidney Disease. J. Cell Mol. Med. 2022, 26, 3313–3322. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhai, J.; Zhang, T.; He, L.; Ma, S.; Zuo, Q.; Zhang, G.; Wang, Y.; Guo, Y. Canagliflozin Ameliorates Epithelial-Mesenchymal Transition in High-Salt Diet-Induced Hypertensive Renal Injury through Restoration of Sirtuin 3 Expression and the Reduction of Oxidative Stress. Biochem. Biophys. Res. Commun. 2023, 653, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Balzer, M.S.; Rong, S.; Nordlohne, J.; Zemtsovski, J.D.; Schmidt, S.; Stapel, B.; Bartosova, M.; von Vietinghoff, S.; Haller, H.; Schmitt, C.P.; et al. SGLT2 Inhibition by Intraperitoneal Dapagliflozin Mitigates Peritoneal Fibrosis and Ultrafiltration Failure in a Mouse Model of Chronic Peritoneal Exposure to High-Glucose Dialysate. Biomolecules 2020, 10, 1573. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, C.; Huang, Z.; Huang, C.; Liu, J.; Wu, T.; Xu, S.; Mai, P.; Geng, D.; Zhou, S.; et al. Empagliflozin Alleviates Atherosclerotic Calcification by Inhibiting Osteogenic Differentiation of Vascular Smooth Muscle Cells. Front. Pharmacol. 2023, 14, 1295463. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Lan, Z.; Li, L.; Xie, L.; Liu, X.; Yang, X.; Wang, S.; Liang, Q.; Dong, Q.; Feng, L.; et al. Sodium-Glucose Cotransporter 2 Inhibitor Canagliflozin Alleviates Vascular Calcification through Suppression of Nucleotide-Binding Domain, Leucine-Rich-Containing Family, Pyrin Domain-Containing-3 Inflammasome. Cardiovasc. Res. 2023, 119, 2368–2381. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, I.-K.; Jeon, J.-H. Vascular Calcification-New Insights Into Its Mechanism. Int. J. Mol. Sci. 2020, 21, 2685. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.-P.; Yang, X.; Zhang, Y.; Zhu, X.-D.; Wang, X.-X.; Liu, Y.; Shi, W.; Huang, J.-Y.; Zhao, Y.; Zhang, X.-L. LPS-Induced Senescence of Macrophages Aggravates Calcification and Senescence of Vascular Smooth Muscle Cells via IFITM3. Ren. Fail. 2024, 46, 2367708. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Luo, X.; Chen, Y.; Wang, Z.; Liu, X.; Sun, N.; Zhao, J.; Luo, W.; Zhang, J.; Tong, X.; et al. Sodium-Glucose Cotransporter 2 Inhibitors Attenuate Vascular Calcification by Suppressing Endoplasmic Reticulum Protein Thioredoxin Domain Containing 5 Dependent Osteogenic Reprogramming. Redox Biol. 2024, 73, 103183. [Google Scholar] [CrossRef] [PubMed]
- Panchapakesan, U.; Pegg, K.; Gross, S.; Komala, M.G.; Mudaliar, H.; Forbes, J.; Pollock, C.; Mather, A. Effects of SGLT2 Inhibition in Human Kidney Proximal Tubular Cells--Renoprotection in Diabetic Nephropathy? PLoS ONE 2013, 8, e54442. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Li, H.; Li, Y.; Kong, W. Renal Intrinsic Cells Remodeling in Diabetic Kidney Disease and the Regulatory Effects of SGLT2 Inhibitors. Biomed. Pharmacother. 2023, 165, 115025. [Google Scholar] [CrossRef] [PubMed]
- Das, N.A.; Carpenter, A.J.; Belenchia, A.; Aroor, A.R.; Noda, M.; Siebenlist, U.; Chandrasekar, B.; DeMarco, V.G. Empagliflozin Reduces High Glucose-Induced Oxidative Stress and miR-21-Dependent TRAF3IP2 Induction and RECK Suppression, and Inhibits Human Renal Proximal Tubular Epithelial Cell Migration and Epithelial-to-Mesenchymal Transition. Cell Signal 2020, 68, 109506. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuka, A.; Yamaguchi, S.; Wada, J. GRP78 Contributes to the Beneficial Effects of SGLT2 Inhibitor on Proximal Tubular Cells in DKD. Diabetes 2024, 73, 763–779. [Google Scholar] [CrossRef] [PubMed]
