Genome-Wide Association Study for Markers Related to Protein, Fiber (ADF and NDF) and Oil Content in Winter Oilseed Rape Seeds (Brassica napus L.)
Abstract
1. Introduction
2. Results
2.1. Phenotyping
2.2. Genotyping
2.3. Genome-Wide Association Study Identified Key Markers Associated with Seed Composition Traits
2.4. Gene Enrichment Analysis
3. Discussion
4. Materials and Methods
4.1. Winter Oilseed Rape Germplasm Diversity Panel and Field Experience
4.2. Seed Measurement of Biochemical Compounds by NIRS
4.3. Phenotypic Data Analysis
4.4. DNA Isolation, Genotyping and Marker Screening
4.5. Genome-Wide Association Studies (GWAS)
4.6. GO Enrichment Analyses on Candidate Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pullens, J.W.M.; Sharif, B.; Trnka, M.; Balek, J.; Semenov, M.A.; Olesen, J.E. Risk Factors for European Winter Oilseed Rape Production under Climate Change. Agric. For. Meteorol. 2019, 272–273, 30–39. [Google Scholar] [CrossRef]
- Zheng, X.; Koopmann, B.; Ulber, B.; von Tiedemann, A. A Global Survey on Diseases and Pests in Oilseed Rape—Current Challenges and Innovative Strategies of Control. Front. Agron. 2020, 2, 590908. [Google Scholar] [CrossRef]
- Tileuberdi, N.; Turgumbayeva, A.; Yeskaliyeva, B.; Sarsenova, L.; Issayeva, R. Extraction, Isolation of Bioactive Compounds and Therapeutic Potential of Rapeseed (Brassica napus L.). Molecules 2022, 27, 8824. [Google Scholar] [CrossRef] [PubMed]
- Zereyesus, Y.A.; Cardell, L.; Farris, J.; Ajewole, K.; Johnson, M.E.; Lin, J.; Valdes, C.; Zeng, W. Global Food Assessment, 2025–2035; (Report No. GFA-36); U.S. Department of Agriculture, Economic Research Service: Kansas City, MO, USA, 2025.
- Goyal, A.; Tanwar, B.; Sihag, M.K.; Kumar, V.; Sharma, V.; Soni, S. Rapeseed/canola (Brassica napus). In Oilseeds: Health Attributes and Food Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 47–71. [Google Scholar]
- Assadi, E.; Janmohammadi, H.; Taghizadeh, A.; Alijani, S. Nutrient Composition of Different Varieties of Full-Fat Canola Seed and Nitrogen-Corrected True Metabolizable Energy of Full-Fat Canola Seed with or without Enzyme Addition and Thermal Processing. J. Appl. Poult. Res. 2011, 20, 95–101. [Google Scholar] [CrossRef]
- Carré, P.; Citeau, M.; Robin, G.; Estorges, M. Hull Content and Chemical Composition of Whole Seeds, Hulls and Germs in Cultivars of Rapeseed (Brassica napus). OCL 2016, 23, A302. [Google Scholar] [CrossRef]
- Wittkop, B.; Snowdon, R.J.; Friedt, W. Status and Perspectives of Breeding for Enhanced Yield and Quality of Oilseed Crops for Europe. Euphytica 2009, 170, 131–140. [Google Scholar] [CrossRef]
- Ash, M.; Dohlman, E. Oil Crops Situation and Outlook Yearbook. In Electronic Outlook Report from the Economic Research Service; United States Department of Agriculture: Washington, DC, USA, 2007; pp. 1–83. [Google Scholar]
- Jia, W.; Rodriguez-Alonso, E.; Bianeis, M.; Keppler, J.K.; van der Goot, A.J. Assessing Functional Properties of Rapeseed Protein Concentrate versus Isolate for Food Applications. Innov. Food Sci. Emerg. Technol. 2021, 68, 102636. [Google Scholar] [CrossRef]
- Banovic, M.; Sveinsdóttir, K. Importance of Being Analogue: Female Attitudes towards Meat Analogue Containing Rapeseed Protein. Food Control 2021, 123, 107833. [Google Scholar] [CrossRef]
