Nanomechanical Characterization of E-Cigarette-Induced Lung Endothelial Dysfunction: Roles of Cortactin and Mitochondrial Reactive Oxygen Species
Abstract
1. Introduction
2. Results
2.1. E-Cigarette Exposure Induces Cytoskeletal Rearrangement and Gap Formation in Lung ECs
2.2. Trans-Endothelial Resistance Is Decreased by E-Cigarette Exposure in a Dose-Dependent Manner in Lung ECs
2.3. Elastic Modulus Magnitude Is Increased in Lung ECs by E-Cig Exposure
2.4. Cortactin Expression Modulates the Lung Barrier Effects of E-Cigarettes
2.5. Role of MitoROS in E-Cig-Induced Lung EC Permeability
2.6. Mitochondrial ROS Participates in E-Cig-Induced Elastic Modulus Changes in Lung ECs
2.7. CTTN Expression Regulates E-Cig-Induced Elastic Modulus Responses in Lung Endothelial Cells
3. Discussion
3.1. Background
3.2. Summary and Relevance of Current Observations
3.3. Limitations
3.4. Conclusions and Future Directions
4. Materials and Methods
4.1. Cell Culture
4.2. E-Cigarette Preparation
4.3. siRNA Transfection
4.4. Immunofluorescence Microscopy
4.5. Reagents
4.6. Trans-Endothelial Monolayer Electrical Resistance (TEER) Measurements
4.7. AFM Imaging
4.8. Statistical Significance and Data Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AFM | Atomic force microscopy |
| CDC | Centers for Disease Control and Prevention |
| COPD | Chronic obstructive pulmonary disorder |
| CS | Cigarette smoke |
| CTTN | Cortactin |
| ECs | Endothelial cells |
| ECIS | Electric cell–substrate impedance sensing |
| EVALI | E-cig-induced acute lung injury |
| E-cigs | E-cigarettes |
| FDA | Food and Drug Administration |
| HRP | Horseradish peroxidase |
| HPAECs | Human pulmonary artery endothelial cells |
| mitoROS | Mitochondrial reactive oxygen species |
| MT | MitoTEMPO |
| OLS | Optical lever sensitivity |
| TEER | Trans-endothelial electrical resistance |
| Y | Young’s modulus |
References
- Hajek, P.; Etter, J.-F.; Benowitz, N.; Eissenberg, T.; McRobbie, H. Electronic cigarettes: Review of use, content, safety, effects on smokers and potential for harm and benefit. Addiction 2014, 109, 1801–1810. [Google Scholar] [CrossRef]
- Dockrell, M.; Morrison, R.; Bauld, L.; McNeill, A. E-cigarettes: Prevalence and attitudes in Great Britain. Nicotine Tob. Res. 2013, 15, 1737–1744. [Google Scholar] [CrossRef]
- CDC. Centers for Disease Control and Prevention National Youth Tobacco Survey (NYTS); CDC: Atlanta, GA, USA, 2024; p. 15.
- U.S. FOOD & DRUG. FDA’s Youth Tobacco Prevention Plan; U.S. FOOD & DRUG: Silver Spring, MD, USA, 2024; p. 29.
- Bizoń, M.; Maciejewski, D.; Kolonko, J. E-cigarette or vaping product use-associated acute lung injury (EVALI) as a therapeutic problem in anaesthesiology and intensive care departments. Anaesthesiol. Intensive Ther. 2020, 52, 219–225. [Google Scholar] [CrossRef]
- Morjaria, J.B.; Mondati, E.; Polosa, R. E-cigarettes in patients with COPD: Current perspectives. Int. J. Chron. Obs. Pulm. Dis. 2017, 12, 3203–3210. [Google Scholar] [CrossRef] [PubMed]
- Kalininskiy, A.; Bach, C.T.; Nacca, N.E.; Ginsberg, G.; Marraffa, J.; Navarette, K.A.; McGraw, M.D.; Croft, D.P. E-cigarette, or vaping, product use associated lung injury (EVALI): Case series and diagnostic approach. Lancet Respir. Med. 2019, 7, 1017–1026. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, W.; Moshensky, A.; Shakir, Z.; Khan, R.; Crotty Alexander, L.E.; Ware, L.B.; Aldaz, C.M.; Jacobson, J.R.; Dudek, S.M.; et al. Cigarette Smoke and Nicotine-Containing Electronic-Cigarette Vapor Downregulate Lung WWOX Expression, Which Is Associated with Increased Severity of Murine Acute Respiratory Distress Syndrome. Am. J. Respir. Cell Mol. Biol. 2021, 64, 89–99. [Google Scholar] [CrossRef]
