Oxidative Stress, Antioxidant Cofactor Micronutrients, and Cognitive Outcomes in Childhood Obesity: Mechanisms, Evidence, and Therapeutic Opportunities
Abstract
1. Introduction
2. Pathogenesis of Childhood Obesity
3. Cognitive Impairment in Childhood Obesity
3.1. Animal Studies
3.2. Adult Human Studies
3.3. Childhood Studies
4. OS in Childhood Obesity
5. Microelements as Cofactors of AOD Enzymes
6. Deficiency of Micronutrients Associated with OS and Childhood Obesity
7. The Link Between OS Parameters, Mitochondrial Dysfunction, Deficiency of Micronutrient Cofactors for AOD, and Cognitive Disorders in Childhood Obesity
7.1. Mechanistic Structure: Hyperlipidemia/Hyperglycemia, ROS, Mitochondrial Permeability Transition Pore (mPTP), and Mitochondrial Quality Control
7.2. Tissue-Specific Mitochondrial Responses in Metabolic Stress
8. Clinical Relevance, Supplementation Trials, Methodological Limitations, and Emerging Mitochondrial-Targeted Therapies
8.1. Observational vs. Interventional Evidence for Micronutrients and Cognition in Children
8.2. Recent (2023–2025) Vitamin and Mineral Supplementation Trials Relevant to Cognition
8.3. Critical Appraisal of Supplementation Trials
8.4. Emerging Mitochondrial-Targeted Strategies
8.5. Methodological Considerations and Sources of Heterogeneity
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| OS | Oxidative stress |
| ROS | Reactive oxygen species |
| AOD | Antioxidant defense system |
| AH | Arterial hypertension |
| DM | Diabetes mellitus |
| BMI | Body mass index |
| IL | Interleukin |
| TNF-α | Tumor necrosis factor-alpha |
| MIP | Macrophage inflammatory protein |
| RANTES | Regulated on activation, normal T-cell expressed and presumably secreted |
| CD | Cluster of differentiation |
| ADHD | Attention-deficit/hyperactivity disorder |
| IQ | Intelligence quotient |
| FFA | Free fatty acids |
| NADPH | Nicotinamide adenine dinucleotide phosphate |
| MDA | Malondialdehyde |
| 8-OHdG | 8-hydroxy-2′-deoxyguanosine |
| NAD | Nicotinamide adenine dinucleotide |
| AGEs | Advanced glycation end products |
| NF-κB | Nuclear Factor-kappa B |
| iNOS | Inducible nitric oxide synthase |
| LDL | Low-density lipoproteins |
| HDL | High-density lipoproteins |
| PON | Paraoxonase |
| CoQ10 | Coenzyme Q10 |
| DNA | Deoxyribonucleic acid |
| AOPP | Advanced oxidation protein products |
| GSH | Reduced glutathione |
| SOD | Superoxide dismutase |
| CAT | Catalase |
| GPx | Glutathione peroxidases |
| GST | Glutathione-S-transferases |
| GR | Glutathione reductase |
| LPO | Lipid peroxidation |
| Cu,Zn-SOD | Copper-Zinc Superoxide Dismutase |
| Mn-SOD | Manganese Superoxide Dismutase |
| Trx | Thioredoxin |
| TrxR | Thioredoxin reductase |
| NO | Nitric oxide |
| FAD | Flavin adenine dinucleotide |
| ETC | Electron transport chain |
| mPTP | Mitochondrial permeability transition pore |
| MQC | Mitochondrial quality control |
| PGC-1α | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha |
| CRP | C-reactive protein |
| PAI-1 | Plasminogen activator inhibitor-1 |
| BDNF | Brain-derived neurotrophic factor |
| MDAL | MDA-lysine |
| SIRT | Sirtuin |
| mRNA | Messenger Ribonucleic Acid |
| IDA | Iron deficiency anemia |
| Mg | Magnesium |
| PPAR | Peroxisome proliferator-activated receptors (e.g., PPAR-γ) |
| 25(OH)D | 25-hydroxycholecalciferol |
| Se | Selenium |
| NAC | N-acetylcysteine |
References
- Lister, N.B.; Baur, L.A.; Felix, J.F.; Hill, A.J.; Marcus, C.; Reinehr, T.; Wabitsch, M. Child and adolescent obesity. Nat. Rev. Dis. Primers 2023, 9, 24. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Ni, Y.; Yi, C.; Fang, Y.; Ning, Q.; Shen, B.; Zhang, K.; Liu, Y.; Yang, L.; et al. Global Prevalence of Overweight and Obesity in Children and Adolescents: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2024, 178, 800–813. [Google Scholar] [CrossRef] [PubMed]
- Bizerea-Moga, T.O.; Pitulice, L.; Bizerea-Spiridon, O.; Moga, T.V. Exploring the Link between Oxidative Stress, Selenium Levels, and Obesity in Youth. Int. J. Mol. Sci. 2024, 25, 7276. [Google Scholar] [CrossRef]
- Zeljkovic, A.; Vekic, J.; Stefanovic, A. Obesity and dyslipidemia in early life: Impact on cardiometabolic risk. Metabolism 2024, 156, 155919. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, K.M.; Barkin, S.L.; Burant, C.F.; Carnell, S.; Demerath, E.; Donovan, S.M.; Yanovski, S.Z. Understanding risk and causal mechanisms for developing obesity in infants and young children: A National Institutes of Health workshop. Obes. Rev. 2024, 25, e13690. [Google Scholar] [CrossRef]
- Üney, E.; Baykara, H.B.; Avcil, S. Evaluation of executive functions in children and adolescents with obesity. Appl. Neuropsychol. Child. 2025, 14, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Tafuri, M.G.; Tafuri, D.; Latino, F. Relationship Between Obesity and Impairment of Cognitive Functions: An Investigation into the Integrated Role of Nutritional Education and Physical Activity in Lower Secondary School. Nutrients 2025, 17, 2531. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, S.T.; Norris, T.; Garfield, V.; Richards, M.; Hughes, A.D. Early-life cumulative exposure to excess bodyweight and midlife cognitive function: Longitudinal analysis in three British birth cohorts. Lancet Healthy Longev. 2024, 5, e204–e213. [Google Scholar] [CrossRef]
- Lupu, A.; Fotea, S.; Jechel, E.; Starcea, I.M.; Ioniuc, I.; Knieling, A.; Nedelcu, A.H. Is oxidative stress-antioxidants imbalance the physiopathogenic core in pediatric obesity? Front. Immunol. 2024, 15, 1394869. [Google Scholar] [CrossRef]
- Darenskaya, M.A.; Yuzvak, N.A.; Rychkova, L.V.; Semenova, N.V.; Prokhorova, Z.V.; Mityukova, T.A.; Basalai, A.A.; Polulyakh, O.E.; Kolesnikova, L.I. Parameters of oxidative stress and inflammation factors in adolescents with exogenous constitutional obesity. Russ. Clin. Lab. Diagn. 2024, 69, 641–649. [Google Scholar] [CrossRef]
- Darenskaya, M.A.; Rychkova, L.V.; Kolesnikov, S.I.; Semenova, N.V.; Nikitina, O.A.; Lesnaya, A.S.; Kolesnikova, L.I. Oxidative Damage of DNA, Proteins and C-Reactive Protein Parameters in Girls and Boys with Exogenous Constitutional Obesity. Bull. Exp. Biol. Med. 2024, 176, 328–331. [Google Scholar] [CrossRef]
- Lesnaya, A.S.; Darenskaya, M.A.; Rychkova, L.V.; Semenova, N.V.; Prokhorova, Z.V.; Shevchuk, V.A.; Kolesnikova, L.I. The role of bioelements—Components of free radical oxidation—In the genesis of childhood obesity. Sib. Sci. Med. J. 2024, 44, 24–34. [Google Scholar] [CrossRef]
- Chen, S.; Li, Q.; Shi, H.; Li, F.; Duan, Y.; Guo, Q. New insights into the role of mitochondrial dynamics in oxidative stress-induced diseases. Biomed. Pharmacother. 2024, 178, 117084. [Google Scholar] [CrossRef] [PubMed]
- Dash, U.C.; Bhol, N.K.; Swain, S.K.; Samal, R.R.; Nayak, P.K.; Raina, V.; Panda, S.K.; Kerry, R.G.; Duttaroy, A.K.; Jena, A.B. Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharm. Sin. B 2025, 15, 15–34. [Google Scholar] [CrossRef]
- Hertiš Petek, T.; Homšak, E.; Svetej, M.; Marčun Varda, N. Metabolic Syndrome, Inflammation, Oxidative Stress, and Vitamin D Levels in Children and Adolescents with Obesity. Int. J. Mol. Sci. 2024, 25, 10599. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative eustress: The physiological role of oxidants. Sci. China Life Sci. 2023, 66, 1947–1948. [Google Scholar] [CrossRef] [PubMed]
- Darenskaya, M.; Kolesnikova, L.; Kolesnikov, S. The Association of Respiratory Viruses with Oxidative Stress and Antioxidants. Implications for the COVID-19 Pandemic. Curr. Pharm. Des. 2021, 27, 1618–1627. [Google Scholar] [CrossRef] [PubMed]
- Semenova, N.; Garashchenko, N.; Kolesnikov, S.; Darenskaya, M.; Kolesnikova, L. Gut Microbiome Interactions with Oxidative Stress: Mechanisms and Consequences for Health. Pathophysiology 2024, 31, 309–330. [Google Scholar] [CrossRef]