- Jia, W.; Curubeto, N.; Rodríguez-Alonso, E.; Keppler, J.K.; van der Goot, A.J. Rapeseed Protein Concentrate as a Potential Ingredient for Meat Analogues. Innov. Food Sci. Emerg. Technol. 2021, 72, 102758. [Google Scholar] [CrossRef]
- Mabry, M.E.; Turner-Hissong, S.D.; Gallagher, E.Y.; McAlvay, A.C.; An, H.; Edger, P.P.; Moore, J.D.; Pink, D.A.C.; Teakle, G.R.; Stevens, C.J.; et al. The Evolutionary History of Wild, Domesticated, and Feral Brassica oleracea (Brassicaceae). Mol. Biol. Evol. 2021, 38, 4419–4434. [Google Scholar] [CrossRef]
- Leser, S. The 2013 FAO Report on Dietary Protein Quality Evaluation in Human Nutrition: Recommendations and Implications. Nutr. Bull. 2013, 38, 421–428. [Google Scholar] [CrossRef]
- Tan, S.H.; Mailer, R.J.; Blanchard, C.L.; Agboola, S.O. Canola Proteins for Human Consumption: Extraction, Profile, and Functional Properties. J. Food Sci. 2011, 76, R16–R28. [Google Scholar] [CrossRef] [PubMed]
- Ghodsvali, A.; Khodaparast, M.H.H.; Vosoughi, M.; Diosady, L.L. Preparation of Canola Protein Materials Using Membrane Technology and Evaluation of Meals Functional Properties. Food Res. Int. 2005, 38, 223–231. [Google Scholar] [CrossRef]
- Rahman, M.; Guo, Q.; Baten, A.; Mauleon, R.; Khatun, A.; Liu, L.; Barkla, B.J. Shotgun Proteomics of Brassica rapa Seed Proteins Identifies Vicilin as a Major Seed Storage Protein in the Mature Seed. PLoS ONE 2021, 16, e0253384. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Y.; Lv, Z.; Liu, H.; Zhao, J.; Noblet, J.; Wang, F.; Lai, C.; Li, D. Net Energy of Corn, Soybean Meal and Rapeseed Meal in Growing Pigs. J. Anim. Sci. Biotechnol. 2017, 8, 44. [Google Scholar] [CrossRef]
- Badani, A.G.; Snowdon, R.J.; Wittkop, B.; Lipsa, F.D.; Baetzel, R.; Horn, R.; De Haro, A.; Font, R.; Lühs, W.; Friedt, W. Colocalization of a Partially Dominant Gene for Yellow Seed Colour with a Major QTL Influencing Acid Detergent Fibre (ADF) Content in Different Crosses of Oilseed Rape (Brassica napus). Genome 2006, 49, 1499–1509. [Google Scholar] [CrossRef]
- Snowdon, R.J.; Wittkop, B.; Rezaidad, A.; Hasan, M.; Lipsa, F.; Stein, A.; Friedt, W. Regional Association Analysis Delineates a Sequenced Chromosome Region Influencing Antinutritive Seed Meal Compounds in Oilseed. Genome 2010, 53, 917–928. [Google Scholar] [CrossRef]
- Wolko, J.; Dobrzycka, A.; Bocianowski, J.; Szala, L.; Cegielska-Taras, T.; Bartkowiak-Broda, I.; Gacek, K. Genetic Variation of Traits Affecting Meal Quality in Black × Yellow Seeded Doubled Haploid Population of Winter Oilseed Rape. Agron. Res. 2020, 18, 2259–2270. [Google Scholar]
- Liu, L.; Stein, A.; Wittkop, B.; Sarvari, P.; Li, J.; Yan, X.; Dreyer, F.; Frauen, M.; Friedt, W.; Snowdon, R.J. A Knockout Mutation in the Lignin Biosynthesis Gene CCR1 Explains a Major QTL for Acid Detergent Lignin Content in Brassica napus Seeds. Theor. Appl. Genet. 2012, 124, 1573–1586. [Google Scholar] [CrossRef]
- Qu, C.; Fu, F.; Lu, K.; Zhang, K.; Wang, R.; Xu, X.; Wang, M.; Lu, J.; Wan, H.; Tang, Z.; et al. Differential Accumulation of Phenolic Compounds and Expression of Related Genes in Black- and Yellow-Seeded Brassica napus. J. Exp. Bot. 2013, 64, 2885–2898. [Google Scholar] [CrossRef]