- Khalil, C.; Chahine, J.B.; Haykal, T.; Al Hageh, C.; Rizk, S.; Khnayzer, R.S. E-cigarette aerosol induced cytotoxicity, DNA damages and late apoptosis in dynamically exposed A549 cells. Chemosphere 2021, 263, 127874. [Google Scholar] [CrossRef]
- Anderson, C.; Majeste, A.; Hanus, J.; Wang, S. E-Cigarette Aerosol Exposure Induces Reactive Oxygen Species, DNA Damage, and Cell Death in Vascular Endothelial Cells. Toxicol. Sci. 2016, 154, 332–340. [Google Scholar] [CrossRef]
- Park, J.-A.; Crotty Alexander, L.E.; Christiani, D.C. Vaping and lung inflammation and injury. Annu. Rev. Physiol. 2022, 84, 611–629. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bleher, R.; Brown, M.E.; Garcia, J.G.N.; Dudek, S.M.; Shekhawat, G.S.; Dravid, V.P. Nano-Biomechanical Study of Spatio-Temporal Cytoskeleton Rearrangements that Determine Subcellular Mechanical Properties and Endothelial Permeability. Sci. Rep. 2015, 5, 11097. [Google Scholar] [CrossRef] [PubMed]
- Birukova, A.A.; Arce, F.T.; Moldobaeva, N.; Dudek, S.M.; Garcia, J.G.N.; Lal, R.; Birukov, K.G. Endothelial permeability is controlled by spatially defined cytoskeletal mechanics: Atomic force microscopy force mapping of pulmonary endothelial monolayer. Nanomedicine 2009, 5, 30–41. [Google Scholar] [CrossRef]
- Bandela, M.; Letsiou, E.; Natarajan, V.; Ware, L.B.; Garcia, J.G.N.; Singla, S.; Dudek, S.M. Cortactin modulates lung endothelial apoptosis induced by cigarette smoke. Cells 2021, 10, 2869. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Gottlieb, E.; Rounds, S. Effects of cigarette smoke on pulmonary endothelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 314, L743–L756. [Google Scholar] [CrossRef] [PubMed]
- Tomar, A.; Lawson, C.; Ghassemian, M.; Schlaepfer, D.D. Cortactin as a target for FAK in the regulation of focal adhesion dynamics. PLoS ONE 2012, 7, e44041. [Google Scholar] [CrossRef]
- Bandela, M.; Belvitch, P.; Garcia, J.G.N.; Dudek, S.M. Cortactin in lung cell function and disease. Int. J. Mol. Sci. 2022, 23, 4606. [Google Scholar] [CrossRef]
- Arce, F.T.; Younger, S.; Gaber, A.A.; Mascarenhas, J.B.; Rodriguez, M.; Dudek, S.M.; Garcia, J.G. Lamellipodia dynamics and microrheology in endothelial cell paracellular gap closure. Biophys. J. 2023, 122, 4730–4747. [Google Scholar] [CrossRef]
- Gavara, N.; Chadwick, R.S. Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips. Nat. Nanotechnol. 2012, 7, 733–736. [Google Scholar] [CrossRef]
- Guo, Q.; Xia, Y.; Sandig, M.; Yang, J. Characterization of cell elasticity correlated with cell morphology by atomic force microscope. J. Biomech. 2012, 45, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Cross, S.E.; Jin, Y.-S.; Rao, J.; Gimzewski, J.K. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2007, 2, 780–783. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Condeelis, J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta 2007, 1773, 642–652. [Google Scholar] [CrossRef]
- Lekka, M.; Gil, D.; Pogoda, K.; Dulińska-Litewka, J.; Jach, R.; Gostek, J.; Klymenko, O.; Prauzner-Bechcicki, S.; Stachura, Z.; Wiltowska-Zuber, J.; et al. Cancer cell detection in tissue sections using AFM. Arch. Biochem. Biophys. 2012, 518, 151–156. [Google Scholar] [CrossRef]
- Iyer, S.; Gaikwad, R.M.; Subba-Rao, V.; Woodworth, C.D.; Sokolov, I. Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat. Nanotechnol. 2009, 4, 389–393. [Google Scholar] [CrossRef]