- Sies, H.; Mailloux, R.J.; Jakob, U. Fundamentals of redox regulation in biology. Nat. Rev. Mol. Cell Biol. 2024, 25, 701–719. [Google Scholar] [CrossRef]
- Semenova, N.V.; Rychkova, L.V.; Darenskaya, M.A.; Kolesnikov, S.I.; Nikitina, O.A.; Petrova, A.G.; Vyrupaeva, E.V.; Kolesnikova, L.I. Superoxide dismutase activity in male and female patients of different age with moderate COVID-19. Bull. Exp. Biol. Med. 2022, 173, 51–53. [Google Scholar] [CrossRef]
- Tippairote, T.; Hoonkaew, P.; Suksawang, A.; Tippairote, P. From adaptation to exhaustion: Defining exposure-related malnutrition as a bioenergetic phenotype of aging. Biogerontology 2025, 26, 161. [Google Scholar] [CrossRef] [PubMed]
- Smail, S.W.; Ismail, B.A.; Maghdid, I.S.; Flaih, A.H.; Janson, C. Antioxidant and oxidative enzymes, genetic variants, and cofactors as prognostic biomarkers of COVID-19 severity and mortality: A systematic review. Front. Mol. Biosci. 2025, 12, 1700263. [Google Scholar] [CrossRef] [PubMed]
- Naomi, R.; Teoh, S.H.; Embong, H.; Balan, S.S.; Othman, F.; Bahari, H.; Yazid, M.D. The Role of Oxidative Stress and Inflammation in Obesity and Its Impact on Cognitive Impairments—A Narrative Review. Antioxidants 2023, 12, 1071. [Google Scholar] [CrossRef] [PubMed]
- Darenskaya, M.A.; Rychkova, L.V.; Semenova, N.V.; Belkova, N.L.; Kolesnikova, L.I. The Role of Oxidative Stress and Changes in the Composition of the Gut Microbiota in the Genesis of Adolescent Obesity. Int. J. Biomed. 2022, 12, 344–348. [Google Scholar] [CrossRef]
- Darenskaya, M.A.; Rychkova, L.V.; Kolesnikov, S.I.; Kravtsova, O.V.; Semenova, N.V.; Brichagina, A.; Bliznyuk, A.; Yuzvak, N.; Rashidova, M.A.; Kolesnikova, L.I. Oxidative Stress Index Levels in Asian Adolescents with Exogenous-Constitutional Obesity. Int. J. Biomed. 2022, 12, 142–146. [Google Scholar] [CrossRef]
- Aniśko, B.; Siatkowski, I.; Wójcik, M. Body mass composition analysis as a predictor of overweight and obesity in children and adolescents. Front. Public Health 2024, 12, 1371420. [Google Scholar] [CrossRef]
- Men, J.; Zhu, G.; Li, Y.; Wu, S.; Yu, Z.; Wang, P.; Hou, X. Impact of exercise on cardiovascular disease risk in overweight or obese children and adolescents: A systematic review and meta-analysis. BMC Sports Sci. Med. Rehabil. 2025, 17, 225. [Google Scholar] [CrossRef]
- Umano, G.R.; Bellone, S.; Buganza, R.; Calcaterra, V.; Corica, D.; De Sanctis, L.; Di Sessa, A.; Faienza, M.F.; Improda, N.; Licenziati, M.R.; et al. Early Roots of Childhood Obesity: Risk Factors, Mechanisms, and Prevention Strategies. Int. J. Mol. Sci. 2025, 26, 7388. [Google Scholar] [CrossRef]
- Barakat, R.; Silva-José, C.; Sánchez-Polán, M.; Zhang, D.; Lobo, P.; De Roia, G.; Montejo, R. Physical Activity during Pregnancy and Childhood Obesity: Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 3726. [Google Scholar] [CrossRef] [PubMed]
- Magkos, F.; Sørensen, T.I.; Raubenheimer, D.; Dhurandhar, N.V.; Loos, R.J.; Bosy-Westphal, A.; Astrup, A. On the pathogenesis of obesity: Causal models and missing pieces of the puzzle. Nat. Metab. 2024, 6, 1856–1865. [Google Scholar] [CrossRef]
- Nisoli, E.; Cinti, S. What defines a cell type? Perspectives from adipocyte biology: Adipocyte and Cell Biology. Int. J. Obes. 2025, 49, 751–754. [Google Scholar] [CrossRef]
- Savulescu-Fiedler, I.; Mihalcea, R.; Dragosloveanu, S.; Scheau, C.; Baz, R.O.; Caruntu, A.; Scheau, A.-E.; Caruntu, C.; Benea, S.N. The Interplay between Obesity and Inflammation. Life 2024, 14, 856. [Google Scholar] [CrossRef]
- Hemat Jouy, S.; Mohan, S.; Scichilone, G.; Mostafa, A.; Mahmoud, A.M. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024, 12, 2129. [Google Scholar] [CrossRef]
- Mityukova, T.A.; Basalai, A.A.; Poluliakh, O.E.; Darenskaya, M.A.; Rychkova, L.V.; Kolesnikov, S.I.; Semenova, N.V.; Kolesnikova, L.I. The level of sex hormones and corticosterone in female rats during modeling of visceral obesity, subsequent physical activity, and normalization of the diet. Bull. Exp. Biol. Med. 2024, 176, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Burananat, T.; Wilantho, A.; Kulalert, P.; Nanthapisal, S.; Tonglim, J.; Deetienin, W.; Wangkumhang, P.; Tongsima, S.; Thaweekul, P. The role of gut microbiota in obesity severity and metabolic risk in pediatric populations. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 103970. [Google Scholar] [CrossRef] [PubMed]
- Klimenko, E.S.; Belkova, N.L.; Romanitsa, A.I.; Pogodina, A.V.; Rychkova, L.V.; Darenskaya, M.A. Differences in gut microbiota composition and predicted metabolic functions: A pilot study of adolescents with normal weight and obesity. Bull. Exp. Biol. Med. 2022, 173, 628–632. [Google Scholar] [CrossRef] [PubMed]
- Klimenko, E.S.; Belkova, N.L.; Rychkova, L.V.; Darenskaya, M.A.; Tugarinova, O.A.; Semenova, N.V.; Savinova, Y.S.; Bugun, O.V.; Balzhirova, D.B.; Kolesnikova, L.I. Alpha diversity indices as indicators of the variability of gut microbiota in obese adolescents of different ethnicities. Bull. Exp. Biol. Med. 2024, 176, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Klimenko, E.S.; Belkova, N.L.; Smurova, N.E.; Pogodina, A.V.; Darenskaya, M.A.; Rychkova, L.V. Gut microbiota status in adolescents with obesity and normal weight. Klin. Lab. Diagn. (Russ. Clin. Lab. Diagn.) 2025, 70, 496–504. [Google Scholar] [CrossRef]
- Schmitt, L.O.; Gaspar, J.M. Obesity-induced brain neuroinflammatory and mitochondrial changes. Metabolites 2023, 13, 86. [Google Scholar] [CrossRef] [PubMed]
- Baghdadchi, Y.; White, C.; Dimitrov, E. Obesity Suppresses Hippocampal Neurogenesis and Impairs Memory and Executive Function in a Weight and Sex-Specific Manner. Physiol. Behav. 2025, 303, 115141. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, T.E.; Mityukova, T.A.; Basalai1, A.A.; Darenskaya, M.A.; Rychkova, L.V.; Kolesnikov, S.I.; Semenova, N.V.; Kolesnikova, L.I. Histostructure of the hippocampus in male and female Wistar rats in diet-induced obesity and diet correction. Bull. Exp. Biol. Med. 2024, 178, 610–617. [Google Scholar] [CrossRef]
- Abou Elghait, A.T.; Abdelfattah, A.A.; Abbass Abdullah, T.; Maghreby, N.; Thabet, R.M.; Omar Kamel, E. Effects of intermittent fasting on high fat diet induced neuronal changes in rat hippocampus proper: Molecular, histological and immunohistochemical study. Ultrastruct. Pathol. 2025, 49, 475–499. [Google Scholar] [CrossRef]
- Trushina, E.N.; Riger, N.A.; Timonin, A.N.; Devyatov, A.A.; Aksenov, I.V.; Tutelyan, V.A. Evaluation of the regulatory effect of carnosine and alpha-lipoic acid on the cytokine profile of the cerebral cortex of Wistar rats under induced obesity. Obes. Metab. 2023, 20, 22–33. [Google Scholar] [CrossRef]
- Mazzoli, A.; Spagnuolo, M.S.; De Palma, F.; Petecca, N.; Di Porzio, A.; Barrella, V.; Troise, A.D.; Culurciello, R.; Pascale, S.D.; Scaloni, A.; et al. Limosilactobacillus reuteri DSM 17938 relieves inflammation, endoplasmic reticulum stress, and autophagy in hippocampus of western diet-fed rats by modulation of systemic inflammation. BioFactors 2024, 50, 1236–1250. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.; Silva, E.G.; Moreira, F.C.; Gomes, G.F.; Cussat, G.R.; Silva, B.S.R.; da Silva, M.C.M.; de Barros Fernandes, H.; de Sena Oliveira, C.; de Oliveira Guarnieri, L.; et al. Chronic hyperpalatable diet induces impairment of hippocampal-dependent memories and alters glutamatergic and fractalkine axis signaling. Sci. Rep. 2023, 13, 16358. [Google Scholar] [CrossRef]
- Mityukova, T.A.; Poluliakh, O.Y.; Chudilovskaya, K.N.; Basalai, A.A.; Rudnichenko, Y.A.; Khrustaleva, T.A.; Hubkin, S.V. Effects of diet-induced obesity and its correction on sex hormone levels and behavioral features of male Wistar rats. Dokl. Natl. Acad. Sci. Belarus. 2022, 66, 433–443. [Google Scholar] [CrossRef]