- Andersson, U.; Tracey, K.J. HMGB1 Is a Therapeutic Target for Sterile Inflammation and Infection. Annu. Rev. Immunol. 2011, 29, 139–162. [Google Scholar] [CrossRef]
- Magna, M.; Pisetsky, D.S. The Role of HMGB1 in the Pathogenesis of Inflammatory and Autoimmune Diseases. Mol. Med. 2014, 20, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, H.; Andersson, U. Targeting Inflammation Driven by HMGB1. Front. Immunol. 2020, 11, 484. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, R.; Komaru, Y.; Miyamoto, Y.; Yoshida, T.; Yoshimoto, K.; Yamashita, T.; Hamasaki, Y.; Noiri, E.; Nangaku, M.; Doi, K. HMGB1 Is a Prognostic Factor for Mortality in Acute Kidney Injury Requiring Renal Replacement Therapy. Blood Purif. 2023, 52, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Wang, S.; Wang, M.; Lu, W. Renoprotection of Dapagliflozin in Human Renal Proximal Tubular Cells via the Inhibition of the High Mobility Group Box 1-receptor for Advanced Glycation End Products-nuclear factor-κB Signaling Pathway. Mol. Med. Rep. 2018, 18, 3625–3630. [Google Scholar] [CrossRef]
- Feng, L.; Chen, Y.; Li, N.; Yang, X.; Zhou, L.; Li, H.; Wang, T.; Xie, M.; Liu, H. Dapagliflozin Delays Renal Fibrosis in Diabetic Kidney Disease by Inhibiting YAP/TAZ Activation. Life Sci. 2023, 322, 121671. [Google Scholar] [CrossRef]
- Sędzikowska, A.; Szablewski, L. Human Glucose Transporters in Renal Glucose Homeostasis. Int. J. Mol. Sci. 2021, 22, 13522. [Google Scholar] [CrossRef] [PubMed]
- Gerich, J.E. Role of the Kidney in Normal Glucose Homeostasis and in the Hyperglycaemia of Diabetes Mellitus: Therapeutic Implications. Diabet. Med. 2010, 27, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Liao, Y.; Wang, J.; Wen, X.; Shu, L. Potential Impacts of Diabetes Mellitus and Anti-Diabetes Agents on Expressions of Sodium-Glucose Transporters (SGLTs) in Mice. Endocrine 2021, 74, 571–581. [Google Scholar] [CrossRef] [PubMed]
Study | Inhibitor | Patients | Anti-Inflammatory Effect | Ref. |
---|---|---|---|---|
EMPA-REG OUTCOME | Empagliflozin | T2D, high cardiovascular risk | Decrease in hs-CRP concentrations after 12 months of treatment. | [72] |
CANOSSA | Canagliflozin | T2D, chronic heart failure | Decrease in hs-CRP concentrations after 3, 6, and 12 months of treatment. | [21,73] |
Iannantuoni et al. (2019) | Empagliflozin | T2D | Decrease in hs-CRP and increase in IL-10 concentrations after 24 weeks of treatment. | [74] |
La Grotta et al. (2022) | Dapagliflozin, empagliflozin, canagliflozin | T2D | Lower plasma IL-6 levels in patients treated with SGLT2 inhibitors compared with those treated with other antihyperglycemic agents. | [30] |
Gotzmann et al. (2023) | Empagliflozin | T2D, chronic heart failure | Decrease in serum IL-6 concentrations after 3 month follow-up in empagliflozin-treated cohort. | [75] |
CANTATA-SU | Canagliflozin | T2D | Decrease in plasma TNFR1 and IL-6 levels during 104 weeks of treatment in canagliflozin cohort when compared to glimepiride cohort. | [76] |
Kim et al. (2020) | Empagliflozin | T2D, high cardiovascular risk | Reduced production of IL-1β and TNF-α by macrophages in empagliflozin-treated subjects. | [31] |