- Sun, X.; Sun, B.; Sammani, S.; Dudek, S.M.; Belvitch, P.; Camp, S.M.; Zhang, D.; Bime, C.; Garcia, J.G. Genetic and epigenetic regulation of cortactin (CTTN) by inflammatory factors and mechanical stress in human lung endothelial cells. Biosci. Rep. 2024, 44, BSR20231934. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Letsiou, E.; Wang, H.; Belvitch, P.; Meliton, L.N.; Brown, M.E.; Bandela, M.; Chen, J.; Garcia, J.G.N.; Dudek, S.M. MRSA-induced endothelial permeability and acute lung injury are attenuated by FTY720 S-phosphonate. Am. J. Physiol. Lung Cell Mol. Physiol. 2022, 322, L149–L161. [Google Scholar] [CrossRef]
- Mitra, S.; Epshtein, Y.; Sammani, S.; Quijada, H.; Chen, W.; Bandela, M.; Desai, A.A.; Garcia, J.G.; Jacobson, J.R. UCHL1, a deubiquitinating enzyme, regulates lung endothelial cell permeability in vitro and in vivo. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 320, L497–L507. [Google Scholar] [CrossRef]
- Suryadevara, V.; Huang, L.; Kim, S.-J.; Cheresh, P.; Shaaya, M.; Bandela, M.; Fu, P.; Feghali-Bostwick, C.; Di Paolo, G.; Kamp, D.W.; et al. Role of phospholipase D in bleomycin-induced mitochondrial reactive oxygen species gen-eration, mitochondrial DNA damage, and pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 317, L175–L187. [Google Scholar] [CrossRef]
- Layden, J.E.; Ghinai, I.; Pray, I.; Kimball, A.; Layer, M.; Tenforde, M.W.; Navon, L.; Hoots, B.; Salvatore, P.P.; Elderbrook, M.; et al. Pulmonary Illness Related to E-Cigarette Use in Illinois and Wisconsin—Final Report. N. Engl. J. Med. 2020, 382, 903–916. [Google Scholar] [CrossRef]
- King, B.A.; Gammon, D.G.; Marynak, K.L.; Rogers, T. Electronic Cigarette Sales in the United States, 2013–2017. JAMA 2018, 320, 1379–1380. [Google Scholar] [CrossRef]
- Birukov, K.G.; Birukova, A.A.; Dudek, S.M.; Verin, A.D.; Crow, M.T.; Zhan, X.; DePaola, N.; Garcia, J.G. Shear stress-mediated cytoskeletal remodeling and cortactin translocation in pulmonary endothelial cells. Am. J. Respir. Cell Mol. Biol. 2002, 26, 453–464. [Google Scholar] [CrossRef]
- Schweitzer, K.S.; Chen, S.X.; Law, S.; Van Demark, M.; Poirier, C.; Justice, M.J.; Hubbard, W.C.; Kim, E.S.; Lai, X.; Wang, M.; et al. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am. J. Physiol. Lung Cell Mol. Physiol. 2015, 309, L175–L187. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, L.; Han, D.D.; Xu, F.; Huang, A.; Derakhshandeh, R.; Rao, P.; Whitlatch, A.; Cheng, J.; Keith, R.J.; Hamburg, N.M.; et al. Chronic E-Cigarette Use Impairs Endothelial Function on the Physiological and Cellular Levels. Arter. Thromb. Vasc. Biol. 2022, 42, 1333–1350. [Google Scholar] [CrossRef]
- Demosthenous, C.; Evangelidis, P.; Gatsis, A.; Mitroulis, I.; Vakalopoulou, S.; Vardi, A.; Bountoura, S.; Sakellari, I.; Gavriilaki, E. Endothelial Injury Following CAR-T Cell Immunotherapy for Hematological Malignancies. Cancers 2025, 17, 2876. [Google Scholar] [CrossRef]
- Malek, A.M.; Izumo, S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J. Cell Sci. 1996, 109, 713–726. [Google Scholar] [CrossRef]
- Janmey, P.A.; Miller, R.T. Mechanisms of mechanical signaling in development and disease. J. Cell Sci. 2011, 124, 9–18. [Google Scholar] [CrossRef]
- Htwe, Y.M.; Wang, H.; Belvitch, P.; Meliton, L.; Bandela, M.; Letsiou, E.; Dudek, S.M. Group V Phospholipase A2 Mediates Endothelial Dysfunction and Acute Lung Injury Caused by Methicillin-Resistant Staphylococcus Aureus. Cells 2021, 10, 1731. [Google Scholar] [CrossRef]
- Kihara, T.; Nakamura, C.; Suzuki, M.; Han, S.-W.; Fukazawa, K.; Ishihara, K.; Miyake, J. Development of a method to evaluate caspase-3 activity in a single cell using a nanoneedle and a fluorescent probe. Biosens. Bioelectron. 2009, 25, 22–27. [Google Scholar] [CrossRef]
- Hohlbauch, S. Nanomechanical and viscoelastic measurements in biological atomic force microscopy (AFM). Biophys. J. 2016, 110, 498a–499a. [Google Scholar] [CrossRef][Green Version]