- Lu, P.; Gao, C.X.; Luo, F.J.; Huang, Y.T.; Gao, M.M.; Long, Y.S. Hippocampal proteomic changes in high-fat diet-induced obese mice associated with memory decline. J. Nutr. Biochem. 2024, 125, 109554. [Google Scholar] [CrossRef]
- Sadler, J.R.; Thapaliya, G.; Ranganath, K.; Gabay, A.; Chen, L.; Smith, K.R.; Carnell, S. Paediatric obesity and metabolic syndrome associations with cognition and the brain in youth: Current evidence and future directions. Pediatr. Obes. 2023, 18, e13042. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Hu, Y.; Li, G.; Zhang, W.; Ji, W.; Feng, Y.; La, Z.; Li, M.; Yan, Z.; Manza, P.; et al. Obesity is associated with progressive brain structural changes. Obesity 2025, 33, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Okudzhava, L.; Schulz, S.; Pilorz, V.; Oster, H.; Fischi-Gomez, E.; Girard, G.; Machann, J.; Thiran, J.-P.; Münte, T.F.; Heldmann, M. The interplay between white adipose tissue, adipokines, and structural gray matter changes. Hum. Brain Mapp. 2024, 45, e26752. [Google Scholar] [CrossRef]
- Li, P.; Zhu, X.; Huang, C.; Tian, S.; Li, Y.; Qiao, Y.; Tian, D. Effects of obesity on aging brain and cognitive decline: A cohort study from the UK Biobank. IBRO Neurosci. Rep. 2025, 18, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Puri, S.; Shaheen, M.; Grover, B. Nutrition and cognitive health: A life course approach. Front. Public Health 2023, 11, 1023907. [Google Scholar] [CrossRef]
- Mutalova, E.G.; Nafikova, A.I.; Nigmatullina, A.E.; Galyautdinova, V.R.; Kamaltdinova, G.Y.; Asadullina, G.V.; Samigullina, L.I.; Rustemova, Z.Y.; Sadikova, R.I.; Frid, S.A.; et al. Relationship between cognitive impairment and obesity. Bull. Contemp. Clin. Med. 2025, 18, 115–123. [Google Scholar] [CrossRef]
- Cherevikova, I.A.; Myasishchev, N.A.; Polyakov, V.M.; Rychkova, L.V. Cognitive impairments in patients with overweight and obesity. Acta Biomed. Sci. 2021, 6, 163–173. [Google Scholar] [CrossRef]
- Le Thuc, O.; García-Cáceres, C. Obesity-Induced inflammation: Connecting the periphery to the brain. Nat. Metab. 2024, 6, 1237–1252. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Li, G.; Ji, W.; Zhang, Y.; Wu, F.; Hu, Y.; Zhang, Y. Obesity is associated with decreased gray matter volume in children: A longitudinal study. Cereb. Cortex 2023, 33, 3674–3682. [Google Scholar] [CrossRef]
- Xu, H.; Xu, C.; Xu, J. Altered gray matter structural covariance networks in young adults with obesity. J. Obes. 2024, 49, 801–808. [Google Scholar] [CrossRef]
- Pearce, A.L.; Fuchs, B.; Adise, S.; Masterson, T.D.; Fearnbach, N.; English, L.; Keller, K.L. Loss of control eating in children is associated with altered cortical and subcortical brain structure. Front. Psychol. 2024, 14, 1237591. [Google Scholar] [CrossRef]
- Samoilova, Y.G.; Matveeva, M.V.; Spirina, L.V.; Podchinenova, D.V.; Oleinik, O.A.; Galyukova, D.E. Neuroinflammation in Obese Children. Bull. Exp. Biol. Med. 2024, 176, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Fan, Y.; Zhang, M.; Sun, Y. School-Based Aerobic Exercise Promotes Physical Fitness and Cognition in Children with Overweight. Res. Sq. 2023; preprint. [Google Scholar] [CrossRef]
- Cordeiro, F.B.; Moura-Silva, M.G.; Domingues, M.R.D.S.; de Souza, M.C.; Rocha, R.; Esteban-Cornejo, I.; Bento-Torres, J. Inhibitory control mediates the association between body mass index and math performance in children: A cross-sectional study. PLoS ONE 2024, 19, e0296635. [Google Scholar] [CrossRef] [PubMed]
- Moss, S.; Zhang, X.; Tamplain, P.; Gu, X. Overweight/obesity and socio-demographic disparities in children’s motor and cognitive function. Front. Psychol. 2023, 14, 1134647. [Google Scholar] [CrossRef]
- Dellenmark-Blom, M.; Järvholm, K.; Sjögren, L.; Levinsson, A.; Dahlgren, J. Family screening for neurodevelopmental problems and its associations with child cognitive function enable tailored treatment for childhood obesity. Acta Paediatr. 2024, 113, 2107–2118. [Google Scholar] [CrossRef]
- Yun, S.Y.; Yun, J.Y.; Lim, C.; Oh, H.; Son, E.; Shin, K.; Kim, Y.H. Exploring the complex link between obesity and intelligence: Evidence from systematic review, updated meta-analysis, and Mendelian randomization. Obes. Rev. 2024, 25, e13827. [Google Scholar] [CrossRef]
- Wang, P.; Meng, Y.; Tong, J.; Jiang, T. Effects of exercise intervention on executive function in children with overweight and obesity: A systematic review and meta-analysis. PeerJ 2025, 13, e19273. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, X.; Zhang, L. Executive Function Response to Moderate-to-High-Intensity Rope Skipping in Overweight Adolescents Aged 12–14: A Preliminary Study. J. Funct. Morphol. Kinesiol. 2025, 10, 152. [Google Scholar] [CrossRef]
- Goel, A.; Reddy, S.; Goel, P.; Spoorti, R. Causes, consequences, and preventive strategies for childhood obesity: A narrative review. Cureus 2024, 16, e64985. [Google Scholar] [CrossRef] [PubMed]
- Mena, S.C.M.; Portela, L.L.; Escobar, J.C.M.; Ureña, O.S.; Palacio, L.M.A.; Angarita, V.N.; Rizzo, R.R. Social Stigma of Overweight and Obesity in Elementary School Children: A Systematic Review. Rev. Investig. Innovación Cienc. Salud RIICS 2025, 7, 25. [Google Scholar] [CrossRef]
- Churchill, B.F.; Gyawali, B.; Sabia, J.J. Anti-Bullying Laws and Weight-Based Disparities in Suicidality. Health Econ. 2025, 34, 1977–2003. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Vicente, M.; Herranz-López, M. The Interplay Between Oxidative Stress and Lipid Composition in Obesity-Induced Inflammation: Antioxidants as Therapeutic Agents in Metabolic Diseases. Int. J. Mol. Sci. 2025, 26, 8544. [Google Scholar] [CrossRef] [PubMed]
- Cota-Magaña, A.I.; Vazquez-Moreno, M.; Rocha-Aguado, A.; Ángeles-Mejía, S.; Valladares-Salgado, A.; Díaz-Flores, M.; Cruz, M. Obesity is associated with oxidative stress markers and antioxidant enzyme activity in Mexican children. Antioxidants 2024, 13, 457. [Google Scholar] [CrossRef]
- Darenskaya, M.A.; Rychkova, L.V.; Balzhirova, D.B.; Semenova, N.V.; Nikitina, O.A.; Lesnaya, A.; Yuzvak, N.; Rashidova, M.A.; Kolesnikova, L.I. The level of lipid peroxidation products and medium-molecular-weight peptides in adolescents with obesity. Int. J. Biomed. 2023, 13, 292–2695. [Google Scholar] [CrossRef]
- Silizertseva, O.A.; Darenskaya, M.A.; Rychkova, L.V.; Gutnik, I.N.; Astakhova, T.A.; Kolesnikova, L.I. Oxidative stress and exogenous constitutional obesity. Sib. Sci. Med. J. 2024, 44, 69–82. [Google Scholar] [CrossRef]
- Chandimali, N.; Bak, S.G.; Park, E.H.; Lim, H.J.; Won, Y.S.; Kim, E.K.; Park, S.; Lee, S.J. Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discov. 2025, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Lesnaya, A.S.; Semenova, N.V.; Darenskaya, M.A.; Rychkova, L.V.; Balzhirova, D.V.; Kolesnikova, L.I. Nitrosative stress in adolescents with exogenous constitutional obesity. Pediatr. Nutr. 2023, 21, 85–90. [Google Scholar] [CrossRef]
- Chauhan, S.; Saini, N.; Kataria, R. Role of Free Radicals in Diabetes. In Role of Free Radicals in Pathology; Apple Academic Press: Palm Bay, FL, USA, 2025; pp. 29–45. [Google Scholar]
- Darenskaya, M.A.; Kolesnikov, S.I.; Rychkova, L.V.; Kravtsova, O.V.; Grebenkina, L.A.; Kolesnikova, L.I. Girls with obesity: Lipid peroxidation—Antioxidant defense and lipid metabolism parameters relationship. Free. Radic. Biol. Med. 2022, 180 (Suppl. S1), S90. [Google Scholar] [CrossRef]
- Dhankhar, S.; Rohilla, M.; Chauhan, S.; Saini, M.; Mujwar, S. Role of Free Radicals in the Pathogenesis of Obesity. In Role of Free Radicals in Pathology; Apple Academic Press: Palm Bay, FL, USA, 2025; pp. 267–286. [Google Scholar]