- Spasibionek, S.; Mikołajczyk, K.; Matuszczak, M.; Kaczmarek, J.; Ramzi, N.; Jędryczka, M. HO-CR and HOLL-CR: New Forms of Winter Oilseed Rape (Brassica napus L.) with Altered Fatty Acid Composition and Resistance to Selected Pathotypes of Plasmodiophora Brassicae (Clubroot). J. Appl. Genet. 2024, 65, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Weselake, R.J.; Taylor, D.C.; Rahman, M.H.; Shah, S.; Laroche, A.; McVetty, P.B.E.; Harwood, J.L. Increasing the Flow of Carbon into Seed Oil. Biotechnol. Adv. 2009, 27, 866–878. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Zhang, C.; Tang, F.; Yang, B.; Zhang, L.; Liu, J.; Huo, Q.; Wang, S.; Li, S.; Wei, L.; et al. Identification of Candidate Genes Controlling Oil Content by Combination of Genome-Wide Association and Transcriptome Analysis in the Oilseed Crop Brassica Napus. Biotechnol. Biofuels 2019, 12, 216. [Google Scholar] [CrossRef] [PubMed]
- Bocianowski, J.; Leśniewska-Bocianowska, A. Towards the Identification of Candidate Genes for Pollen Morphological Traits in Rubus L. Using Association Mapping. Forests 2025, 16, 1395. [Google Scholar] [CrossRef]
- Rakoczy-Trojanowska, M.; Krajewski, P.; Bocianowski, J.; Schollenberger, M.; Wakuliński, W.; Milczarski, P.; Masojć, P.; Targońska-Karasek, M.; Banaszak, Z.; Banaszak, K.; et al. Identification of Single Nucleotide Polymorphisms Associated with Brown Rust Resistance, α-Amylase Activity and Pre-Harvest Sprouting in Rye (Secale cereale L.). Plant Mol. Biol. Rep. 2017, 35, 366–378. [Google Scholar] [CrossRef]
- Rakoczy-Trojanowska, M.; Orczyk, W.; Krajewski, P.; Bocianowski, J.; Stochmal, A.; Kowalczyk, M. ScBx Gene Based Association Analysis of Hydroxamate Content in Rye (Secale cereale L.). J. Appl. Genet. 2017, 58, 1–9. [Google Scholar] [CrossRef]
- Bocianowski, J. Using NGS Technology and Association Mapping to Identify Candidate Genes Associated with Fusarium Stalk Rot Resistance. Genes 2024, 15, 106. [Google Scholar] [CrossRef]
- Pacheco, D.A.d.J.; ten Caten, C.S.; Jung, C.F.; Ribeiro, J.L.D.; Navas, H.V.G.; Cruz-Machado, V.A. Eco-Innovation Determinants in Manufacturing SMEs: Systematic Review and Research Directions. J. Clean. Prod. 2017, 142, 2277–2287. [Google Scholar] [CrossRef]
- OECD-FAO. Agricultural Outlook 2025–2034; OECD-FAO Agricultural Outlook: Paris, France; Rome, Italy, 2025. [Google Scholar] [CrossRef]
- Cravotto, C.; Claux, O.; Bartier, M.; Fabiano-Tixier, A.-S.; Tabasso, S. Leading Edge Technologies and Perspectives in Industrial Oilseed Extraction. Molecules 2023, 28, 5973. [Google Scholar] [CrossRef]
- Beszterda, M.; Nogala-Kałucka, M. Current research developments on the processing and improvement of the nutritional quality of rapeseed (Brassica napus L.). Eur. J. Lipid Sci. Technol. 2019, 121, 1800045. [Google Scholar] [CrossRef]
- Liersch, A.; Bocianowski, J.; Nowosad, K.; Mikołajczyk, K.; Spasibionek, S.; Wielebski, F.; Matuszczak, M.; Szała, L.; Cegielska-Taras, T.; Sosnowska, K.; et al. Effect of Genotype × Environment Interaction for Seed Traits in Winter Oilseed Rape (Brassica napus L.). Agriculture 2020, 10, 607. [Google Scholar] [CrossRef]