- Bucharskaya, A.B.; Yanina, I.Y.; Atsigeida, S.V.; Genin, V.D.; Lazareva, E.N.; Navolokin, N.A.; Dyachenko, P.A.; Tuchina, D.K.; Tuchina, E.S.; Genina, E.A.; et al. Optical clearing and testing of lung tissue using inhalation aerosols: Prospects for monitoring the action of viral infections. Biophys. Rev. 2022, 14, 1005–1022. [Google Scholar] [CrossRef]
- Oliveira, L.R.; Ferreira, R.M.; Pinheiro, M.R.; Silva, H.F.; Tuchin, V.V.; Oliveira, L.M. Broadband spectral verification of optical clearing reversibility in lung tissue. J. Biophotonics 2023, 16, e202200185. [Google Scholar] [CrossRef]
- Braet, F.; Wisse, E. AFM imaging of fenestrated liver sinusoidal endothelial cells. Micron 2012, 43, 1252–1258. [Google Scholar] [CrossRef]
- Hossen, F.; Geng, X.; Sun, G.Y.; Yao, X.; Lee, J.C. Oligomeric Amyloid-β and Tau Alter Cell Adhesion Properties and Induce Inflammatory Responses in Cerebral Endothelial Cells Through the RhoA/ROCK Pathway. Mol. Neurobiol. 2024, 61, 8759–8776. [Google Scholar] [CrossRef]
- Jalali, S.; Tafazzoli-Shadpour, M.; Haghighipour, N.; Omidvar, R.; Safshekan, F. Regulation of Endothelial Cell Adherence and Elastic Modulus by Substrate Stiffness. Cell Commun. Adhes. 2015, 22, 79–89. [Google Scholar] [CrossRef]
- Owen, D.S. Toward a better modulus at shallow indentations-Enhanced tip and sample characterization for quantitative atomic force microscopy. Microsc. Res. Tech. 2023, 86, 84–96. [Google Scholar] [CrossRef]
- Targosz-Korecka, M.; Jaglarz, M.; Malek-Zietek, K.E.; Gregorius, A.; Zakrzewska, A.; Sitek, B.; Rajfur, Z.; Chlopicki, S.; Szymonski, M. AFM-based detection of glycocalyx degradation and endothelial stiffening in the db/db mouse model of diabetes. Sci. Rep. 2017, 7, 15951. [Google Scholar] [CrossRef]
- Trache, A.; Trzeciakowski, J.P.; Gardiner, L.; Sun, Z.; Muthuchamy, M.; Guo, M.; Yuan, S.Y.; Meininger, G.A. Histamine effects on endothelial cell fibronectin interaction studied by atomic force microscopy. Biophys. J. 2005, 89, 2888–2898. [Google Scholar] [CrossRef]
- Le Master, E.; Paul, A.; Lazarko, D.; Aguilar, V.; Ahn, S.J.; Lee, J.C.; Minshall, R.D.; Levitan, I. Caveolin-1 is a primary determinant of endothelial stiffening associated with dyslipidemia, disturbed flow, and ageing. Sci. Rep. 2022, 12, 17822. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandela, M.; Geng, X.; Garcia, J.G.N.; Lee, J.C.; Dudek, S.M. Nanomechanical Characterization of E-Cigarette-Induced Lung Endothelial Dysfunction: Roles of Cortactin and Mitochondrial Reactive Oxygen Species. Int. J. Mol. Sci. 2025, 26, 12104. https://doi.org/10.3390/ijms262412104
Bandela M, Geng X, Garcia JGN, Lee JC, Dudek SM. Nanomechanical Characterization of E-Cigarette-Induced Lung Endothelial Dysfunction: Roles of Cortactin and Mitochondrial Reactive Oxygen Species. International Journal of Molecular Sciences. 2025; 26(24):12104. https://doi.org/10.3390/ijms262412104
Chicago/Turabian StyleBandela, Mounica, Xue Geng, Joe G. N. Garcia, James C. Lee, and Steven M. Dudek. 2025. "Nanomechanical Characterization of E-Cigarette-Induced Lung Endothelial Dysfunction: Roles of Cortactin and Mitochondrial Reactive Oxygen Species" International Journal of Molecular Sciences 26, no. 24: 12104. https://doi.org/10.3390/ijms262412104
APA StyleBandela, M., Geng, X., Garcia, J. G. N., Lee, J. C., & Dudek, S. M. (2025). Nanomechanical Characterization of E-Cigarette-Induced Lung Endothelial Dysfunction: Roles of Cortactin and Mitochondrial Reactive Oxygen Species. International Journal of Molecular Sciences, 26(24), 12104. https://doi.org/10.3390/ijms262412104