- Kavey, R.E.W. Combined dyslipidemia in children and adolescents: A proposed new management approach. Curr. Atheroscler. Rep. 2023, 25, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Brandt-Heunemann, S.; Vogel, M.; Kiess, W.; Körner, A.; Blüher, M.; Meigen, C.; Wabitsch, M. Reference Values for Serum Leptin Levels in Children, Adolescents, and Adults with Normal Weight, Overweight, and Obesity. J. Clin. Endocrinol. Metab. 2025, dgaf439. [Google Scholar] [CrossRef]
- Mantle, D.; Hargreaves, I.P. Efficacy and Safety of Coenzyme Q10 Supplementation in Neonates, Infants and Children: An Overview. Antioxidants 2024, 13, 530. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, J.; Wang, Y.; Deng, F.; Deng, Z. Oxidative Stress: Signaling Pathways, Biological Functions, and Disease. MedComm 2025, 6, e70268. [Google Scholar] [CrossRef] [PubMed]
- Majeed, K.; Ali, H. Association of low-grade inflammation and oxidative stress with metabolic dysfunction in healthy obese individuals. AIMS Allergy Immunol. 2025, 9, 56–69. [Google Scholar] [CrossRef]
- Velasquez-Esparza, M.M.; Pérez-Treviño, P.; López-Vaquera, S.R.; López-Treviño, M.G.; Elizondo-Montemayor, L.; García-Rivas, G.; García, N. Analysis of Circulating Mitochondrial DNA in A Children Population with Obesity and Metabolic Syndrome. 2024; preprint. [Google Scholar] [CrossRef]
- Rojo, M.; Pérez, H.; Millán, A.L.; Pautasso, M.C.; Frechtel, G.D.; Cerrone, G.E. Relationship of mitochondrial DNA oxidation and content with metabolic syndrome and cardiovascular risk in obesity phenotypes. J. Obes. 2024, 2024, 3008093. [Google Scholar] [CrossRef]
- Khalil, W.J.; Akeblersane, M.; Khan, A.S.; Moin, A.S.M.; Butler, A.E. Environmental Pollution and the Risk of Developing Metabolic Disorders: Obesity and Diabetes. Int. J. Mol. Sci. 2023, 24, 8870. [Google Scholar] [CrossRef]
- Aradillas-García, C.; Vega-Cárdenas, M.; Vidal-Batres, M.; Portales-Pérez, D.P.; Gomez-Ojeda, A.; Luevano-Contreras, C.; Portales-Pérez, D. Soluble Receptor of Advanced Glycation End Products and Cardiometabolic Markers in Children. Cureus 2025, 17, e81680. [Google Scholar] [CrossRef]
- Halliwell, B. Understanding mechanisms of antioxidant action in health and disease. Nat. Rev. Mol. Cell Biol. 2024, 25, 13–33. [Google Scholar] [CrossRef]
- Darenskaya, M.A.; Yuzvak, N.A.; Rychkova, L.V.; Kolesnikov, S.I.; Semenova, N.V.; Prokhorova, Z.V.; Kolesnikova, L.I. Ethnic aspects of obesity in adolescents: Endogenous intoxication, activity of antioxidant enzymes, oxidative damage to proteins and DNA. Probl. Nutr. 2025, 94, 59–68. [Google Scholar] [CrossRef]
- Shkurat, M.A.; Mashkina, E.V.; Milyutina, N.P.; Shkurat, T.P. The role of polymorphism of redox-sensitive genes in the mechanisms of oxidative stress in obesity and metabolic diseases. Ecol. Genet. 2023, 21, 261–287. [Google Scholar] [CrossRef]
- Darenskaya, M.A.; Rychkova, L.V.; Kolesnikov, S.I.; Semenova, N.V.; Nikitina, O.A.; Brichagina, A.S.; Mikhalevich, I.M.; Kolesnikova, L.I. Biochemical status of obese male adolescents of different ethnicity: Discriminant analysis in the identification of the most informative indicators. Bull. Exp. Biol. Med. 2022, 173, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Vard, B.; Mahdieh, M.; Riahi, R.; Heidari-Beni, M.; Kelishadi, R. The Association Between Antioxidant Status and Excess Weight in Children: A Systematic Review and Meta-analysis. J. Pediatr. Rev. 2021, 9, 175–196. [Google Scholar] [CrossRef]
- Islam, M.R.; Akash, S.; Jony, M.H.; Alam, M.N.; Nowrin, F.T.; Rahman, M.M.; Thiruvengadam, M. Exploring the potential function of trace elements in human health: A therapeutic perspective. Mol. Cell. Biochem. 2023, 478, s11010–s11022. [Google Scholar] [CrossRef]
- González-Domínguez, Á.; Domínguez-Riscart, J.; Millán-Martínez, M.; Mateos-Bernal, R.M.; Lechuga-Sancho, A.M.; González-Domínguez, R. Trace elements as potential modulators of puberty-induced amelioration of oxidative stress and inflammation in childhood obesity. Biofactors 2023, 49, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Subošić, B.; Zdravković, V.; Ješić, M. Childhood obesity accelerates biological ageing: Is oxidative stress a link? Br. J. Nutr. 2024, 132, 227–235. [Google Scholar] [CrossRef]
- Saxena, P.; Selvaraj, K.; Khare, S.K.; Chaudhary, N. Superoxide dismutase as multipotent therapeutic antioxidant enzyme: Role in human diseases. Biotechnol. Lett. 2022, 44, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Rauf, A.; Fahad, F.I.; Emran, T.B.; Mitra, S.; Olatunde, A.; Shariati, M.A.; Rebezov, M.; Rengasamy, K.R.R.; Mubarak, M.S. Superoxide dismutase: An updated review on its health benefits and industrial applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 7282–7300. [Google Scholar] [CrossRef]
- Vašková, J.; Kočan, L.; Vaško, L.; Perjési, P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023, 28, 1447. [Google Scholar] [CrossRef]
- Deng, M.; Chen, Y.; Zhang, Z.; Zhang, H. Thioredoxin-Interacting protein is associated with obesity-induced insulin resistance in PCOS patients: A large-scale case–control study. Arch. Gynecol. Obstet. 2025, 312, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Catianis, A.G.; Virgolici, B.; Dogaru, C.B.; Popescu, L.A.; Miricescu, D.; Totan, A.; Virgolici, H.M.; Mohora, M. The Serum Selenium Level, the Activity of Some Selenodependent Enzymes and the Lipid Profile in Childhood Obesity. Rev. Chim. 2022, 71, 156–163. [Google Scholar] [CrossRef]
- Galasso, M.; Gambino, S.; Romanelli, M.G.; Donadelli, M.; Scupoli, M.T. Browsing the oldest antioxidant enzyme: Catalase and its multiple regulation in cancer. Free Radic. Biol. Med. 2021, 172, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, T. Iron-induced oxidative stress in human diseases. Cells 2022, 11, 2152. [Google Scholar] [CrossRef]
- Vivek, S.M.; Dayal, D.; Khaiwal, R.; Bharti, B.; Bhalla, A.; Singh, S.; Kaur, H.; Attri, S.V. Low serum copper and zinc concentrations in North Indian children with overweight and obesity. Pediatr. Endocrinol. Diabetes Metab. 2020, 26, 79–83. [Google Scholar] [CrossRef]
- Castillo-Valenzuela, O.; Duarte, L.; Arredondo, M.; Iñiguez, G.; Villarroel, L.; Pérez-Bravo, F. Childhood obesity and plasma micronutrient deficit of chilean children between 4 and 14 years old. Nutrients 2023, 15, 1707. [Google Scholar] [CrossRef]
- González-Domínguez, Á.; Jurado-Sumariva, L.; González-Domínguez, R. Association between childhood obesity, trace elements, and heavy metals: Recent discoveries and future perspectives. Obes. Rev. 2024, 25, e13764. [Google Scholar] [CrossRef] [PubMed]
- Grabeklis, A.R.; Skalny, A.V.; Ajsuvakova, O.P.; Skalnaya, A.A.; Mazaletskaya, A.L.; Klochkova, S.V.; Chang, S.J.S.; Nikitjuk, D.B.; Skalnaya, M.G.; Tinkov, A.A. A search for similar patterns in hair trace element and mineral content in children with down’s syndrome, obesity, and growth delay. Biol. Trace Elem. Res. 2020, 196, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Sharipova, M.M.; Ivkina, M.V.; Arkhangelskaya, A.N.; Gurevich, K.G. Role of microelements in the development of endocrine pathology. Hum. Ecol. 2022, 11, 753–760. [Google Scholar] [CrossRef]
- Escobedo-Monge, M.F.; Torres-Hinojal, M.C.; Barrado, E.; Escobedo-Monge, M.A.; Marugán-Miguelsanz, J.M. Zinc nutritional status in a series of children with chronic diseases: A cross-sectional study. Nutrients 2021, 13, 1121. [Google Scholar] [CrossRef] [PubMed]
- González-Domínguez, Á.; Millán-Martínez, M.; Domínguez-Riscart, J.; Lechuga-Sancho, A.M.; González-Domínguez, R. Metal homeostasis and exposure in distinct phenotypic subtypes of insulin resistance among children with obesity. Nutrients 2023, 15, 2347. [Google Scholar] [CrossRef]