- Hu, X.; Sullivan-Gilbert, M.; Gupta, M.; Thompson, S.A. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor. Appl. Genet. 2006, 113, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Santos-Mendoza, M.; Dubreucq, B.; Baud, S.; Parcy, F.; Caboche, M.; Lepiniec, L. Deciphering Gene Regulatory Networks That Control Seed Development and Maturation in Arabidopsis. Plant J. 2008, 54, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; McCarty, D.R. Functional Symmetry of the B3 Network Controlling Seed Development. Curr. Opin. Plant Biol. 2008, 11, 548–553. [Google Scholar] [CrossRef]
- Chao, H.; Wang, H.; Wang, X.; Guo, L.; Gu, J.; Zhao, W.; Li, B.; Chen, D.; Raboanatahiry, N.; Li, M. Genetic Dissection of Seed Oil and Protein Content and Identification of Networks Associated with Oil Content in Brassica napus. Sci. Rep. 2017, 7, 46295. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, H.; Chen, X.; Li, Y.; Hussain, N.; Cui, L.; Wu, D.; Jiang, L. Identification of Candidate Genes Involved in Fatty Acids Degradation at the Late Maturity Stage in Brassica napus Based on Transcriptomic Analysis. Plant Growth Regul. 2017, 83, 385–396. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Pak, H.; Yan, T.; Chen, M.; Chen, X.; Wu, D.; Jiang, L. Genome-Wide Association Study Reveals a Patatin-like Lipase Relating to the Reduction of Seed Oil Content in Brassica napus. BMC Plant Biol. 2021, 21, 6. [Google Scholar] [CrossRef]
- Guo, L.; Chao, H.; Yin, Y.; Li, H.; Wang, H.; Zhao, W.; Hou, D.; Zhang, L.; Zhang, C.; Li, M. New Insight into the Genetic Basis of Oil Content Based on Noninvasive Three-Dimensional Phenotyping and Tissue-Specific Transcriptome in Brassica napus. Biotechnol. Biofuels Bioprod. 2023, 16, 88. [Google Scholar] [CrossRef]
- Siger, A.; Gawrysiak-Witulska, M.; Bartkowiak-Broda, I. Antioxidant (Tocopherol and Canolol) Content in Rapeseed Oil Obtained from Roasted Yellow-Seeded Brassica napus. J. Am. Oil Chem. Soc. 2017, 94, 37–46. [Google Scholar] [CrossRef]
- Shi, R.; Cao, Y.; Yang, T.; Wang, Y.; Xiang, Y.; Chen, F.; Zhang, W.; Zhou, X.; Sun, C.; Fu, S.; et al. Genome-Wide Association Study Reveals the Genetic Basis of Crude Fiber Components in Brassica napus L. Shoots at Stem Elongation Stage. J. Agric. Food Chem. 2024, 72, 16530–16540. [Google Scholar] [CrossRef]
- Gacek, K.; Bartkowiak-Broda, I.; Batley, J. Genetic and molecular regulation of seed storage proteins (SSPs) to improve protein nutritional value of oilseed rape (Brassica napus L.) seeds. Front. Plant Sci. 2018, 9, 890. [Google Scholar] [CrossRef] [PubMed]
- Lavell, A.A.; Benning, C. Cellular organization and regulation of plant glycerolipid metabolism. Plant Cell Physiol. 2019, 60, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.U. Lipid Metabolism in Plants. Plants 2020, 9, 871. [Google Scholar] [CrossRef] [PubMed]
- Suprianto, E. Genetic Variation and Inheritance of Seed Fibre Content in Winter Oilseed Rape (Brassica napus L.). Doctoral Dissertation, Georg-August University of Göttingen, Göttingen, Germany, 2014. [Google Scholar]
- Michalski, K.; Czernik-Kolodziej, K. Application of NIR spectrometry for analysis of basic chemical constituent of rapeseed. Rośliny Oleiste–Oilseed Crops 2000, 21, 801–806. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Bocianowski, J.; Leśniewska-Bocianowska, A. Application of Association Mapping for the Identification of Candidate Genes Linked to Agronomically Important Traits as a Modern Development Concept in Agronomy. Mod. Concepts Dev. Agron. 2025, 15, 1515–1522. [Google Scholar]