CANVAS | Canagliflozin | T2D | Decrease in plasma TNFR1 and TNFR2 concentrations after years 1, 3 and 6 of treatment. | [77] |
Meta-analysis of 18 randomized clinical trials | Dapagliflozin, empagliflozin, canagliflozin | T2D | Treatment with SGLT2 inhibitors is associated with lower serum IL-6 levels. | [29] |
SGLT2 Inhibitor | Animals | Disease Model | Anti-Inflammatory Effects of SGLT2 Inhibitors | Ref. |
---|---|---|---|---|
Animal models for obesity and diabetes | ||||
1 Empa | C57BL/6J mice | Streptozotocin-induced diabetes Atherosclerosis induced by LDLR- and SRB1- antisense oligonucleotides and high cholesterol diet | Decreased content of CD68+ macrophages in atherosclerotic plaques Decreased proliferation of plaque resident macrophages in atherosclerotic plaques | [84] |
2 Ipra | C57BL/6 J CCR2 knockout mice | High-fat diet-induced obesity | Reduction of M1/M2 ratio in adipose tissue | [95] |
3 Empa | C57BL/6J mice | High-fat diet-induced obesity | M2 polarization in white adipose tissue and liver | [97] |
4 Empa | APP/PS1× db/db mice | Alzheimer’s disease Genetically determined obesity and Type 2 diabetes | Mitigation of microglia damage in senile plaque-free areas | [92] |
5 Empa, Dapa | CD-1 mice | Streptozotocin-induced diabetes | Decreased IL-1β and IL-6 levels in prefrontal cortex | [38] |
6 Dapa | LDL-receptor-deficient (Ldlr−/−) mice | High-fat high-sucrose diet-induced Type 2 diabetes | Reduction of circulating platelet-leukocyte aggregates; decreased aortic macrophage infiltration | [107] |
7 Dapa Ipra | Apoe−/− mice db/db mice | Streptozotocin-induced diabetes Genetically determined obesity and Type 2 diabetes | Attenuated macrophage infiltration in the aortic root Upregulation of lectin-like ox-LDL receptor-1 and acyl-coenzyme A:cholesterol acyltransferase 1 gene expression in the peritoneal macrophages Downregulation of ATP-binding cassette transporter A1 in the peritoneal macrophages | [86] |
8 Empa | Zucker diabetic fatty rats | Obesity and Type 2 diabetes | Reduction of the expression of IL-1β, IL-6, TNF-α, MCP-1 and IL-10 in visceral adipose tissue Decreased expression of M1 and M2 markers in visceral adipose tissue | [108] |
9 Dapa | New Zealand white rabbits | Alloxan-induced diabetes | Decreased macrophages infiltration and expression of TNF-α in the myocardium | [109] |
10 Empa | C57BL/6J mice | High-fat diet and streptozotocin-induced diabetes | Activation of autophagy in hepatic macrophages via the AMPK/mTOR signaling pathway Decreased expression levels of IL-17/IL-23 axis-related molecules in the liver | [110] |
Non-diabetic animal models | ||||
1 Dapa | New Zealand white rabbits | Atherosclerosis | Mitigation of macrophage infiltration in atherosclerotic plaques Decreased expression of TNF-α, IL-1β and IL-6 in atherosclerotic plaques Suppression of TLR4/NF-κΒ pathway in RAW 264.7 macrophages Increased M2 levels in atherosclerotic plaques | [85] |
2 Empa | C57BL/6 mice LDLR−/− mice | Influenza A/PR/8/34 High-fat diet-induced atherosclerosis | Decreased expression of IL-1β, IL-6, and CCL2 in the lungs Decreased expression of IL-1β, IL-6, and CCL2 in RAW264.7 macrophages and bone marrow-derived macrophages Decreased percentage of inflammatory monocytes and inducible NO synthase-positive macrophages in the lungs Decreased expression of Stat1 and CXCL9 in macrophages in response of IFN exposure | [100] |