- Nasab, H.; Rajabi, S.; Eghbalian, M.; Malakootian, M.; Hashemi, M.; Mahmoudi-Moghaddam, H. Association of As, Pb, Cr, and Zn urinary heavy metals levels with predictive indicators of cardiovascular disease and obesity in children and adolescents. Chemosphere 2022, 294, 133664. [Google Scholar] [CrossRef]
- Fontenelle, L.C.; Cardoso de Araújo, D.S.; da Cunha Soares, T.; Clímaco Cruz, K.J.; Henriques, G.S.; Marreiro, D.D.N. Nutritional status of selenium in overweight and obesity: A systematic review and meta-analysis. Clin. Nutr. 2022, 41, 862–884. [Google Scholar] [CrossRef]
- Błażewicz, A.; Szymańska, I.; Dolliver, W.; Suchocki, P.; Turło, J.; Makarewicz, A.; Skórzyńska-Dziduszko, K. Are obese patients with autism spectrum disorder more likely to be selenium deficient? Research findings on pre- and post-pubertal children. Nutrients 2020, 12, 3581. [Google Scholar] [CrossRef]
- Fontenelle, L.C.; de Paiva Sousa, M.; Dos Santos, L.R.; Cardoso, B.E.P.; de Sousa, T.G.V.; da Cunha Soares, T.; de Sousa Melo, S.R.; Morais, J.B.S.; da Silva Dias, T.M.; de Oliveira, F.E.; et al. Relationship between selenium nutritional status and markers of low-grade chronic inflammation in obese women. Biol. Trace Elem. Res. 2023, 201, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Berton, P.F.; Gambero, A. Hepcidin and inflammation associated with iron deficiency in childhood obesity-A systematic review. J. Pediatr. 2024, 100, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Doğan, G.; Andiran, N.; Çelik, N.; Uysal, S. Iron parameters, pro-hepcidin and soluble transferrin receptor levels in obese children. Minerva Pediatr. 2020, 72, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Giannini, C.; Polidori, N.; Saltarelli, M.A.; Chiarelli, F.; Basilico, R.; Mohn, A. Increased hepcidin levels and non-alcoholic fatty liver disease in obese prepubertal children: A further piece to the complex puzzle of metabolic derangements. J. Pediatr. Endocrinol. Metab. 2021, 35, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Cristancho, C.; Mogensen, K.M.; Robinson, M.K. Malnutrition in patients with obesity: An overview perspective. Nutr. Clin. Pract. 2024, 39, 1300–1316. [Google Scholar] [CrossRef] [PubMed]
- Darenskaya, M.A.; Rychkova, L.V.; Semenova, N.V.; Prokhorova, Z.V.; Tugarinova, O.A.; Mityukova, T.A.; Basalai, A.A.; Poluliakh, O.E.; Kolesnikova, L.I. Relationship of cytokine status parameters with the lipid peroxidation-antioxidant defense system in obese adolescents. Int. J. Biomed. 2023, 13, 79–83. [Google Scholar] [CrossRef]
- Aka, S.; Kilercik, M.; Arapoglu, M.; Semiz, S. The hepcidin and 25-OH-vitamin D levels in obese children as a potential mediator of the iron status. Clin. Lab. 2021, 67, 1154. [Google Scholar] [CrossRef]
- Ortíz Pérez, M.; Vázquez López, M.A.; Ibáñez Alcalde, M.; Galera Martínez, R.; Martín González, M.; Lendínez Molinos, F.; Bonillo Perales, A. Relationship between obesity and iron deficiency in healthy adolescents. Child Obes. 2020, 16, 440–447. [Google Scholar] [CrossRef]
- Lesnaya, A.S.; Darenskaya, M.A.; Rychkova, L.V.; Semenova, N.V.; Nikitina, O.A.; Grebenkina, L.A.; Kravtsova, O.V.; Prokhorova, Z.V.; Kolesnikova, L.I. Gender-related characteristics of bioelement status in Siberian adolescents with obesity. Pediatr. Nutr. 2023, 21, 81–87. [Google Scholar] [CrossRef]
- Cazzola, R.; Della Porta, M.; Piuri, G.; Maier, J.A. Magnesium: A Defense Line to Mitigate Inflammation and Oxidative Stress in Adipose Tissue. Antioxidants 2024, 13, 893. [Google Scholar] [CrossRef]
- Singh, S.; Awasthi, S.; Kumar, D.; Sarraf, S.R.; Pandey, A.K.; Agarwal, G.G.; Awasthi, A.; Anish, T.S.; Mathew, J.L.; Kar, S.; et al. Micronutrients and cognitive functions among urban school-going children and adolescents: A cross-sectional multicentric study from India. PLoS ONE 2023, 18, e0281247. [Google Scholar] [CrossRef] [PubMed]
- Trofin, D.M.; Sardaru, D.-P.; Trofin, D.; Onu, I.; Tutu, A.; Onu, A.; Onită, C.; Galaction, A.I.; Matei, D.V. Oxidative Stress in Brain Function. Antioxidants 2025, 14, 297. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Furman, R.; Axelsen, P.H.; Shchepinov, M.S. Free radical chain reactions and polyunsaturated fatty acids in brain lipids. ACS Omega 2022, 7, 25337–25345. [Google Scholar] [CrossRef] [PubMed]
- Farooqui, A.A.; Farooqui, T. Phospholipids, Sphingolipids, and Cholesterol-Derived Lipid Mediators and Their Role in Neurological Disorders. Int. J. Mol. Sci. 2024, 25, 10672. [Google Scholar] [CrossRef]
- Jelinek, M.; Jurajda, M.; Duris, K. Oxidative Stress in the Brain: Basic Concepts and Treatment Strategies in Stroke. Antioxidants 2021, 10, 1886. [Google Scholar] [CrossRef]
- Biswas, K.; Alexander, K.; Francis, M.M. Reactive Oxygen Species: Angels and Demons in the Life of a Neuron. NeuroSci 2022, 3, 130–145. [Google Scholar] [CrossRef] [PubMed]
- de Mello, A.H.; Costa, A.B.; Engel, J.D.G.; Rezin, G.T. Mitochondrial dysfunction in obesity. Life Sci. 2018, 192, 26–32. [Google Scholar] [CrossRef]
- Endlicher, R.; Drahota, Z.; Štefková, K.; Červinková, Z.; Kučera, O. The mitochondrial permeability transition pore—Current knowledge of its structure, function, and regulation, and optimized methods for evaluating its functional state. Cells 2023, 12, 1273. [Google Scholar] [CrossRef]
- Stauffer, W.T.; Goodman, A.Z.; Gallay, P.A. Cyclophilin inhibition as a strategy for the treatment of human disease. Front. Pharmacol. 2024, 15, 1417945. [Google Scholar] [CrossRef]
- Patel, N.; Satapathy, T.; Sahu, P.; Satapathy, A.; Bhardwaj, S.K.; Satapathy, A.; Yadav, N.; Chandrakar, K.; Chandrakar, M. Molecular Mechanisms of Mitochondrial Dysfunction in Neurodegenerative Diseases: Pharmacological Targets and Therapeutic Advances. J. Drug Deliv. Ther. 2025, 15, 272–294. [Google Scholar] [CrossRef]
- Liu, B.H.; Xu, C.Z.; Liu, Y.; Lu, Z.L.; Fu, T.L.; Li, G.R.; Deng, Y.; Luo, G.Q.; Ding, S.; Li, N.; et al. Mitochondrial quality control in human health and disease. Mil. Med. Res. 2024, 11, 32. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Liu, Y.; Li, Y.; Li, D.; Mei, Z.; Deng, Y. Mitochondrial quality control in diabetes mellitus and complications: Molecular mechanisms and therapeutic strategies. Cell Death Dis. 2025, 16, 652. [Google Scholar] [CrossRef]
- Sripetchwandee, J.; Chattipakorn, N.; Chattipakorn, S.C. Links between obesity-induced brain insulin resistance, brain mitochondrial dysfunction, and dementia. Front. Endocrinol. 2018, 9, 496. [Google Scholar] [CrossRef]
- Deng, M.; Tang, F.; Zhu, Z. Altered cognitive function in obese patients: Relationship to gut flora. Mol. Cell. Biochem. 2025, 480, 3553–3567. [Google Scholar] [CrossRef]
- Saeed, S.; Bonnefond, A.; Froguel, P. Obesity: Exploring its connection to brain function through genetic and genomic perspectives. Mol. Psychiatry 2025, 30, 651–658. [Google Scholar] [CrossRef]
- Cai, M.; Wan, J.; Cai, K.; Li, S.; Du, X.; Song, H.; Hu, J. The mitochondrial quality control system: A new target for exercise therapeutic intervention in the treatment of brain insulin resistance-induced neurodegeneration in obesity. Int. J. Obes. 2024, 48, 749–763. [Google Scholar] [CrossRef] [PubMed]
- Avram, V.F.; Merce, A.P.; Hâncu, I.M.; Bătrân, A.D.; Kennedy, G.; Rosca, M.G.; Muntean, D.M. Impairment of mitochondrial respiration in metabolic diseases: An overview. Int. J. Mol. Sci. 2022, 23, 8852. [Google Scholar] [CrossRef]
- Frame, A.K.; Robinson, J.W.; Mahmoudzadeh, N.H.; Tennessen, J.M.; Simon, A.F.; Cumming, R.C. Aging and memory are altered by genetically manipulating lactate dehydrogenase in the neurons or glia of flies. Aging 2023, 15, 947–981. [Google Scholar] [CrossRef] [PubMed]
- Albornoz, N.; Álvarez-Indo, J.; de la Peña, A.; Arias-Muñoz, E.; Coca, A.; Segovia-Miranda, F.; Burgos, P.V. Targeting the immunoproteasome in hypothalamic neurons as a novel therapeutic strategy for high-fat diet-induced obesity and metabolic dysregulation. J. Neuroinflamm. 2024, 21, 191. [Google Scholar] [CrossRef]