- VSN International. VSN International Genstat for Windows, 23rd ed.; VSN International: Hemel Hempstead, UK, 2023. [Google Scholar]
- Bocianowski, J.; Tomkowiak, A.; Bocianowska, M.; Sobiech, A. The Use of DArTseq Technology to Identify Markers Related to the Heterosis Effects in Selected Traits in Maize. Curr. Issues Mol. Biol. 2023, 45, 2644–2660. [Google Scholar] [CrossRef]













| Trait | The Number of Significant Markers | Total Number of Associations | |||
|---|---|---|---|---|---|
| All | Year | ||||
| 2022 | 2023 | 2024 | |||
| protein | 2350 | 1061 | 1768 | 651 | 3480 |
| oil | 1551 | 829 | 461 | 756 | 2046 |
| ADF | 2192 | 1733 | 1629 | 60 | 3422 |
| NDF | 2301 | 1564 | 1697 | 401 | 3662 |
| Trait | 2022 | 2023 | 2024 |
|---|---|---|---|
| protein | 0.9–7.3 | 0.8–14.1 | 0.9–25.4 |
| oil | 0.8–9.0 | 0.8–7.0 | 0.9–35.0 |
| ADF | 0.8–10.4 | 0.8–11.7 | 0.9–1.9 |
| NDF | 0.9–12.5 | 0.8–10.8 | 0.9–13.4 |
| Basic Weather Parameters | 2021/2022 | 2022/2023 | 2023/2024 |
|---|---|---|---|
| Mean temperature (°C) | |||
| Annual | 9.7 | 9.26 | 10.9 |
| Critical season of autumn (Months: September, October and November) | 10.1 | 9.8 | 11.6 |
| Of the coldest month of winter | −0.1/XII | 1.1/XII | 0.8/XII |
| Critical season of spring (Months: April, May, June and July) | 14.2 | 15.1 | 16.8 |
| Sum of precipitation (mm) | |||
| Critical season of autumn (Months: September, October and November) | 95.2 | 111.9 | 134.3 |
| Critical season of winter (Months: December, January, February, and March) | 101.8 | 135.4 | 206 |
| Critical season of spring (Months: April, May, June and July) | 93.8 | 206 | 273.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łopatyńska, A.; Wolko, J.; Wolko, Ł.; Bocianowski, J.; Spychała, J.; Noweiska, A. Genome-Wide Association Study for Markers Related to Protein, Fiber (ADF and NDF) and Oil Content in Winter Oilseed Rape Seeds (Brassica napus L.). Int. J. Mol. Sci. 2025, 26, 11931. https://doi.org/10.3390/ijms262411931
Łopatyńska A, Wolko J, Wolko Ł, Bocianowski J, Spychała J, Noweiska A. Genome-Wide Association Study for Markers Related to Protein, Fiber (ADF and NDF) and Oil Content in Winter Oilseed Rape Seeds (Brassica napus L.). International Journal of Molecular Sciences. 2025; 26(24):11931. https://doi.org/10.3390/ijms262411931
Chicago/Turabian StyleŁopatyńska, Agnieszka, Joanna Wolko, Łukasz Wolko, Jan Bocianowski, Julia Spychała, and Aleksandra Noweiska. 2025. "Genome-Wide Association Study for Markers Related to Protein, Fiber (ADF and NDF) and Oil Content in Winter Oilseed Rape Seeds (Brassica napus L.)" International Journal of Molecular Sciences 26, no. 24: 11931. https://doi.org/10.3390/ijms262411931
APA StyleŁopatyńska, A., Wolko, J., Wolko, Ł., Bocianowski, J., Spychała, J., & Noweiska, A. (2025). Genome-Wide Association Study for Markers Related to Protein, Fiber (ADF and NDF) and Oil Content in Winter Oilseed Rape Seeds (Brassica napus L.). International Journal of Molecular Sciences, 26(24), 11931. https://doi.org/10.3390/ijms262411931