3 Dapa | C57BL/6 mice | Critical limb ischemia | M2 polarization in gastrocnemius muscle Diminished expression IL-1β, IL-6, and TNF-α in gastrocnemius muscle | [90] |
4 Dapa | Balb/c mice | Coxsackie virus B3-induced acute viral myocarditis | Decreased IL-1β, IL-6, and TNF-α levels in the myocardium Inhibition of M1 and promotion of M2 differentiation in the myocardium Activation of Stat3 pathway | [34] |
5 Empa | Spontaneously hypertension rats | Arterial hypertension | Decreased renal expression of MAPK10 Decreased pulmonary expression Legumain and cathepsin S (CTSS) Increased expression of Prkaa1 and Prkaa2 in white adipose tissue | [36] |
6 Dapa | C57BL/6J mice | Ischemia/reperfusion induced renal fibrosis | Activation of mTOR and HIF-1α pathways in the renal cortex Blocked activation of NLRP3 inflammasome in the renal cortex | [32] |
7 Cana | C57BL/6 mice | LPS-induced acute lung injury | Decreased levels of TNF-α, IL-6, and IL-1β in bronchoalveolar lavage fluid and serum Reduction of alveolar macrophages with the M1 phenotype Promotion of shift of alveolar macrophages towards M2 | [99] |
8 Empa | Wistar rats | Acute acetic acid-induced ulcerative colitis | Decreased serum C-reactive protein levels Induced SIRT-1 expression in colonic tissues Reduced PI3K, AKT, NF-κB, TNF-α, IL-1β, and IL-6 expression in colonic tissues | [104] |
9 Empa | Wistar rats | Dextran sulfate sodium-induced ulcerative colitis | Enhanced AMPK phosphorylation in distal colons Depressed mTOR and NLRP3 expression in distal colons Reduction in caspase-1 cleavage in distal colons Decreased expression of IL-1β and IL-18 in distal colons Reduction in Th17 cell polarization and maintenance in distal colons | [105] |
Cell/Tissue Type | Role of SGLT2 | Effects of SGLT2 Inhibition |
---|---|---|
Proximal Renal Tubule Cells | glucose reabsorption |
|
Vascular Smooth Muscle Cells | Glucose uptake and metabolism |
|
Endothelial Cells | Glucose transport and vascular function |
|
Macrophages | Involvement in inflammation |
|
Lens Epithelial Cells | Glucose uptake |
|
Tubular Epithelial Cells | N/A |
|
Adipose Tissue | N/A |
|
Cardiomyocytes | N/A |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rykova, E.Y.; Klimontov, V.V.; Shmakova, E.; Korbut, A.I.; Merkulova, T.I.; Kzhyshkowska, J. Anti-Inflammatory Effects of SGLT2 Inhibitors: Focus on Macrophages. Int. J. Mol. Sci. 2025, 26, 1670. https://doi.org/10.3390/ijms26041670
Rykova EY, Klimontov VV, Shmakova E, Korbut AI, Merkulova TI, Kzhyshkowska J. Anti-Inflammatory Effects of SGLT2 Inhibitors: Focus on Macrophages. International Journal of Molecular Sciences. 2025; 26(4):1670. https://doi.org/10.3390/ijms26041670
Chicago/Turabian StyleRykova, Elena Y., Vadim V. Klimontov, Elena Shmakova, Anton I. Korbut, Tatyana I. Merkulova, and Julia Kzhyshkowska. 2025. "Anti-Inflammatory Effects of SGLT2 Inhibitors: Focus on Macrophages" International Journal of Molecular Sciences 26, no. 4: 1670. https://doi.org/10.3390/ijms26041670
APA StyleRykova, E. Y., Klimontov, V. V., Shmakova, E., Korbut, A. I., Merkulova, T. I., & Kzhyshkowska, J. (2025). Anti-Inflammatory Effects of SGLT2 Inhibitors: Focus on Macrophages. International Journal of Molecular Sciences, 26(4), 1670. https://doi.org/10.3390/ijms26041670