- Berdún, R.; Obis, È.; Mota-Martorell, N.; Bassols, A.; Valent, D.; Serrano, J.C.; Jové, M. High-Fat Diet-Induced Obesity Increases Brain Mitochondrial Complex I and Lipoxidation-Derived Protein Damage. Antioxidants 2024, 13, 161. [Google Scholar] [CrossRef]
- Tyagi, A.; Musa, M.; Labeikovsky, W.; Pugazhenthi, S. Sirt3 deficiency induced down regulation of insulin degrading enzyme in comorbid Alzheimer’s disease with metabolic syndrome. Sci. Rep. 2022, 12, 19808. [Google Scholar] [CrossRef] [PubMed]
- Azmi, N.H.; Ismail, N.; Imam, M.U.; Ooi, D.J.; Oslan, S.N.H. Modulation of high-fat diet-induced brain oxidative stress by ferulate-rich germinated brown rice ethyl acetate extract. Molecules 2022, 27, 4907. [Google Scholar] [CrossRef] [PubMed]
- Errico, J.P. Metabolic syndrome: Understanding its root cause, and the role of macrophages and why vagus nerve stimulation may be an effective treatment. In Vagus Nerve Stimulation; Academic Press: Cambridge, MA, USA, 2025; pp. 313–325. [Google Scholar] [CrossRef]
- del Rosario Ferreira, M.; de los Milagros Scalzo, M.; Rodriguez, S. Changes in cerebral cortex redox status and cognitive performance in short-and long-term high-sucrose diet fed rats. Physiol. Behav. 2025, 290, 114776. [Google Scholar] [CrossRef] [PubMed]
- Siino, V.; Jensen, P.; James, P.; Vasto, S.; Amato, A.; Mulè, F.; Larsen, M.R. Obesogenic diets cause alterations on proteins and theirs post-translational modifications in mouse brains. Nutr. Metab. Insights 2021, 14, 11786388211012405. [Google Scholar] [CrossRef]
- Allerton, T.D.; Stampley, J.E.; Li, Z.; Yu, X.; Quiariate, H.; Doiron, J.E.; Irving, B.A. Nitric oxide donors rescue metabolic and mitochondrial dysfunction in obese Alzheimer’s model. Sci. Rep. 2024, 14, 26118. [Google Scholar] [CrossRef]
- Özer, S.; Bütün, İ.; Bozkurt, H. Effect of oxidative stress on cognitive functions in children with obesity. Eur. Res. J. 2024, 10, 482–489. [Google Scholar] [CrossRef]
- Rahman, A.; Rao, M.S.; Aldughpassi, A.; Jallad, R.; Shaban, L. Blood levels of copper, manganese, selenium, and zinc are positively associated with cognitive function and academic performance in adolescents. Front. Nutr. 2025, 12, 1638283. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Huang, Y.; Wang, B.; Chen, H.; Pan, W.; Yang, M.; Xia, Z.; Zhang, R.; Yuan, C. Dietary Intake Levels of Iron, Copper, Zinc, and Manganese in Relation to Cognitive Function: A Cross-Sectional Study. Nutrients 2023, 15, 704. [Google Scholar] [CrossRef]
- Essiam, F.A.A.P.; Amoako, M.; Khanna, R. Biomarkers for Assessing Diet-Related Neurocognitive Deficits in Children—A Systematic Review. Dietetics 2024, 3, 261–270. [Google Scholar] [CrossRef]
- Krall, R.F.; Tzounopoulos, T.; Aizenman, E. The Function and Regulation of Zinc in the Brain. Neuroscience 2021, 457, 235–258. [Google Scholar] [CrossRef]
- Chen, M.; Xu, E.; Zeng, C.; Zhu, W.; Zheng, J.; Chen, H. High Dietary Iron Has a Greater Impact on Brain Iron Homeostasis and Cognitive Function in Old Compared with Young C57BL/6J Male Mice. J. Nutr. 2021, 151, 2835–2842. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Jin, H.; Guo, F.; Zhang, W.; Fu, H.; Jin, M.; Chen, G. Association of Magnesium, Iron, Copper, and Zinc Levels with the Prevalence of Behavior Problems in Children and Adolescents. Biol. Trace Elem. Res. 2024, 202, 5356–5365. [Google Scholar] [CrossRef]
- Gaikwad, B.V.; Deshmukh, A.A. Cross-Sectional Study of Nutritional Deficiencies and Cognitive Development in School-Aged Children. Res. J. Med. Sci. 2024, 19, 265–269. [Google Scholar] [CrossRef]
- Smith, L.; Toussaint, L.; Micoli, A.; Lynch, B. Obesity, putative biological mediators, and cognitive function in a national sample of children and adolescents. Prev. Med. 2021, 150, 106659. [Google Scholar] [CrossRef] [PubMed]
- Hong, S. Essential micronutrients in children and adolescents with a focus on growth and development: A narrative review. J. Yeungnam Med. Sci. 2025, 42, 1516090629. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, M.; Malik, M.; Purohit, A.; Jain, L.; Kaur, K.; Pradhan, P.; Mathew, J.L. Association of iron deficiency and anemia with obesity among children: A systematic review and meta-analysis. Obes. Rev. 2025, 26, e13892. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, Y. The role of nutrition and gut microbiome in childhood brain development and behavior. Front. Nutr. 2025, 12, 1590172. [Google Scholar] [CrossRef]
- Calcaterra, V.; Verduci, E.; Milanta, C.; Agostinelli, M.; Todisco, C.F.; Bona, F.; Dolor, J.; La Mendola, A.; Tosi, M.; Zuccotti, G. Micronutrient Deficiency in Children and Adolescents with Obesity—A Narrative Review. Children 2023, 10, 695. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, P.; Zhang, K.; Li, C.; Feng, X. The frontal association area: Exercise-induced brain plasticity in children and adolescents and implications for cognitive intervention practice. Front. Hum. Neurosci. 2024, 18, 1418803. [Google Scholar] [CrossRef]
- Sumra, B.; Kocherry, C.; Shamim, H.; Jhakri, K.; Al-Shudifat, M.; Mohammed, L. Impact of Omega-3 Fatty Acids on Cognitive Outcomes in Children with Autism Spectrum Disorder: A Systematic Review. Cureus 2025, 17, e80291. [Google Scholar] [CrossRef]
- Torbahn, G.; Lischka, J.; Brown, T.; Ells, L.J.; Kelly, A.S.; Wabitsch, M.; Weghuber, D. Anti-Obesity Medication in the Management of Children and Adolescents with Obesity: Recent Developments and Research Gaps. Clin. Endocrinol. 2025, 102, 51–61. [Google Scholar] [CrossRef]
- Lupu, A.; Mihai, C.M.; Dragan, F.; Tarnita, I.; Alecsa, M.; Chisnoiu, T.; Lupu, V.V. Antioxidant Supplementation in Childhood Obesity: A Path to Improved Metabolic Health? Antioxidants 2025, 14, 466. [Google Scholar] [CrossRef]
- Rahi, B.; Rashid, F.; Sultana, R.; Benoit, J.; Parvez, F.; Khan, K. Impact of Nutritional Minerals Biomarkers on Cognitive Performance Among Bangladeshi Rural Adolescents—A Pilot Study. Nutrients 2024, 16, 3865. [Google Scholar] [CrossRef] [PubMed]
- Eilander, A.; Gera, T.; Sachdev, H.S.; Transler, C.; van der Knaap, H.C.; Kok, F.J.; Osendarp, S.J. Multiple micronutrient supplementation for improving cognitive performance in children: Systematic review of randomized controlled trials. Am. J. Clin. Nutr. 2010, 91, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Meli, A.M.; Ali, A.; Mhd Jalil, A.M.; Mohd Yusof, H.; Tan, M.M.C. Effects of Physical Activity and Micronutrients on Cognitive Performance in Children Aged 6 to 11 Years: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicina 2022, 58, 57. [Google Scholar] [CrossRef] [PubMed]
- Bird, J.K.; Feskens, E.J.; Melse-Boonstra, A. A systematized review of the relationship between obesity and vitamin C requirements. Curr. Dev. Nutr. 2024, 8, 102152. [Google Scholar] [CrossRef] [PubMed]
- Kietzmann, T. Vitamin C: From nutrition to oxygen sensing and epigenetics. Redox. Biol. 2023, 63, 102753. [Google Scholar] [CrossRef]
- Wilson, R.B.; Liang, Y.; Kaushal, D.; Carr, A. Molecular Pharmacology of Vitamin C and Relevance to Health and Obesity—A Narrative Review. Int. J. Mol. Sci. 2024, 25, 7523. [Google Scholar] [CrossRef]
- Leung, A.K.; Wong, A.H.; Hon, K.L. Childhood obesity: An updated review. Curr. Pediatr. Rev. 2024, 20, 2–26. [Google Scholar] [CrossRef]
- Nikalansooriya, A.; Waidyarathna, G.N.N.; Kaththiriarachchi, L.S.; Chandrasekara, A.; Kaththiriarachchi, L. Role of Nutrition in Cognitive Development and Academic Performance During Adolescence: A Comprehensive Review. Cureus 2025, 17, e96189. [Google Scholar] [CrossRef]
- de Castro Lobo, L.M.; Hadler, M.C.C.M. Vitamin E deficiency in childhood: A narrative review. Nutr. Res. Rev. 2023, 36, 392–405. [Google Scholar] [CrossRef]
- Fatima, G.; Dzupina, A.; Mahdi, A.A.; Fedacko, J.; Magomedova, A.; Yousif, N.G. Role of vitamin-E as a vital nutrient in health and diseases. Indian J. Clin. Biochem. 2025, 1–14. [Google Scholar] [CrossRef]
- Amini, S.; Navab, F.; Rouhani, M.H.; Jamialahmadi, T.; Bagherniya, M.; Kesharwani, P.; Sahebkar, A. The effect of vitamin E supplementation on serum low-density lipoprotein oxidization: A systematic review and meta-analysis of clinical trials. Eur. J. Pharmacol. 2025, 997, 177491. [Google Scholar] [CrossRef]
- Musfira, M.; Hadju, V.; Indriasari, R.; Ibnu, I.F.; Citrakesumasari, C.; Thaha, A.R.; Foo, L.H. Association between nutritional status and cognitive function scores of adolescent girls in underprivileged communities. Int. J. Adolesc. Med. Health 2025, 37, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Patel, N.; Zhu, S.; Zhou, X.; Chen, Y.; Chen, J.; Mo, X. Association between serum vitamin A and body mass index in adolescents from NHANES 1999 to 2006. Sci. Rep. 2024, 14, 10859. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, Y.; Shi, J. Inverse relationship between serum carotenoid levels and obesity prevalence in children and adolescents: A nationwide cross-sectional analysis. BMC Pediatr. 2025, 25, 617. [Google Scholar] [CrossRef] [PubMed]
- Abd Elwahab, S.A.; Eltamany, E.H.; Abdel-Maksoud, A.M.; Elsayed, H.H.; Fouad, S.M.; Ibrahim, R. Potential Role of Vitamin D and Lifestyle Factors on Egyptian Obese Children. Egypt. J. Chem. 2025, 68, 417–424. [Google Scholar] [CrossRef]
- Kacimi, F.E.; Didou, L.; Ed Day, S.; Azzaoui, F.Z.; Ramchoun, M.; Berrougui, H.; Boulbaroud, S. Gut microbiota, vitamin A deficiency and autism spectrum disorder: An interconnected trio–a systematic review. Nutr. Neurosci. 2025, 28, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Vlad, R.M.; Istrate-Grigore, O.-A.; Pacurar, D. Customizing Nutrients: Vitamin D and Iron Deficiencies in Overweight and Obese Children—Insights from a Romanian Study. Nutrients 2025, 17, 1193. [Google Scholar] [CrossRef]
- Derbel, S.; Zarraa, L.; Assarrar, I.; Bouichrat, N.; Rouf, S.; Latrech, H. Assessment of vitamin D status in obese and non-obese patients: A case-control study. Diabetes Epidemiol. Manag. 2025, 17, 100237. [Google Scholar] [CrossRef]
- Street, M.E.; Casadei, F.; Di Bari, E.R.; Ferraboschi, F.; Montani, A.G.; Shulhai, A.-M.; Esposito, S. The Role of Nutraceuticals and Probiotics in Addition to Lifestyle Intervention in the Management of Childhood Obesity—Part 1: Metabolic Changes. Nutrients 2025, 17, 1630. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, K.; Jepsen, J.R.M.; Sevelsted, A.; Horner, D.; Vinding, R.; Rosenberg, J.B.; Brustad, N.; Eliasen, A.; Mohammadzadeh, P.; Folsgaard, N.; et al. High-dose vitamin D3 supplementation in pregnancy and risk of neurodevelopmental disorders in the children at age 10: A randomized clinical trial. Am. J. Clin. Nutr. 2024, 119, 362–370. [Google Scholar] [CrossRef]
- Rodgers, M.D.; Mead, M.J.; McWhorter, C.A.; Ebeling, M.D.; Shary, J.R.; Newton, D.A.; Baatz, J.E.; Gregoski, M.J.; Hollis, B.W.; Wagner, C.L. Vitamin D and Child Neurodevelopment—A Post Hoc Analysis. Nutrients 2023, 15, 4250. [Google Scholar] [CrossRef] [PubMed]
- Corsello, A.; Macchi, M.; D’Oria, V.; Pigazzi, C.; Alberti, I.; Treglia, G.; De Cosmi, V.; Mazzocchi, A.; Agostoni, C.; Milani, G.P. Effects of vitamin D supplementation in obese and overweight children and adolescents: A systematic review and meta-analysis. Pharmacol. Res. 2023, 192, 106793. [Google Scholar] [CrossRef] [PubMed]
- Skoczek-Rubińska, A.; Cisek-Woźniak, A.; Molska, M.; Heyser, M.; Trocholepsza, M.; Pietrzak, S.; Mruczyk, K. Impact of Vitamin D Status and Supplementation on Brain-Derived Neurotrophic Factor and Mood–Cognitive Outcomes: A Structured Narrative Review. Nutrients 2025, 17, 2655. [Google Scholar] [CrossRef] [PubMed]
- Dewi, M.M.; Imron, A.; Risan, N.A.; Mediana, G.; Judistiani, R.T.D.; Setiabudiawan, B. The Association of Vitamin D, Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), and Glial Cell-Derived Neurotrophic Factor (GDNF) with Development in Children. Children 2025, 12, 60. [Google Scholar] [CrossRef]
- Mirhosseini, H.; Maayeshi, N.; Hooshmandi, H.; Moradkhani, S.; Hosseinzadeh, M. The effect of vitamin D supplementation on the brain mapping and behavioral performance of children with ADHD: A double-blinded randomized controlled trials. Nutr. Neurosci. 2024, 27, 566–576. [Google Scholar] [CrossRef]
- Nikolac Perkovic, M.; Borovecki, F.; Filipcic, I.; Vuic, B.; Milos, T.; Nedic Erjavec, G.; Konjevod, M.; Tudor, L.; Mimica, N.; Uzun, S. Relationship between brain-derived neurotrophic factor and cognitive decline in patients with mild cognitive impairment and dementia. Biomolecules 2023, 13, 570. [Google Scholar] [CrossRef]
- Liza, M.M.; Roy, S.; Iktidar, M.A.; Chowdhury, S.; Sharif, A.B. Nutritional status, dietary habits, and their relation to cognitive functions: A cross-sectional study among the school aged (8–14 years) children of Bangladesh. PLoS ONE 2024, 19, e0304363. [Google Scholar] [CrossRef]
- Leung, B.M.; Srikanth, P.; Robinette, L.; Bruton, A.M.; Tost, G.; Hatsu, I.; Arnold, L.E.; Johnstone, J.M. Micronutrients for ADHD in youth (MADDY) study: Comparison of results from RCT and open label extension. Eur. Child Adolesc. Psychiatry 2024, 33, 1355–1367. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, Y. Benefits of Multi-Micronutrient Nutritional Formula Combined with Aerobic Exercise on Children with Attention Deficit Hyperactivity Disorder: Improvements in Symptoms, Cognition, Executive Function, and Sleep Synergistic Benefits of Multi-Micronutrient Nutritional Formula and Aerobic Exercise. Front. Pediatr. 2025, 13, 1650588. [Google Scholar] [CrossRef]
- Minja, E.G.; Mrimi, E.C.; Mponzi, W.P.; Beckmann, J.; Finda, M.F.; Okumu, F.O.; Long, K.Z.; Lang, C.; Utzinger, J.; Gerber, M. Effect of a School-Based Physical Activity and Multi-Micronutrient Supplementation Intervention on Cognitive Function and Academic Achievement Among Schoolchildren in Tanzania: Secondary Outcome from the KaziAfya Cluster-Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2025, 22, 1335. [Google Scholar] [CrossRef]
- Kovalchuk, T.; Boyarchuk, O.; Balatska, N. The effects of vitamin B and D supplementations on autonomic functions and quality of life in children after vasovagal syncope. Front. Pediatr. 2025, 13, 1553428. [Google Scholar] [CrossRef]
- Ulloque-Badaracco, J.R.; Alarcon-Braga, E.A.; Hernandez-Bustamante, E.A.; Von-Koeller-Jones, B.M.; Huayta-Cortez, M.; Saavedra-Custodio, E.; Herrera-Añazco, P.; Benites-Zapata, V.A. Vitamin B12, folate, and homocysteine levels in children and adolescents with obesity: A systematic review and meta-analysis. Front. Public Health 2025, 13, 1481002. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Huo, J.; Hao, X.; Liang, J. Riboflavin in neurological diseases: Therapeutic advances, metabolic insights, and emerging genetic strategies. Front. Neurol. 2025, 16, 1663136. [Google Scholar] [CrossRef] [PubMed]
- Hunter, C.; Smith, C.; Davies, E.; Dyall, S.C.; Gow, R.V. A closer look at the role of nutrition in children and adults with ADHD and neurodivergence. Front. Nutr. 2025, 12, 1586925. [Google Scholar] [CrossRef] [PubMed]
- Bilici, M.E.; Örnek, Z. Metabolically healthy status in childhood obesity fails to protect against vitamin B12 deficiency. Sci. Rep. 2025, 15, 41135. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Sarwar, T.; Khan, A.A.; Rahmani, A.H. Therapeutic Applications and Mechanisms of Superoxide Dismutase (SOD) in Different Pathogenesis. Biomolecules 2025, 15, 1130. [Google Scholar] [CrossRef]
- Nogales, F.; Pajuelo, E.; Romero-Herrera, I.; Carreras, O.; Merchán, F.; Carrasco López, J.A.; Ojeda, M.L. Uncovering the Role of Selenite and Selenium Nanoparticles (SeNPs) in Adolescent Rat Adipose Tissue beyond Oxidative Balance: Transcriptomic Analysis. Antioxidants 2024, 13, 750. [Google Scholar] [CrossRef]
- Bai, Y.Z.; Zhang, S.Q. Selenium and children’s cognition. Int. J. Vitam. Nutr. Res. 2024, 94, 161–162. [Google Scholar] [CrossRef]
- Trabzon, G.; Çalışkan, O.F.; Yüce, S.; Güllü, U.U. The Overlooked Factor: Iron Deficiency Anemia in Children with Obesity. Turk. Arch. Pediatr. 2025, 60, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Gutema, B.T.; Sorrie, M.B.; Megersa, N.D.; Yesera, G.E.; Yeshitila, Y.G.; Pauwels, N.S.; Abbeddou, S. Effects of iron supplementation on cognitive development in school-age children: Systematic review and meta-analysis. PLoS ONE 2023, 18, e0287703. [Google Scholar] [CrossRef]
- Cheung, Y.T.; Chan, D.F.; Lee, C.K.; Tsoi, W.C.; Lau, C.W.; Leung, J.N.; So, J.C.C.; Tsang, S.T.Y.; Wong, C.L.P.; Li, C.K. Impact of iron deficiency on attention among school-aged adolescents in Hong Kong. Hong Kong Med. J. 2025, 31, 139–147. [Google Scholar] [CrossRef]
- Mashayekhi, Y.; Jadhav, A.N.; Sarfraz, M.; Sachwani, H.; Khan, M.A.; Sultan, S.; Thorani, M.; Ashraf, M.; Mustafa, I.; Yar, A.; et al. Role of Serum Magnesium Deficiency in Insulin Resistance Among Overweight and Obese Children: A Meta-Analysis. Cureus 2025, 17, e90604. [Google Scholar] [CrossRef]
- Kim, M.B.; Lee, J.; Lee, J.Y. Targeting Mitochondrial Dysfunction for the Prevention and Treatment of Metabolic Disease by Bioactive Food Components. J. Lipid Atheroscler. 2024, 13, 306–327. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yu, X.; Song, T.; Hou, X. Safety and efficacy of antioxidant therapy in children and adolescents with attention deficit hyperactivity disorder: A systematic review and network meta-analysis. PLoS ONE 2024, 19, e0296926. [Google Scholar] [CrossRef]
- Debnath, I.; Ghosh, S.; Bhunia, S.; Nayak, A.; Basak, S.; Nandi, S.; Bhattacharjee, S. Mechanistic insights and therapeutic potential of quercetin in neuroprotection: A comprehensive review of pathways and clinical perspectives. BIO Integr. 2025, 6, 978. [Google Scholar] [CrossRef]
- Yook, J.S.; Soya, H. Neuroprotective and Neurotrophic Effects of Astaxanthin on the Brain. Exerc. Brain Stimul. Cogn. Funct. Ment. Health 2025, 44, 317–334. [Google Scholar] [CrossRef]
- Mobini, M.H.; Boileau, A.J. Omega-3 Polyunsaturated Fatty Acid Supplementation in Children with Attention-Deficit Hyperactivity Disorder (ADHD). Cureus 2025, 17, e93175. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Nadella, H.; Williams, S. Non-pharmacological Approaches to Managing Attention-Deficit Hyperactivity Disorder in Pediatric Populations: A Scoping Review. Cureus 2025, 17, e87810. [Google Scholar] [CrossRef]
- Chang, J.P.C.; Wu, S.K.; Capuron, L.; Su, K.P. Omega-3 polyunsaturated fatty acids: A clinical perspective on gut microbiota, major depressive disorder, and obesity. Psychiatr. Ann. 2025, 55, e34–e39. [Google Scholar] [CrossRef]
- Radomska-Leśniewska, D.M.; Niderla-Bielińska, J.; Kujawa, M.; Jankowska-Steifer, E. Targeting Metabolic Dysregulation in Obesity and Metabolic Syndrome: The Emerging Role of N-Acetylcysteine. Metabolites 2025, 15, 645. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Serrano, A.M.; Vieira, J.P.P.; Fleischhart, V.; Duarte, J.M.N. Taurine and N-acetylcysteine treatments prevent memory impairment and metabolite profile alterations in the hippocampus of high-fat diet-fed female mice. Nutr. Neurosci. 2023, 26, 1090–1102. [Google Scholar] [CrossRef] [PubMed]
- Tüfekci, K.K.; Tatar, M. The protective effect of N-acetylcysteine on hippocampal ferroptosis in an experimental obesity model. J. Cell. Neurosci. Oxid. Stress 2023, 15, 1137–1146. [Google Scholar] [CrossRef]
- Minari, T.P.; Pisani, L.P. Melatonin supplementation: New insights into health and disease. Sleep Breath 2025, 29, 169. [Google Scholar] [CrossRef]
- Lasala, J.J.; Lucero-Prisno, D.E., III. Melatonin as a Therapeutic Adjunct in Obstructive Sleep Apnea: A Review of Potential Benefits. Sleep Med. Res. 2025, 16, 84–92. [Google Scholar] [CrossRef]
- Michurina, S.V.; Kolesnikov, S.I.; Vasendin, D.V.; Ishchenko, I.Y. Metabolic-Associated Fatty Liver Disease and Type 2 Diabetes Mellitus in DB/DB Mice. Effect of Melatonin on Liver Lipid Metabolism, Micro- and Ultrastructural Characteristics. Acta Biomed. Sci. 2025, 10, 238–247. [Google Scholar] [CrossRef]
- Bolshakova, S.E.; Madaeva, I.M.; Berdina, O.N.; Khramova, E.E.; Prokhorova, Z.H.V.; Votineva, A.S.; Bugun, O.V.; Rychkova, L.V. Psychoemotional state and sleep disorders in adolescent girls with menstrual dysfunction. Acta Biomed. Sci. 2025, 10, 154–163. [Google Scholar] [CrossRef]
- Cunha, S.A.; Borges, S.; Baptista-Silva, S.; Ribeiro, T.; Oliveira-Silva, P.; Pintado, M.; Batista, P. Astaxanthin impact on brain: Health potential and market perspective. Crit. Rev. Food Sci. Nutr. 2024, 64, 11067–11090. [Google Scholar] [CrossRef] [PubMed]
- Hegde, P.S.; Agni, M.B.; Rai, P.; Sadananda, M.; Mirajkar, A.M.; Kumar, B.M.; Ranade, A.V.; Gowda, K.M.D. Unraveling the synergistic effects of Astaxanthin and DHA on perinatal undernutrition-induced oxidative stress and cognitive deficit. Learn. Behav. 2025, 53, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Gong, N.; Chen, F.; Hu, S.; Zhou, Q.; Gao, X. The Effects of Astaxanthin on Metabolic Syndrome: A Comprehensive Review. Mar. Drugs 2025, 23, 9. [Google Scholar] [CrossRef] [PubMed]
- Lonobile, C.; Di Nubila, A.; Simone, R.; Hushi, M.; Barbieri, S.S. The Mitochondrial Permeability Transition Pore in Platelets: Mechanisms, Physiological Roles, and Therapeutic Perspectives. Antioxidants 2025, 14, 923. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Rubattu, S.; Volpe, M. Mitochondrial Dysfunction in Heart Failure: From Pathophysiological Mechanisms to Therapeutic Opportunities. Int. J. Mol. Sci. 2024, 25, 2667. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Pang, Y.; Fan, X. Mitochondria in oxidative stress, inflammation and aging: From mechanisms to therapeutic advances. Sig. Transduct. Target Ther. 2025, 10, 190. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darenskaya, M.; Cloete, K.J.; Rychkova, L.; Kolesnikov, S.; Prokhorova, Z.; Semenova, N.; Yuzvak, N.; Kolesnikova, L. Oxidative Stress, Antioxidant Cofactor Micronutrients, and Cognitive Outcomes in Childhood Obesity: Mechanisms, Evidence, and Therapeutic Opportunities. Int. J. Mol. Sci. 2025, 26, 12012. https://doi.org/10.3390/ijms262412012
Darenskaya M, Cloete KJ, Rychkova L, Kolesnikov S, Prokhorova Z, Semenova N, Yuzvak N, Kolesnikova L. Oxidative Stress, Antioxidant Cofactor Micronutrients, and Cognitive Outcomes in Childhood Obesity: Mechanisms, Evidence, and Therapeutic Opportunities. International Journal of Molecular Sciences. 2025; 26(24):12012. https://doi.org/10.3390/ijms262412012
Chicago/Turabian StyleDarenskaya, Marina, Karen J. Cloete, Luybov Rychkova, Sergey Kolesnikov, Zhanna Prokhorova, Natalya Semenova, Natalya Yuzvak, and Lyubov Kolesnikova. 2025. "Oxidative Stress, Antioxidant Cofactor Micronutrients, and Cognitive Outcomes in Childhood Obesity: Mechanisms, Evidence, and Therapeutic Opportunities" International Journal of Molecular Sciences 26, no. 24: 12012. https://doi.org/10.3390/ijms262412012
APA StyleDarenskaya, M., Cloete, K. J., Rychkova, L., Kolesnikov, S., Prokhorova, Z., Semenova, N., Yuzvak, N., & Kolesnikova, L. (2025). Oxidative Stress, Antioxidant Cofactor Micronutrients, and Cognitive Outcomes in Childhood Obesity: Mechanisms, Evidence, and Therapeutic Opportunities. International Journal of Molecular Sciences, 26(24), 12012. https://doi.org/10.3390/ijms262412012

